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Abstract

During the last two decades, the issue of optimal operation of dam reservoirs has received
much attention among water resources management researchers. Also, the operation of
dam reservoirs in terms of diversity of decision-making and target functions has complexi-
ties that sometimes cannot be solved with traditional optimization methods and requires a
lot of time and money. Therefore, the use of new tools and advanced methods in solving
such problems is inevitable. In this review article, 76 research articles from the most pres-
tigious journals in the world between 2002 and 2021 have been reviewed. Meta-analysis
method (PRISMA) has been used for systematic review and selection of the studied arti-
cles. This research includes a comprehensive review regarding the application of differ-
ent optimization models in the exploitation of dam reservoirs and can provide a critical
insight into the selection of used models and the accuracy of different modeling methods
in the optimization of dam reservoirs. The investigated models include single-objective
and multi-objective reservoirs, as well as single and multi-reservoirs. The results of this
study show that researchers’ interest and popularity in hybrid algorithms (HA) (18.68%)
and GA (16.48%) were more than the traditional or improved versions. Also, hybrid algo-
rithms showed better results than single meta-heuristic algorithms and traditional methods.
According to the obtained results, it can be stated that the meta-heuristic algorithms used
are capable of solving complex models in reservoir operation problems with a fast conver-
gence rate.
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1 Introduction

The limitation of water resources in the world and the increasing water needs in the
fields of drinking, agriculture, industry, electricity generation, environmental issues,
etc. require that studies of planning and management of water resources in order to store
and optimally operate reservoirs of dams to The desired syntax and within the frame-
work of the objectives of the plan and according to the priority of needs should be pre-
sented as a standard study method. Therefore, the operation of dam reservoirs with the
correct use of modern studies in the world is of particular importance. Optimization can
be considered a practical tool for simplifying and solving linear and non-linear formulas
of big problems and interpreting the solutions. Optimization is an effective method of
finding the answer that provides the best result with the highest profit and lowest cost.
Today, in order to make optimal use of available resources, including water resources
and related issues, it has led researchers use various optimization techniques around the
world (Singh 2012). Optimization methods are a step forward in researchers’ studies
to solve reservoir exploitation problems and improve water resources management in
water shortage situations. In the studies conducted, new optimization methods, includ-
ing classical and evolutionary algorithms, have been used to improve the performance
of the reservoir system (Ahmadi et al. 2014; Ashofteh et al. 2015). Zhang et al. (2014)
used the tank optimization method for the optimal use of water resources in hydroe-
lectric power plants during the operation period according to physical and operational
limitations. The main purposes of the reservoir are to provide hydroelectric power and
water supply, which is aimed at meeting human demand (Chang et al. 2010a, b). Today,
evolutionary algorithms are considered efficient and effective methods in reservoir opti-
mization and maximizing electricity production. Considering that traditional optimiza-
tion is a complex and difficult task in solving high-dimensional non-linear problems
in multi-reservoir systems and large-scale power plants, therefore, solving such a large
problem with traditional approaches will be impractical. Therefore, it seems necessary
to provide powerful dimensionality reduction techniques to improve the computational
performance of conventional methods (Feng et al. 2019). Classical methods and evolu-
tionary algorithms or meta-heuristics (EAs) are the main methods of reservoir opera-
tion optimization. Of course, the developed evolutionary algorithms are more useful
in today’s studies. High dimensions and slow convergence can be called the main rea-
son why classical methods such as linear programming (LP), dynamic programming
(DP), stochastic dynamic programming (SDP), and nonlinear programming (NLP) are
not accepted by researchers. Therefore, EAs (inspired by biological phenomena) were
developed and widely used due to their high search speed to find global nearly optimal
solutions and have replaced classical methods (Bozorg-Haddad et al. 2015a, b; Neboh
et al. 2015). To solve complex calculations, it is very useful to develop more efficient
computational methods and developed intelligent control systems that are able to learn
from different sources of knowledge and can be more suitable for the operation of res-
ervoir systems (Rani and Moreira 2010). Singh (2012), studied several new evolution-
ary algorithms for reservoir optimization problem. Ahmad et al. (2014) gave a brief
overview of the current optimization techniques developed in solving reservoir opera-
tion problems. They discussed the use of evolutionary and hybrid algorithms for single
and multi-objective simulation and optimization of dam reservoirs. Evolutionary algo-
rithms have the ability to solve non-linear problems and analyze multi-objective res-
ervoirs. Recently, in order to find out the special and unique characteristics of modern
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techniques, the use of traditional and evolutionary, and hybrid optimization methods
has become popular. Zhang et al. (2018) used two traditional artificial intelligence mod-
els, BPNN and SVR, with the aim of optimization. Also, learning models, including
LSTM model, have been given much attention in helping the performance of the reser-
voir. Detailed recommendations have been provided in various reservoir optimization
researches regarding the process of model parameter settings, simulation functions and
applications of artificial intelligence models used under different flow regimes. In engi-
neering and scientific topics, especially economic topics and structural design and water
resources engineering, modern optimization methods are widely used to solve practical
problems. One of the main topics of optimization in the problems of dam reservoirs is
to minimize consumption in water supply for irrigation and demand patterns such as
hydropower generation. Over the past two decades, new optimization methods based
on nature-inspired meta-heuristic algorithms (MHAs) have emerged as suitable alterna-
tive optimization tools to identify optimal dam and reservoir rules (Chong et al. 2021).
Hossain (2013) used several optimization techniques mainly artificial intelligence (AI)
to model the reservoir operation of single and multi-reservoir systems. Optimizing
reservoir operations can be seen as water release and transfer operations with the aim
of water management to ensure reliable water supply, hydropower generation, reduce
downstream floods, etc. Dobson et al. 2019 provided an extensive and useful collec-
tion of scientific literature on the development and application of various mathematical
optimization methods for reservoir operational problems along with their advantages,
limitations, and scope of application.

