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Abstract
The hydropower industry is one of the most important sources of clean energy. Predict-
ing hydropower production is essential for the hydropower industry. This study introduces 
a hybrid deep learning model to predict hydropower production. Statistical methods are 
unsuitable for modeling hydropower production because their accuracy depends on sea-
sonal and periodic fluctuations. For accurate predictions, deep learning models can cap-
ture daily, weekly, and monthly patterns. Since ANNs may not capture latent and nonlinear 
patterns, we use deep learning models to predict hydropower production. We used Con-
volutional Neural Network-Multilayer Perceptron-Gaussian Process Regression (CNNE-
MUPE-GPRE) to extract key features and predict outcomes. The main advantages of the 
hybrid model are the quantification of production uncertainty, the accurate prediction of 
hydropower production, and the extraction of features from input data. We use a binary 
SSOA to select optimal input scenarios. The new model is benchmarked against the long 
short term memory neural network (LSTM), Bi directional LSTM (BI-LSTM), MUPE, 
GPRE, MUPE-GPRE, CNNE-GPRE, and CNNE-MUPE models. The models are used to 
predict 1-, 2-, and 3-day ahead power. The root mean square error values of CNNE-MUPE-
GPRE, CNNE-MUPE, CNNE-GPRE, MUPE-GPRE, BI-LSTM, LSTM, CNNE, MUPE, 
GPRE were 578, 615, 832, 861, 914, 934, 1436, 1712, and 1954 KW at the 1-day predic-
tion horizon. The RMSE of the CNNE-MUPE-GPRE was 595, 600, and 612 at the 1-day, 
2-days, and 3-days prediction horizons. Extending the prediction horizon degrades accu-
racy. The uncertainty of the CNNE-MUPE-GPRE model was lower than that of the other 
models. The CNNE-MUPE-GPRE model is recommended for more accurate hydropower 
production predictions.
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1  Introduction

Sustainable development relies on energy resources (Ehteram et  al. 2017). Energy is an 
important economic factor in industrial societies. The consumption of non-renewable 
energy leads to an increase in greenhouse gases that can change the global climate. Clean 
energy is energy that does not pollute the environment (Ehteram et al. 2018a). The hydro-
power industry is one of the most important sources of clean energy  (Hou et  al. 2021). 
Hydropower is an important renewable energy source due to its low cost. Climate, social, 
and economic factors can affect the hydropower system. The hydropower industry plays a 
key role in the development of electricity (Ehteram et al. 2018b). Hydropower plants play 
a key role in meeting the energy demand. An accurate prediction of power production is 
necessary for decision-makers in order to meet demand. Predicting hydropower production 
is necessary for managing energy resources. These predictions are needed for energy man-
agement. Furthermore, there are a number of uncertainties that may affect power produc-
tion. Our research contributes to the development of energy prediction models. In addition, 
our study examines the impact of uncertainties on power generation.

The optimal operation of hydropower plants is a key topic in energy engineering. Accu-
rate hydropower generation predictions can help the management of hydropower plants.

Hydropower production predictions can prevent energy shortages during droughts. 
Researchers have developed different models to predict hydropower production (Dehghani 
et al. 2019).

Machine learning models are widely used to predict hydropower production and energy 
demand. These models can find relationships between complex input and output data. The 
advantages of these models are fast calculation, easy implantation, and high precision. Guo 
et al. (2018) used support vector machine models (SVMs) to predict power production. The 
SVM model successfully predicted power generation. Dehghani et  al. (2019) developed 
a neuro-fuzzy adaptive system (ANFIS) for hydropower production prediction. ANFIS 
parameters were adjusted using the grey wolf optimization (GWO) algorithm. It was 
reported that the ANFIS-GWO model performed better than the ANFIS model. Gao et al. 
(2019) proposed an ANN model for predicting one day-ahead power. They predicted power 
using a long short-term memory (LSTM) neural network. An LSTM is a recurrent neu-
ral network (RNN) that overcomes the vanishing gradient problem of conventional RNNs. 
An LSTM network uses memory cells to store. The meteorological data were used as the 
inputs to the models. The LSTM model predicted power successfully.

Rahman et al. (2021) developed LSTM, convolutional neural network (CNNE), and recur-
rent neural network models (RNN) to predict power energy. They stated that the different ANN 
models successfully predicted power energy. For electricity prediction, Zolfaghari and Golabi 
(2021) combined adaptive wavelet transforms (WT) with the LSTM model. They found that the 
WT-LSTM outperformed the LSTM model. They reported that the R2 of wavelet- ANN and 
wavelet- LSTM models was 0.951 and 0.979, respectively. The root mean square error of the 
wavelet-ANN and wavelet LSTM was 8.65 and 6.73, respectively.

Barzola-Monteses et  al. (2022) used artificial neural networks (ANNs) to predict 
hydropower production. The model parameters were set using a grid search algorithm. 
The developed model was a reliable tool for energy management. They considered two 
scenarios for their study. One step (one-month) and multi-step (12 months) were used 
to predict hydropower production. The average execution of the models was 1.48 and 
1.37 min for the first and second scenarios. The RMSE of the MLP and LSTM models 
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was 195.1 and 177.68 for the first scenario. The RMSE of the MLP and LSTM models 
was 154.1 and 173.2 for the second scenario.

Hanoon et  al. (2022) developed ANN, SVM, and auto regressive integrated mov-
ing average (ARIMA) models to predict power production of a reservoir in China. They 
reported that the ANN and SVM model successfully predicted power production. The cor-
relation coefficient of the MLP model varied from 0.8761 to 0.8779. The correlation coef-
ficient of the radial basis function neural network model varied from 0.8480 to 0.8710.