Jahandideh-Tehrani et al. (2019) showed in their review that non-animal EAs per-
form better than classical methods such as LP and NLP in solving reservoir optimiza-
tion problems. Evolutionary algorithms used in solving reservoir operation problems have
advantages and disadvantages. The best way to solve this problem, in order to provide
an optimal solution, many researchers consider it appropriate to use hybrid models and
believe that the disadvantages of one algorithm are corrected and completed by another
algorithm. Hybrid algorithms have become widely used and common in solving com-
plex water resource management problems. Hydropower, flood control, inflow forecast-
ing, ecological base flow, and water distribution systems are a few of these operations
(Adeyemo and Stretch 2018). Energy maximization is one of the objective functions of
the meta-heuristic algorithms that have been widely used to manage operational poli-
cies for dam reservoirs. However, the continued advancement of meta-heuristic methods
aids in the resolution of issues with real-time reservoir operation. (Azad et al. 2020). Per-
haps the most important question and concern of most researchers in using optimization
algorithms, especially metaheuristic algorithms, is choosing the right algorithm to solve
the problem. It is not possible to say with certainty which optimization or metaheuris-
tic algorithm is suitable for solving a problem, and only by comparing the results can it
be claimed which algorithm offers a better method. Although previous and current stud-
ies have shown that a particular algorithm can be better for a particular case study using
performance appraisal indicators than other algorithms, our understanding of the reasons
for such success is limited and a comprehensive study is needed. Therefore, to take fur-
ther steps in this area of research, it is necessary to better understand the interrelation-
ships between the characteristics of the reservoir water system under optimization, the
mathematical search method of the optimization algorithm, and the performance of the
algorithm used. This article reviews studies on reservoir system operation optimization,
including the use of conventional optimization methods as well as the range of compu-
tational intelligence methods like evolutionary computation, meta-heuristic algorithms,
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fuzzy set theory, and artificial neural networks. Since the use of meta-heuristic algorithms
in reservoir system research has been used in the last few decades and the interest of
researchers in this field has increased day by day, this study mainly focuses on the latest
optimization algorithms for water resources, especially dam reservoirs. Review articles
related to dam reservoirs optimization techniques are shown in Table 1.