Studies have shown that ANN models can accurately predict power production, 
but they have some limitations. These models are unable to automatically extract the 
important features from time series data (Panahi et al. 2021). Setting model parameters 
requires robust algorithms. The preprocessing methods are required to determine the 
most appropriate input scenario (Panahi et  al. 2021). Also, these models cannot auto-
matically predict interval times. Using interval time prediction, we can quantify the 
uncertainty of a model. This paper aims to develop ANN models for predicting daily 
power production. This paper will use new techniques to fill research gaps. In recent 
years, many researchers have developed deep learning models to analyze complex data 
(Sharifzadeh et al. 2019). A deep learning model is becoming an increasingly popular 
alternative to traditional machine learning models for predicting hydropower genera-
tion. Deep learning models can capture complex relationships between the input param-
eters, and are more accurate than traditional models.

Studies have shown that hybrid ANN models outperform ANN models. Hybridizing 
ANNs and deep learning models can improve their performance (Sharifzadeh et al. 2019).

A Convolutional Neural Network model (CNNE) is a robust deep learning model 
because it can extract important information from time series data (Sinitsin et al. 2022). 
The CNNE model can be integrated with the ANN model to extract complex nonlinear  
patterns and important features (Sinitsin et al. 2022). An ANN model can be trained more 
efficiently if it receives relevant features as inputs. In this study, the CNNE model was 
coupled with an ANN to predict the daily power production of a hydropower plant. The 
CNNE-ANN model can provide better results because it combines the advantages of con-
volutional neural networks and multilayer perceptron layers. The CNNE-ANN model can 
be easily scaled to handle different sizes and complexities of input data. A convolutional 
neural network can efficiently extract features from input data, reducing the workload of 
the ANN layers. The architecture of the CNNE-ANN model allows it to identify features 
of the input data accurately. As the CNNE-ANN model uses pooling layers and regulariza-
tion techniques, it is less prone to overfitting than ANN. For accurate hydro-power pro-
duction predictions, the CNNE-ANN model can handle noisy data and outliers. As the 
CNNE-ANN model can be scaled up or down, it can be used for different applications and 
environments.

Since a CNNE-ANN model cannot capture uncertainty values, this model can be cou-
pled with a Bayesian approach. This study also introduces an approach for determining 
the most appropriate input scenarios. The main contributions of the current study are as 
follows:

•	 The CNNE-ANN is introduced for predicting daily power production.
•	 We evaluate the accuracy of the new model against several ANN models, including 

ANN, CNNE, LSTM, and Bidirectional LSTM (BI-LSTM) models.
•	 The CNNE-ANN model is integrated with a Bayesian approach to quantify the uncer-

tainty values.
•	 A new method is introduced to determine the appropriate input scenarios.
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2 � Materials and Methods

2.1 � An Optimization Algorithm for Adjusting Model Parameters and Feature 
Selection

Since selection of the best model parameters is time-consuming and difficult, this study 
applied binary and continuous versions of an optimization algorithm to determine 
optimum values of model parameters, train different models, and select the best input 
combinations. For solving complex problems, the Salp swarm optimization algorithm 
(SSOA) is widely used.  The SSOA is broadly applied in different fields such as fea-
ture selections (Faris et al. 2018), global optimization (Zhang et al. 2022), discounted 
knapsack problem (Dang and Truong 2022), training unreal network models (Panda and 
Majhi 2020), and training support vector machine models (Samantaray et al. 2022). The 
high speed and accuracy are the advantages of SSOA.

The salp chains are divided in two groups. The first group (leader) guides salps. The 
second group (remaining salps) follow leaders. In the search space, this swarm is look-
ing for food sources. The leader location is updated based on the following equation

where Salpl
j
 : the leader location, Foodj : food source, �1 , �2 , and �3 : random parameters, 

uppj : upper value of decision variable, and lowj : lower value of decision variable. Equation 
(2) is used to update the location of followers:

where followeri
j
:the ith follower at the jth dimension. A population of solutions is created 

before the optimization process begins. In the next step, an objective function is used to 
evaluate the generated solution. A food source is considered as the best solution. Equations 
(1) and (2) are used to update the location of followers and salps. When the stop creation is 
met, the process ends. The SSOA is a continuous optimization algorithm. A transfer func-
tion can convert the continuous SSA to a binary SSOA (BSSOA).

where T
(
salpi

j
(t)

)
 : transfer function and salpi

j
(t) : ith salp in jth dimension. The final location 

of salps is computed based on the following equation:

(1)Salpl
j
=

[
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(((
uppj − lowj

)
𝜌2 + lowj

))
← 𝜌3 ≥ 0.50
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)
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))
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0 ← otherwise
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2.2 � Structure of Convolutional Neural Network Model

A CNNE is a fusion of feature extraction and feature classification (Zou and 
Ergan  2023). CNNEs consist of convolutional layers and pooling layers followed by 
fully connected layers. A convolutional layer contains convolutional kernels (Zhao et al. 
2022). Convolution layers consist of a finite number of filters (kernels) that are com-
bined with input data to extract relevant features. Convolution kernels represent a kind 
of feature named a feature map (Tang et  al. 2021). The pooling layer has two impor-
tant tasks. The pooling layer can accelerate the network operation. The next convolu-
tion layer requires fewer calculations if feature maps are pooled. The pooling layer also 
enhances the performance of the CNNE (Liu et al. 2021). The CNNE will yield better 
results by selecting the most important features. The fully connected layer is similar to 
the traditional ANN models.

The output feature map is computed based on the following equation (Tang et al. 2021):

where outl
j
 : the new feature map, inl−1

i
 : input, bj

l
 : bias, f: activation function, ∗ : convolution 

operation, j: number of feature maps, and l: number of layers. A pooling layer resizes fea-
ture maps based on the pooling operation:

where down : the pooling operation, Ml−1
j

 : the feature map of layer l-1, wl
j
 : weight connec-

tion, and �j : the new feature map after decreasing size. Figure  1 shows the structure of 
CNNE model.

2.3 � Structure of BI‑LSTLM

LSTM neural network is an artificial deep learning method based on recurrent neural net-
work (RNN), which was presented by Hochreiter and Schmidhuber (1997). The LSTM 
overcomes the vanishing gradient problem of recurrent neural networks. The LSTM model 
has been widely used for time series data prediction and has also achieved excellent results 
(Azzouni and Pujolle 2017).

(5)outl
j
= f

(∑
i∈Mj

inl−1
i

∗ k
j

l
+ b

j

l

)

(6)�j = f
(
wl
j
down

(
Ml−1

j

)
+ bl

j

)

Fig. 1   The structure of CNN model
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LSTM networks consist of memory blocks, memory cells, and gate units. A cell stat 
retains information. An LSTM model uses these gates to store and process the relevant 
information (Zha et al. 2022). The gates will learn what information can be retained and 
forgotten (Imrana et al. 2021). Input gates determine which information should be added to 
a cell state. The output gate provides outputs. A forget gate determines which information 
must be retained from a previous state (Jaseena and Kovoor 2021; Li et  al. 2022; Jamei 
et al. 2022).

In this article, a BI-LSTM model based on a conventional LSTM neural network is 
developed to predict hydroelectric power based on multivariable inputs. The BI-LSTM 
considers past and future states to improve prediction accuracy. While ordinary LSTMs 
consider only historical observations, BI-LSTM considers future and previous observa-
tions. Reverse LSTMs use future information and forward LSTMs use past information. 
The BI-LSTM achieves better accuracy than LSTM because it utilizes both past and future 
information (He et al. 2022). Equations (7)–(12) mathematically describes the relationship 
between weighted inputs and outputs:

where Ot, It, and Ft: output, input, and forget gates, xt: input, zt : the output state at time t, 
Ŝt : memory cell, Ŝt : new value of memory cell, �o , �i , and �f  : weight matrices of hidden 
layer, and Vo , Vi , Vf  : weights corresponding to input data, zt : the output state a time t, and o, 
I, f: subscribes corresponding to output, input, and forget gate.

A BILSTM network consists of forward and backward LSTMs that can process data in 
both directions. In the forward LSTM layer, forward calculations are performed from time 
1 to time t. The backward LSTM layer performs the backward calculation from time t to 
time 1. We obtain and save the output of the forward hidden states and backward hidden 
states. The BILSTM output is calculated by connecting the two hidden states.

Figure 2 shows a schematic diagram of a simple Bidirectional LSTM that has expanded 
over time (Zhou et al. 2016).

2.4 � Structure of the ANN Models

One of the most commonly used models in hydrological modeling, feed-forward multi-
layer perceptron (MUPEs) ANN, is used in this study. The MUPE models consist of an 
input layer, a number of hidden layers, and an output layer. Each layer of the MUPE 
model has weight connections that connect it to the next layer (Panahi et al. 2021). The 

(7)Ot = �
(
�ozt−1 + Voxt + �o

)

(8)It = �
(
�izt−1 + Vixt + �b

)

(9)Ft = �
(
�f zt−1 + Vf xt + �f

)

(10)Ŝt = ���h
(
�zt−1 + Vxt + b

)

(11)St = Ft ⊙ St−1 + it ⊙�St

(12)zt = Ot ⊙ 𝑡𝑎𝑛h
(
St
)
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number of inputs determines the number of input neurons (Ehteram et al. 2023). Hidden 
layers receive weighted inputs from the input layer. Hidden and output layers can use 
linear or nonlinear activation functions. An activation function creates a relationship 
between weighted inputs and outputs. Figure  3 shows the structure of MUPE model. 
Unknown parameters of MUPE models include bias and weight. Parameter values are 
obtained through an optimization algorithm.

Fig. 2   Schematic diagram of a simple BI-LSTM

Fig. 3   Structure of the MLP 
model (Heidari et al. 2020)
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2.5 � Evaluation of Models’ Uncertainty Using Gaussian Progress Regression

Since ANN models cannot capture uncertainty values, this study proposes a Gaussian pro-
gress model (GPRE) for quantifying uncertainty. The GPRE model is widely used in the 
different fields such as groundwater quality monitoring (Shadrin et  al. 2021), short term 
solar power forecasting (Wang et  al. 2021), traffic load prediction (Wang et  al. 2020a, 
b), wind speed forecasting (Huang et al. 2018), and short term-prediction of wind speed 
(Wang et al. 2020a, b). GPRE is a nonparametric model based on the Bayesian framework. 
The GPRE can prediction interval times. Thus, GPRE model can quantify the uncertainty 
values. The mathematical model of the GPRE model is defined based on the following 
equation:

where, Q : observation, f
(
�i
)
 : an underlying function, bi : input, and � : noise.

where �2 : variance. The joint prior distribution of the observed data is computed based on 
the following equation (Sun et al. 2022):

where q: estimate value, K(B,B) : The covariance matrix of all input data, K
(
B,B∗

)
 : the 

covariance matrix of test data point and all input data, B∗:test points, K
(
B∗,B∗

)
 : the self-

covariance of test points. The posterior distribution of estimated value is:

where 
↼

q : mean, and �2
q
 : variance. The mean and variance are computed based on the fol-

lowing equations:

2.6 � Hybrid Structure of CNNE‑MUPE‑GPRE

In this study, CNNE-ANN-GPRE is used to predict hydropower production. The model is 
created based on the following levels:

	 1.	 The 80% and 20% of data are used for training and testing levels because they provided 
the lowest error function values.