2 Methodology of Survey
2.1 Collection of Studied Articles

In this review article, a systematic review has been conducted based on the PRISMA
guidelines for a detailed review of the research conducted regarding the optimization
of the reservoir performance of dams. For this purpose, the content of the articles
related to the research subject, which includes the abstract, methods, results, discus-
sion, and references, was carefully examined. The studied collection only included
articles from reputable journals with an impact factor that have used meta-heuristic
algorithms and intelligent models in research related to the optimization of reser-
voir performance of dams. Databases in Elsevier, ASCE, Springer, John Wiley, ICE,
IWA, Taylor and Francis, Scopus, PubMed, Science Direct, IEEE Xplore, and Google
Scholar were considered for the search, screening, and selection process. In the pro-
cess of searching for relevant articles, there was no time limit for publication. To
ensure the retrieval of all usable articles, the reference list of all articles was retrieved
again. The keywords used in the mentioned databases were: “reservoir”, “optimiza-
tion”, “dam”. Also, the combined words of “evolutionary algorithm”, “Meta-Heuristic
algorithm”, “reservoir operation”, “optimization Algorithm”, “neural network”, and
also some meta-heuristic algorithms such as PSO, ABC, ACO, etc. were used along
with “reservoir optimization”. In the first stage, the number of 535 articles related to
the review article was identified. The number of articles that were obtained through
searching the database as well as additional records obtained through other sources is
included. After that, there is the screening stage, and using Endnote and Excel soft-
ware, duplicate articles were removed by searching the title and author, and finally,
187 articles unrelated to the subject of this article were removed. Of course, 11 new
articles were retrieved from the list of sources of reviewed articles. Then, the full text
of 123 eligible articles was examined, and among these complete articles, 47 articles
were excluded by mentioning the reason and exclusion criteria. In the last stage, 76
articles were approved for compiling this review article (Fig. 1).

Figure 2 displays the number and proportion of articles published between 2005 and
2021.The general trend of publishing articles shows the popularity of meta-heuristic algo-
rithms in dam reservoir optimization problems among researchers so it has increased by
69.74% in the last six years.

2.2 Region of Study
Out of a total of 73 case studies conducted in articles on dams reservoirs optimiza-

tion using metaheuristic algorithms, 60.27% of the studies have been conducted in
Iran. Limited water resources in Iran and increasing water demand in the fields of
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Fig. 1 Selected articles in databases based on PRISMA

drinking, agriculture, industry, electricity generation, environmental issues, etc. have
led researchers to pay more attention to studies in the field of storage and optimal use
of dam reservoirs Fig. 3.
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Fig.3 Frequency of studied dams in optimization of dams reservoir operation using metaheuristic algorithms

Out of a total of 93 dams studied in dam reservoir optimization articles using metaheuris-
tic algorithms (in several articles more than one dam or reservoir has been studied), in 11
articles Karun 4 dam has been selected as a case study. Karun 4 Dam is the largest double-
arch dam in the Middle East. Various goals and benefits of Karun 4 dam (hydropower gen-
eration, surface water control of the region, water supply required by industry and agriculture
in the downstream plains, and control of seasonal destructive floods), relatively large reser-
voir volume, location importance of the dam, and easy access to basic and hydrological data
the dam can be considered as one of the main interests of researchers in its selection (Fig. 4).

2.3 Physical Specifications of the Reservoirs
2.3.1 Reservoir Capacity of the Studied Dams

The set of physical characteristics of reservoir includes reservoir volume at normal level,
maximum reservoir volume, active storage, dead storage, reservoir capacity (useful volume),
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Fig.4 Distribution of dams used in optimization studies
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Fig.5 Allocation of reservoir capacity of dams to different volumes

maximum and minimum operating level, flood control storage, and freeboard, which is
shown in Fig. 5.