(13)Q = f
(
bi
)
+ �

(14)� ∼ N
(
0, �2

)

(15)Q ∼ N
(
0,K(B,B) + �2

n
In
)

(16)
[
Q

q

]
∼ N

[
0,

[
K(B,B) + �2 K

(
B,B∗

)

K
(
B∗,B

)
K
(
B∗,B∗

)
]]

(17)q|Q ∼ N
(
↼

q , �2

q

)

(18)q̄ = K
(
B∗,B

)[
K(B,B) + 𝜎2I

]−1
q

(19)�2 = K
(
B∗,B∗

)
− K

(
B∗,B

)[
K(B,B) + �2I

]−1
K
(
B,B∗

)
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	 2.	 A binary vector is created based on the names of the input variables. A binary vector 
is defined as an initial population of the BSSOA.

	 3.	 The CNNE parameters are considered as the initial population of the CSSOA.
	 4.	 I = I + 1 (I: Iteration number)
	 5.	 At the training level, the CNNE model is run using the training data.
	 6.	 The quality of the solutions is evaluated using an error function (Nash Sutcliff effi-

ciency (NSE)).
	 7.	 The operators of CSSOA are applied to change the values of model parameters.
	 8.	 If I > maximum number of iterations and NSE > 0.90, the model goes to the next level; 

otherwise, go to step 6.
	 9.	 The testing data are used to run the CNNE model.
	10.	 The outputs of CNNE models are flattened.
	11.	 The flattened outputs of CNNE models are inserted into the MUPE model
	12.	 The model parameters of MUPE are defined as the initial population of the CSSOA.
	13.	 An error function (NSE) is used to evaluate the quality of the solutions.
	14.	 The operators of CSSOA are used to update the values of model parameters.
	15.	 If the stop creation is met, the MUPE model goes to the step 16; otherwise, it goes to 

the step 13.
	16.	 The testing data are used to run MUPE model.
	17.	 The GPRE receives the outputs of the MUPE model.
	18.	 The GPRE model is run at the training and testing levels.

This study benchmarks CNNE-MUPE-GPRE against the LSTM, BI-LSTM, CNNE, 
GPR, CNNE-ANN, MLP-GPRE, and CNNE-GPRE models to compare the performance 
of models. Figure 4a illustrates the flowchart of proposed algorithms for predicting hydro-
power using deep neural networks. Figure  4b shows the mechanism of the modelling 
process.

2.7 � Evaluation Criteria

In order to evaluate the performance of the developed models, several evaluation criteria 
are used in the current study.

Root mean square error

1.	 Index of agreement (IA)

2.	 Nash–Sutcliffe efficiency

3.	 Kling–Gupta Efficiency (KGE)

(20)RMSE =

√
1

N

∑N

i=1

(
Pesi − Pobi

)2

(21)IA = 1 −

∑N

i1

�
Pobi − Pesi

�2

∑N

i=1

���Pobi − P̄�� + ��Pesi − P̄��
�2

(22)NSE = 1 −

∑N

i=1

�
Pobi − Pesi

�2

∑N

i=1

�
Pobi − P̄obi

�2
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4.	 Prediction interval coverage probability

(23)KGE = 1 −

√√√√√(1 − r) +

((
Pobi

)
(
Pesi

) − 1

)2

+

(
CVp

CVem

)2

Fig. 4   a Proposed algorithm for predicting hydropower using deep neural network, b mechanism of model-
ling process
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5.	 Prediction Interval Normalized Average Width (PINW)

where Pobi : observed data, Pesi : predicted power, R: range of data points, P : average 
observed data, r: correlation coefficient, CVp and CVem : a coefficient of variation for 
predicted data, and observed data. High and low values of PICP and PINW show the 
best model. PICP and PINW are used to quantify uncertainty values of models.

2.8 � Case Study

The Karun basin (Fig. 5a) is one of the largest basins in Iran, located in the southwest of 
Iran. In this basin, average annual precipitation ranges from 153 mm in the southern plains 
to more than 2000 mm in mountainous regions. The variations of daily temperature over 
the basin are from a minimum of -30.6 °C at Koohrang station to a maximum of 52.2 °C at 
Ahvaz station (Fallah et al. 2020). The Karun-III dam is one of the most important dams 
located on the Karun River. The annual mean flow of the dam is 300 m3/s. The storage 
volume of the Karun-III dam is 2,970,000,000 m3. The dam is designed to generate hydro-
power. Thus, the dam reservoir is used for power generation. In this study, the models are 
used to predict the 1-, 2-, and 3-day ahead power. The elevation of water in reservoir and 
inflow discharge are used to predict power generation. The lag times were from (t-1), …, 
(t-30). Table 1 shows details of input and output data. Figure 5b shows time series data. 
The data were collected from 2005 to 2017.