The different volumes of reservoir studied are shown in Fig. 6. The main part of the res-
ervoir is active storage. The volume between the minimum operating level and the normal
water level is called active storage, the main task of which is to regulate the output currents
according to the input currents in the dry and high-water seasons. A noteworthy point in
the table of the capacity of dam reservoirs is that Aswan Dam is a volume of 44.3 MCM
that impounds a reservoir, Lake Nasser, that has a gross capacity of 169 BCM.

2.3.2 Classification of Dam Reservoirs

Dam reservoirs are divided into two main groups: single-purpose reservoirs and multi-
purpose reservoirs. Also, reservoirs of dams are divided into single-reservoir systems and
multi-reservoir systems according to their number on a river. The number and percent of
dams reservoirs system, reservoir system operation, number of objective functions and pur-
poses of the dam reservoir in the optimization of dam reservoirs using meta-algorithms
(articles reviewed in the present article) are shown in Fig. 7. 65% of the studied dams are
single reservoir and 74% are single purpose. Irrigation (23%), hydropower (19%), and
drinking water supply (16%) are the three main objectives of the construction of the stud-
ied dams.

2.3.3 Baseline Period
The validity of dam reservoir optimization studies depends on the accuracy of the

statistics and information used. Therefore, input and base data need to be accurate
enough. In these studies, data collection and information such as topographic maps,
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Fig.6 Reservoir volumes of studied dams, a Capacity reservoir and reservoir inflow, b Active and dead
storage

surface-volume-height curves, hydrological data (river discharge, river sediment, water
infiltration in the reservoir), meteorological data (rainfall, reservoir evaporation losses),
needs Water (drinking, industrial, agriculture, hydroelectric, environmental, flood con-
trol, shipping, recreation, etc.) is very important. Figure 8 shows that 44.59% of research-
ers used 60-month (24.32%) and 240-month (20.27%) data.

2.4 Analysis of the Selected Papers Based on Modeling Techniques and Publication Years
Information about the chosen articles concerning the optimal operation of dams reser-

voir employing meta-heuristic algorithms is presented in Table 2; it includes case study
(dam/ reservoir system), author(s)(year), no. citations, journal name, impact factor,

@ Springer



3468

B. Beiranvand, P-S. Ashofteh

B multi(2)-reservoir
= multi(3)-reservoir
B multi(4)-reservoir
= multi(10)-reservoir
m Single -reservoir

H navigation purposes

m irrigation

= industrial

 flood control

m agricultural

m water drinking supply

® hydropower generation
H environmental

m fisheries and aquacultur

u Cultivation optimization

u Controlling surface waters of the area

M tourism

6,7%

(b)

H bi-objective

= multi(3)-objective
multi(4)-objective

m Single-objective

3,2% 1,1%
2,1%

" 21, 13%

1 1%
© 59 ’

6,4%

Fig.7 Number and percent of dams reservoirs system in the present study, a Reservoir system operation, b
Number of objective functions, ¢ Purpose of the dam reservoir

period of study (month), reservoir capacity, reservoir inflow, active storage, dead stor-
age, meta-heuristic algorithm, best (objective function/ solutions), global optimum, and
objectives of the dam reservoir. The meta-heuristic algorithm for optimizing the opera-
tion of dam reservoirs is a hot topic, as shown by the number of citations in Table 2.
However, articles published in recent years have been cited by few articles or have not

yet been cited.
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2.4.1 Review of Publications, Journals, Country, and Citations of the Studied Articles

Scimago Journal & Country Rank (SJR) is used to determine the validity and qual-
ity of the articles under review. Most articles (35.53% of articles) on optimization
of dams reservoir operation using meta-heuristic algorithms have been published in
the journal Water Resources Management. Springer Netherlands (39.47%) and the
American Society of Civil Engineers (ASCE) (14.47%) also have the most publica-
tions on reservoir optimization and related topics, respectively. Quality journal arti-
cles were used in this study, and the journals’ and articles’ published quality was
assessed using a Q or Quartile score. Out of 76 articles reviewed, 53 (69.74%) are
Ql1, 16 (21.05%) are Q2, 5 (6.58%) are Q3, and 2 (2.63%) are Q4, according to the
Quartile scale. Engineering Applications of Computational Fluid Mechanics (9.55)
and Knowledge-Based Systems (9.42) have the highest impact factors among the
articles under review (Fig. 9).

Most articles in Netherlands magazines 38 articles (50%) have been published. It
is clear that on the subject of dam reservoir optimization using ultra-innovative algo-
rithms, the Netherlands magazines have received the most acceptance and publication
of articles Fig. 10.

A total of 2688 citations from 2005 to 2021 were used for the selected articles in this
review article, which are among the best and most cited articles that have been published
so far. Figure 11 represents the annual cumulative citations. Eight of the papers published
before 2015 stand out thanks to their high citation counts. These are Nagesh Kumar and
Janga Reddy (2007) [322], Reddy and Kumar (2006) [163], Bozorg-Haddad et al. (2015a,
b) [138], Ahmed and Sarma (2005) [131], Ashofteh et al. (2015)[119], Chang et al.
(20104, b) [119], Fallah-Mehdipour et al. (2012) [102], and Bozorg-Haddad et al. (2015a,
b) [101] respectively.
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3 Different Modeling Techniques to Optimize the Operation of Dam
Reservoirs

Implicit stochasticoptimization (ISO) and explicit stochastic optimization (ESO) are two
types of optimization techniques that can be used to optimize reservoir systems. In reality,
ISO methods are deterministic methods that employ extremely long representative hydrol-
ogy to achieve optimal operation. Although historical records can also be used, synthetic
streamflow generators are frequently used to create hydrology. Following that, reservoir
operating policies are typically inferred from optimized model solutions using regression
techniques. In other words, to iteratively improve promising operating rules, ISO appli-
cations have combined optimization, regression, and simulation techniques. (Bhaskar and
Whitlatch 1980). The explicit representation of probabilistic streamflows or other ambigu-
ous problem parameters is necessary for ESO formulations. Because they can be written
to more accurately represent a problem, some comparative studies have found that ISO
methods are preferable to ESOs (Karamouz and Houck 1987). Classical optimization tech-
niques are briefly discussed in this review article since they have already been covered in
sufficient detail in other review articles. However, emerging techniques, particularly meta-
heuristic algorithms used by researchers to operate reservoir systems, are covered in more
detail in Fig. 12.

3.1 Linear Programming

One of the most frequently used optimization techniques for modeling reservoir system
optimization issues is linear programming (LP). It has been used to solve a variety of prob-
lems involving reservoir systems with a variety of objectives, including figuring out the
best operating procedures (Crawley and Dandy 1993), sizing reservoir capacities (Loucks
et al. 1981), yield evaluation (Dahe and Srivastava 2002), flood control (Needham et al.

[ Optimization Modeling Techniques ]

Linear Nonlinear Dynamic Meta-Heuristic
Programming Programming Programming Algorithms

Fig. 12 Modeling techniques for optimizing dam reservoirs
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2000), and concurrent use planning (Vedula et al. 2005). The flexibility of this technique
in the application of complex programs, convergence to the global optimal solution, and
access to cost-effective software solutions, such as LINDO, and LINGO. The limitations
on linear and convex objective functions and linear constraints are the primary drawbacks
of LP. However, nonlinearity in some reservoir problems (e.g., nonlinear benefit or cost
functions) can be tackled by approximation and extension of LP to separable LP (Crawley
and Dandy 1993) and successive LP (Mousavi and Ramamurthy 2000; Barros et al. 2003).