3 � Results and Discussion

3.1 � Feature Selection

In the modeling process, feature selection plays an important role. It is time consuming and 
difficult to manually determine the most appropriate input combination among 260–1 input 
combinations. Correlation values and principal component analysis can identify significant 
inputs and lag times, but they cannot automatically determine the optimal inputs. A binary 
version of SSOA was used to determine the most suitable scenario for power generation 
prediction. Inputs were initialized as the initial population of salps. The salp location dis-
plays the names of input variables. Binary vectors contain 1 and 0 values that represent 
unselected and selected features, respectively. At each iteration, the SSOA updates input 
combinations using its operators. Table  2 lists the most appropriate scenario. The input 
scenarios are used to predict power generation. when a modeler encounters many data 
points and needs to estimate targets, the binary SSOA will be a useful tool.

(24)PICP =
1

N

∑N

i=1
�i

(25)�i =

[
1, if

(
Pobi

)
∈
[
Li,Ui

]

0, f
(
Pobi

)
∉
[
Li,Ui

]
]

(26)PINW =
1

NR

∑N

i=1

(
Ui − Li

)
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Fig. 5   a Location of the Karun III dam as case study, b Time series data
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3.2 � Determination of Random Parameters and Model Parameters

For determining model parameters and features, CSSOA is used. A CSSOA includes 
random parameters such as population size (PSI) and maximum number of iterations 
(MNITER). The root mean square error (RMSE) is used to determine the optimal values 
of random parameters. Table 3 shows the optimal values of PSI and MNITER. PSI values 
varied from 100 to 600. The PSI = 200 gave the lowest RMSE values. MNITER values var-
ied from 50 to 300. The MNITER = 100 gave the lowest value of RMSE. Tables 4 shows 
the optimal values of CNN, MLP, and LSTM parameters.

3.3 � Investigation of the Accuracy of Models

Figure 6 shows IA, NSE, and RMSE values of models for 1-day ahead power prediction. 
The training IA of the CNNE-MUPE-GPRE, CNNE-MUPE, CNNE-GPRE, MUPE- 
GPRE, BI-LSTM, LSTM, CNNE, MUPE, and GPRE models was 0.97, 0.94, 0.90, 0.85, 
0.84, 0.81, 0.80, 0.75, and 0.70, respectively. The IA values of the CNNE-MUPE-GPRE, 
CNNE-MUPE, CNNE-GPRE, MUPE- GPRE, BI-LSTM, LSTM, CNNE, MUPE, and 
GPRE models were 0.95, 0.92, 0.86, 0.84, 0.82, 0.80, 0.76, 0.72, and 0.66 at the testing 
level. The NSE values of the CNNE-MUPE-GPRE, CNNE-MUPE, CNNE-GPRE, MUPE- 
GPRE, BI-LSTM, LSTM, CNNE, MUPE, and GPRE models were 0.94, 0.92, 0.87, 0.80, 
0.75, 0.70, 0.68, 0.66, and 0.62 at the training level. The NSE values of the CNNE-MUPE-
GPRE, CNNE-MUPE-, CNNE-GPRE, MUPE- GPRE, BI-LSTM, LSTM, CNNE, MUPE, 
and GPRE models were 0.93, 0.89, 0.85, 0.78, 0.74, 0.69, 0.67, 0.65, and 0.60 at the testing 
level. The RMSE values of CNNE-MUPE-GPRE, CNNE-MUPE, CNNE-GPRE, MUPE- 
GPRE, BI-LSTM, LSTM, CNNE, MUPE, and GPRE were obtained equal to 545, 612, 
824, 855, 912, 914, 1400, 1700, and 1900 KW, respectively at training phase, and equal 
to 595, 723, 836, 897, 916, 1200, 1500, 1800, and 2000 KW, respectively at testing phase.

Figure 7 shows the accuracy of models for 2-day ahead power production prediction. 
The RMSE values of the CNNE-MUPE-GPRE, CNN-MUPE, CNN-GPRE, MUPE- 
GPRE, BI-LSTM, LSTM, CNNE, MUPE, and GPRE models were 578, 615, 832, 861, 

Table 1   Related information to the input data

Parameter Average Maximum Minimum Standard deviation

Inflow (m3/s) (Q) 242.81 5695.66 0 220.00
Elevation of water in  

reservoir (m) (H)
514.79 533.1 486.91 12.28

Power (KW) 12595 52942.2 612.2 5181.43

Table 2   Optimal input scenarios 
for 1-day, 2-days, and 3-days 
ahead

Time horizon Input combination

1-day ahead H (t-1), H (t), Q (t), Q (t-1), Q 
(t-2), Q (t-3), Q (t-4)

2-days ahead H (t-1), H (t), Q (t), Q (t-1), Q (t-2)
3-days ahead H (t-1), H (t), Q (t), Q (t-1)
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914, 934, 1436, 1712, and 1954 KW, respectively at training level. The CNNE-MUPE-
GPRE decreased RMSE values of the CNNE-MUPE, CNNE-GPRE, MUPE- GPRE, BI-
LSTM, LSTM, CNNE, MUPE, and GPRE models by 18%, 28%, 50%, 36%, 52%, 61%, 
66%, and 70%, respectively at the testing level.

At training phase, the NSE values of CNNE-MUPE-GPRE, CNNE-MUPE-, CNNE-GPRE, 
MUPE- GPRE, BI-LSTM, LSTM, CNNE, MUPE, and GPRE were 0.93, 0.90, 0.85, 0.78, 
0.72, 0.69, 0.65, 0.60, and 0.58, respectively. The training IA values of CNN-MLP-GPR, CNN-
MLP-, CNNE-GPRE, MUPE- GPRE, BI-LSTM, LSTM, CNNE, MUPE, and GPRE were 
0.96, 0.91, 0.86, 0.81, 0.76, 0.73, 0.68, 0.65, and 0.63, respectively. The testing IA values of 
models were 0.94, 0.90, 0.82, 0.78, 0.74, 0.70, 0.67, 0.64, and 0.62, respectively.