3.2 Nonlinear Programming

Due to complex relationships between various physical and hydrological variables or
because the system is designed to achieve a specific goal, nonlinearity is present in the
problems of many reservoir systems. The majority of hydropower generation issues are
nonlinear, which makes finding solutions challenging. LP (discussed in the previous sec-
tion) is typically applied in successive steps to these problems or by approximating a non-
linear problem to a linear problem. Additionally, dynamic programming (see Section 3.3)
can deal with nonlinearities. Nonlinear programming (NLP) techniques, however, are
employed specifically for a certain class of issues. The generalized reduced gradient (GRG)
method and successive or sequential quadratic programming (SQP) are two examples of
these algorithms. Large-scale nonlinear optimization problems can currently be solved
using a variety of general-purpose software packages, e.g., LINGO, and LANCELOT.

3.3 Dynamic Programming

The Bellman (1957) method of dynamic programming (DP) is an optimization technique
for resolving multistage decision-making processes. The most appealing aspect of the
DP algorithm is that a complex multistage problem is broken down into several smaller,
simpler problems that are then solved one at a time, recursively. Additionally, nonlinear
problems and problems involving stochastic variables can be easily accommodated within
the general framework of DP. Even nonconvex and discontinuous functions are capable of
being solved by discrete DP. Yakowitz (1982) gave a thorough analysis of DP and how it
was applied to numerous problems involving water resources. The applicability and restric-
tions of DP methods, specifically regarding problems with reservoirs, are presented by
Nandalal and Bogardi (2007).

3.4 Bibliographic Review on Optimization of Dams Reservoir Operation Using
the Meta-heuristic Algorithms

Research in this field has shown that linear and nonlinear optimization methods have
made significant progress. But using these methods to optimize large structures is dif-
ficult and sometimes impossible. To solve this problem, new meta-heuristic algorithms
with high convergence capability can be a suitable solution. Meta-heuristic (MH) meth-
ods are discussed in this section. In general, there has been an exponential increase in the
use of MH techniques to solve various applications. They are free gradient methods that
produce better results than conventional techniques when used to solve extremely chal-
lenging optimization issues (Abualigah and Diabat 2021). Additionally, they are quicker
and easier to implement than traditional optimization techniques (Abualigah and Diabat
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2020). MH techniques can be divided into various groups according to a variety of inspi-
rations. According to Abd Elaziz et al. 2021, these categories include human inspira-
tion algorithms, swarm intelligence (SI) techniques, evolutionary algorithms (EAs), and
approaches to natural phenomena. Figure 13 depicts the standard procedures for using
meta-heuristic techniques to improve dam reservoirs. Meta-heuristic algorithms typi-
cally fall into one of two categories: single-solution based (like simulated refrigeration,
SA), or population-based (like genetic algorithm, GA). As the name suggests, the opti-
mization phase for the first type only considers one solution. At each iteration of the
optimization process, a population of solutions (the second type) evolves. Population-
based methods frequently discover an optimal or suboptimal solution that is identical
to or very close to the precise optimal. The main sources of inspiration and models for
population-based metaheuristic methods (P-metaheuristics) are phenomena in nature.
The optimization process is started by these algorithms by creating a set (population) of
individuals, each of whom represents a potential solution to the optimization problem.
This population changes frequently by exchanging the existing population for a brand-
new population that was created using some of the frequently random operators. Addi-
tionally, the optimization procedure goes on until the stop criteria (i.e., the maximum
number of iterations) is met. The first set of calculations draws its inspiration from bio-
logical phenomena and the biological evolution of the natural world. These algorithms
are Invasive Weed Optimization (IWO), Bat algorithm (BA), Whale Optimization Algo-
rithm (WOA), Water Cycle Algorithm (WCA), Symbiotic Organisms Search (SOS), and
Shark Machine Learning (SML). The algorithms in the second class of systems, known