Figure 8 shows the accuracy of models for 3-day ahead power production prediction. 
The CNNE-MUPE-GPRE, CNNE-MUPE, CNNE-GPRE, MUPE- GPRE, BI-LSTM, 
LSTM, CNNE, MUPE, and GPRE models had RMSE values of 582, 621, 839, 871, 924, 
945, 1456, 1724, and 1831 KW at training level and 612, 731, 855, 923, 935, 1267, 1672, 
1815, and 2045 KW at testing level, respectively. The NSE values of those models were 
0.92, 0.89, 0.84, 0.77, 0.71, 0.65, 0.62, 0.58, and 0.54 at the training level, and 0.90, 0.86, 

Table 3   Choice of random 
parameters of SSOA

PSI Objective function value 
(RMSE:KW)

MNITER Objective 
function 
value

100 678 50 612
200 545 100 543
300 612 150 624
400 723 200 721
500 824 250 844
600 941 300 912

Table 4   Optimal values of CNNE, MUPE, and LSTM parameters

Hyper parameters Range Optimized 
value by 
CSSOA

CNN Batch size [24, 55] 52
Max epoch [30, 50] 32
Kernel size of the first Convolution layer [3,5] 3
Kernel size of the second Convolution layer [3,5] 3
Kernel number of the first Convolution layer [5, 15] 8
Kernel number of the second Convolution layer [5, 15] 8

MLP Number of hidden layers 1
Number of hidden neurons 6
Learning rate 0.02

LSTM Number of hidden layers [2,8] 5
Number of hidden neurons [1, 30] 24
Epoch [5, 100] 45
Batch size [30, 60] 50
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Fig. 6   Values of AI, NSE, and RMSE criteria for 1-day ahead power production
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Fig. 7   Values of AI, NSE, and 
RMSE criteria for 2-day ahead 
power production
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Fig. 8   Values of AI, NSE, and 
RMSE criteria for 3-days ahead 
power production
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0.81, 0.72, 0.70, 0.64, 0.60, 0.55, and 0.63 at the testing level, respectively. The IA val-
ues for CNNE-MUPE-GPRE, CNNE-MUPE, CNNE-GPRE, MUPE- GPRE, BI-LSTM, 
LSTM, CNN, MUPE, and GPRE models were 0.92, 0.90, 0.85, 0.78, 0.75, 0.71, 0.67, 
0.62, and 0.58 at the training level and 0.91, 0.88, 0.81, 0.77, 0.72, 0.69, 0.65, 0.60, and 
0.57 at the testing level.

The main findings of this section are:

1.	 A CNNE-MUPE-GPRE model has the best precision since it combines the advantages 
of CNNE, MUPE, and GPRE models. The CNNE model extracted important features. 
An MUPE received the extracted features from a CNNE model. Based on the outputs 
of the MUPE models, the GPR predicted the outputs. Models can deeply learn complex 
and nonlinear patterns through this process.

2.	 The CNNE-MUPE-GPRE model combines the feature extraction capabilities of CNNs 
with the flexibility of GPRE. In addition, the CNNE-MUPE-GPRE model can handle 
high-dimensional data that the MUPE cannot handle. The CNNE-MUPE-GPRE model 
also accounts for uncertainty in its predictions.

3.	 The CNNE-MUPE-GPRE decreased RMSE of the CNNE-MUPE, CNNE-GPRE, MUPE-
GPRE by 10%, 33%, and 36% at the 1-day prediction horizon. The CNNE-MUPE and 
CNN-GPRE outperformed the MUPE-GPR. The CNN-MUPE and CNNE-GPRE models 
performed better than the MUPE-GPRE because they took advantage of the CNNE model 
in the modeling process. Thus, the CNNE model had a key role in the modeling process.

4.	 The BI-LSTM model outperformed the LSTM model because it used the past and feature 
data. The BI-LSTM decreased RMSEs of LSTM by 24%, 26%, and 27% at the periods 
of 1-day, 2-day, and 3-day.

5.	 The MUPE-CNNE-GPRE model had RMSE of 595, 600 and 612, NSE of 0.93, 0.91, 
0.90, and AI of 0.95, 0.94, and 0.91 at the periods of 1-day, 2-days, and 3-days. The 
accuracy deteriorated with an extension of the prediction horizon.

6.	 The hybrid models outperformed the CNEE, MUPE, and GPRE models. The GPRE 
model had the worst performance among other models.

7.	 A bidirectional Long Short Term Memory (BILSTM) neural network has several advan-
tages over a traditional Long Short Term Memory (LSTM) neural network. The network 
can incorporate past and future information into its decisions. Thus, bidirectional Long 
Short Term Memory can maintain long-term memories and deal with complex temporal 
relationships. In contrast to traditional neural networks, Bidirectional LSTM networks 
avoid vanishing or exploding gradients.

Figure 9 shows box plots of different models for 1-day, 2-day, and 3-day ahead. Based 
on the Fig. 9a, the median values were 12000, 12700, 12900, 13000, 13400, 13600, 14000, 
14100, 14200, and 14500, while the minimum values were 612, 612, 615, 623, 626, 632, 
656, 676, 679, and 681 for observed data, CNN-,MUPE-GPRE, CNNE-MUPE, CNNE-
GPRE, MUPE-GPRE, BI-LSTM, LSTM, CNNE, MUPE, and GPRE models, respectively. 
Figure 9b shows the box plots of models for two-day-ahead prediction.

The median values of observed data, CNNE-MUPE-GPRE, CNNE-MUPE, CNNE-
GPRE, MUPE-GPRE, BI-LSTM, LSTM, CNNE, MUPE, and GPRE models were 12100, 
12719, 12954, 13050, 13467, 13589, 14050, 14198, 14700, and 14655 KW, respectively. 
The minimum values of observed data and those models were 612, 615, 615, 623, 645, 
655, 667, 682, 690, and 699, respectively, Fig. 9c shows the box plots of models for three-
day-ahead prediction.
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(c)

(b)

(a)

Fig. 9   Box plots of models for 1-day, 2-days, 3-days ahead predictions
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The median values for 3-day ahead of observed data, CNNE-MUPE-GPRE, CNNE-
MUPE, CNNE-GPRE, MUPE-GPRE, BI-LSTM, LSTM, CNNE, MUPE, and GPRE mod-
els were 12198, 12812, 12999, 13167, 13677, 13789, 14255, 14545, 15000, and 15050, 
respectively. Also, the minimum values of observed data and those models were 612, 624, 
635, 682, 695, 700, 712, 724, 745, and 755, respectively.

Figure 10 shows KGE values of different models. The KGE of CNNE-MUPE-GPRE, 
CNNE-MUPE, CNNE-GPRE, MUPE, GPRE, BI-LSTM, LSTM, CNNE, MUPE, and 
GPRE was 0.97, 0.93, 0.91, 0.90, 0.86, 0.83, 0.78, 0.77, and 0.76, at the 1-day prediction 
horizon. The KGE of the CNN-MUPE-GPRE was 0.97, 0.96, and 0.94 at the 1-day, 2-day, 
and 3-day prediction horizons. The KGE of CNNE-MUPE-GPRE, CNNE-MUPE, CNNE-
GPRE, MUPE, GPRE, BI-LSTM, LSTM, CNNE, MUPE, and GPRE models was 0.96, 
0.92, 0.90, 0.88, 0.87, 0.85, 0.82, 0.76, 0.74, and 0.72 at the 2-day prediction horizon.

3.4 � Investigation Ion of the Uncertainty of Models

For quantifying uncertainty values, the CNNE-MUPE model was coupled with the GPRE 
model. The CNNE-MUPE-GPRE model, MUPE-GPRE model, CNNE-GPRE model, and 
GPRE model can capture uncertainty values. Figure 11 shows 95% confidence for 1-day 
ahead prediction. The testing data points were used to draw these figures. The results show 
that more than 95% of data are bracketed by uncertainty bounds. The PICP values of the 
CNNE-MUPE-GPRE, CNNE-GPRE, MUPE-GPRE, and GPRE were calculated as 0.99, 
0.98, 0.96, and 0.95, respectively. A high value of PICP demonstrated low uncertainty and 
instability and showed high accuracy of the model (Seifi et al. 2022). The PINW values 
of the CNNE-MUPE-GPRE, CNNE-GPRE, MUPE-GPRE, and GPRE models were 0.05, 
0.10, 0.12, and 0.14, respectively. The results of PINW showed that the variability of GPR 
predictions was higher than hybrid models of CNNE-MUPE-GPRE, CNNE-GPRE, and 
MUPE-GPRE. The GPRE model had the highest uncertainty among other models. The 
CNN-MUPE-GPRE had the lowest uncertainty because it took advantage of three models.

Figure 12 shows PICP and PINW values for 2-days and 3-day ahead predictions. The 
PICPs of the CNNE-MUPE-GPRE, CNNE-GPRE, MUPE-GPRE, and GPRE model 
were 0.95, 0.94, 0.92, and 0.92 at the 2-day prediction horizon. The values of PICP of 
the CNNE-MUPE-GPRE, CNNE-GPRE, MUPE-GPRE, and GPRE models were 0.94, 
0.90, 0.87, and 0.87 at the 3-day prediction horizon, respectively. As prediction hori-
zons increased, uncertainty of predictions increased. As the 2-day and 3-day prediction 
horizons may include irregular and nonlinear patterns, the uncertainty may increase. 

Fig. 10   KGE values for different 
models
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Fig. 11   The 95% confidence 
interavl for 1-day ahead predction

PICP:0.99, PINW:0.050 
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Fig. 12   The PICP and PINW values of different models in uncertainty analysis
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CNNE-MUPE-GPRE, CNNE-GPRE, MUPE-GPRE, and GPRE models had PINW values 
of 0.10, 0.16, 0.21, and 0.24 at the 2-day prediction horizon, respectively. The values of 
PINW of the CNNE-MUPE-GPRE, CNNE-GPRE, MUPE-GPRE, and GPRE models were 
0.11, 0.18, 0.22, and 0.25 at the 3-day prediction horizon, respectively.

3.5 � Main Findings of Paper

This paper used the CNNE-MUPE-GPRE for predicting hydrpower production. The main 
findings of paper are as follows:

	 1.	 A continuous and binary version of SSA was developed for adjusting model parameters 
and selecting inputs. Previous studies randomly selected the best input scenarios. The 
correlation method and principal component analysis were also suggested as methods 
for choosing the optimal input scenario. The binary SSA is superior to other methods 
because it automatically selects the best input scenario. Therefore, the current study 
fills a research gap between input selection and predictive models.

	 2.	 We used CNNE-MUPE-GPRE to predict different prediction horizons. The model 
successfully predicted 1-day, 2-day and 3-day ahead. The model can be used for both 
short-term and long-term predictions.

	 3.	 The CNNE-MUPE-GPRE can be used for long-term predictions because CNN helps 
extract features.

	 4.	 Since CNNE-MUPE-GPRE had the lowest uncertainty, it was a reliable tool. Due to 
the combination of three models, CNNE-MUPE-GPRE outperformed CNNE, MUPE, 
and GPRE.

	 5.	 Next studies can combine CNNE and BI-LSTM models since BI-LSTM uses past and 
feature data to predict outcomes. BI-LSTM uses backward and forward processes for 
deep learning.

	 6.	 For predicting spatial–temporal data, CNNE can be coupled with the LSTM model 
since both models can extract spatiotemporal patterns.

	 7.	 Furthermore, this study contributes to the development of energy engineering sys-
tems. This study develops energy monitoring systems that can be utilized in buildings, 
factories, and hydropower plants. Energy managers are looking for new technologies 
to monitor energy resources. Our models can be used to create sensors for energy 
monitoring. Also, these sensors can predict energy consumption. Our models will be 
useful for modifying patterns of energy consumption.

	 8.	 Different sciences can also use our models as early warning systems. These models 
can be used to monitor droughts and floods. In advanced engineering informatics, 
handling large data sets and quantifying uncertainty values are also important. The 
paper introduces a novel deep learning model and a GPRE model to achieve these 
aims. The CNNNE-MUPE-GPRE could quantify uncertainty values. Also, it had the 
lowest uncertainty among other models. Thus, this model can handle large data sets 
and quantify the uncertainty in advanced engineering informatics systems.

	 9.	 This study found that series hybridization improved the performance of standalone models. 
The hybrid structure allows the models to share their information with each other.

	10.	 Hydropower plants can be successfully managed if their power generation capacity 
can be accurately predicted. When a drought reduces inflow to a hydropower plant, a 
power company can produce more electricity from alternative sources. In addition, our 
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results can contribute to grid stability. Energy companies can better manage energy 
demand and supply on the grid when they can predict hydropower power production.

	11.	 There are many factors that influence hydropower production, including location, 
weather patterns, and hydropower plant design. Precipitation can directly affect the 
water level of the reservoir. Thus, it can affect hydropower production. When evapora-
tion increases, available water decreases, which results in a decrease in hydropower 
production. Evaporation can significantly affect hydropower production in areas with 
high evaporation. Hydropower production is particularly vulnerable to drought condi-
tions and other environmental factors that reduce water availability. The relationship 
between relative humidity and hydropower production is complex and depends on 
multiple factors such as wind speed, air temperature, and location of the hydropower 
plant. Understanding the effect of meteorological variables on hydroelectric power 
plants is necessary to improve their efficiency.

	12.	 Based on new input combinations, Table 5 compares the accuracy of models. Pre-
cipitation and evaporation have been added to the previous input combinations. The 
RMSE of the CNNE-MUPE-GPRE model was 589, 592, and 602 for one, two, and 
three-month ahead. The results revealed that the new input combination does not 
significantly change the accuracy of the CNN-MUPE-GPRE model.

4 � Conclusion

Prediction of hydropower production is essential for planning and managing water 
resources. Predictions of electricity production are used to make strategic decisions. This 
study is developed a new hybrid deep-learning model for daily hydropower production pre-
diction. A CNNE-MUPE-GPRE is introduced to predict hydropower production. A binary 
SSA was used to select the best input combination. A CNNE-MUPE-GPRE model pre-
dicts data and selects outputs simultaneously. The results indicated that the CNNE-MUPE-
GPRE was the best model among other models. The training IA of CNNE-MUPE-GPRE, 
CNNE-MUPE, CNNE-GPRE, MUPE, GPRE, BI-LSTM, LSTM, CNNE, MUPE, GPRE 

Table 5   The accuracy of the 
CNN-MUPE-GPR based on new 
input combination

RMSE RMSE NSE NSE IA IA

best input combinations (H (t-1), H (t), Q (t), Q (t-1), Q (t-2), Q 
(t-3), Q (t-4) for one-month ahead)

best input combinations (H (t-1), H (t), Q (t), Q (t-1), Q (t-2) for 
two-month ahead)

best input combinations (H (t-1), H (t), Q (t), Q (t-1) for three-month 
ahead)

One-Month ahead 545 595 0.94 0.93 0.97 0.95
Two-month ahead 578 600 0.93 0.91 0.96 0.94
Three-month ahead 582 612 0.92 0.90 0.92 0.91
Precipitation + evaporation + best input combinations
One-Month ahead 542 589 0.95 0.94 0.98 0.96
Two-month ahead 576 592 0.94 0.92 0.97 0.95
Three-month ahead 580 602 0.93 0.92 0.93 0.93
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was 0.97, 0.94, 0.90, 0.85, 0.84, 0.81, 0.80, 0.75, and 0.70 at the 1-day prediction horizon. 
The RMSE of the CNN-MUPE-GPRE was 595, 600 and 612 at the 1-day, 2-days, and 
3-days prediction horizons. The accuracy deteriorated with an extension of the prediction 
horizon. The CNNE-MUPE-GPRE had the lowest uncertainty among other models. The 
results revealed that the new hybrid models outperformed the MLP, LSTM, GPRE, BI-
LSTM, and CNNE models. We combined a CNN-MLP model with a GPR model to reflect 
uncertainty. The values of PINW of the CNN-MUPE-GPRE, CNNE-GPRE, MUPE-
GPRE, and GPR were 0.10, 0.16, 0.21, and 0.24 at the 2-days prediction horizon. The 
GPR model had the highest uncertainty among other models. Future studies can use the 
metrological parameters to predict hydropower production. This study suggests combining 
CNNE models with LSTM and BI-LSTM to improve accuracy.
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