Meta-heuristic
Optimization Algorithms
,"_-\ :"_\\ i 0y :"—-\\ /‘_-\\
) {2 ) {2 {5 )
N
Bio and Nature- Evolutionary Swarm Intelligence Human-Based
Inspired Algorithms Algorithms Algorithms Algorithms

Invasive Weed
Optimization (IWO)

Genetic Algorithm

) N\
Particle Swarm Harmony Search
Optimization (PSO) (HS)

Artificial Bee Teaching Learning
Colony (ABC) Based Optimization
(TLBO)
Fire Work Algorithm
ke h
Cuckoo Search (CS) (FWA)
~
Imperialist
Competitive
Algorithm (ICA)
J

&

AN

J

Genetic

Betslecitin Programming (GP)
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\
\.
-

J
J

Differential
Evolution (DE)

‘Whale Optimization
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‘Water Cycle
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Fig. 13 Meta-heuristic methods in optimizing dam reservoirs
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as EAs, were developed by simulating natural genetic principles like crossover, muta-
tion, and selection. The Genetic Algorithm (GA), Differential Evolution (DE), Genetic
Programming (GP), and Biogeography-Based Optimization (BBO) are a few MH tech-
niques that fall under this category. Physics-based algorithms make up the third category.
The laws of physics serve as a source of inspiration for physics-based algorithms. Simu-
lated Annealing (SA), Artificial Physics Optimization (APO), Adaptive Random Inertia
Weight (ARIW), and Gravitational Search (GS) are a few examples of these algorithms.
The fourth class of P-meta-heuristic algorithms is social imitation (SI) algorithms, which
imitate the social behavior of organisms that live in herds, flocks, or groups (e.g., decen-
tralized, self-organized systems). For instance, Eberhart and Kennedy’s Particle Swarm
Optimization (PSO) algorithm was primarily influenced by the group behaviors of birds.
A candidate solution to the optimization problem is represented by each particle in the
congestion in PSO. Each particle is updated during the optimization process based on
both its best (local) position and the position of the best global particle. Additional
examples of SI techniques include artificial bee colonies (ABC), cuckoo search (CS), and
ant colony optimization (ACO). A group of algorithms that resemble some aspects of
human behavior is included in the fifth category of P-meta-heuristic algorithms. The Fire
Work Algorithm (FWA), Harmony Search (HS), Teaching Learning Based Optimization
(TLBO), and Imperialist Competitive Algorithm (ICA) are a few examples of human-
based algorithms.

3.4.1 Bio and Nature-Inspired Algorithms

Invasive Weed Optimization (IWO) A population-based optimization algorithm called
the Invasive Weed Meta-heuristic finds the general optimum of a mathematical function
by modeling the compatibility and randomness of weed colonies. Weeds are strong plants
with aggressive growth patterns that pose a serious threat to crops. They have proven to be
very resistant to environmental changes and adaptable. Consequently, a potent optimization
algorithm is obtained by taking into account their characteristics. The resistance, adaptabil-
ity, and randomness of a sample of weeds are attempted to be replicated by this algorithm.
A phenomenon in agriculture known as colonies of invasive weeds served as the inspira-
tion for this technique. A plant that grows erratically is what is commonly understood by
the term "weed". Even though weeds may be useful in some areas, when the same plant
grows in an area that obstructs human needs and activities, it is referred to as a weed. The
"Invasive Weed Optimization Algorithm" is a straightforward numerical optimization algo-
rithm based on colonized weed that was introduced by Mehrabian and Lucas (2006). Using
fundamental characteristics like seeding, growth, and competition in a weed colony, this
algorithm is straightforward but effective in convergent to optimal solutions. Some funda-
mental aspects of the process are taken into consideration to simulate the habitat behavior
of weeds:

1. Primary population initialization: A small number of seeds are dispersed throughout
the search area.

2. Reproduction: Based on their fitness value, every seed develops into a flowering plant
that then produces seeds. As we move from S, to S ;., the quantity of grass grains
decreases linearly as follows:

max min’
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S pax(max fit = fit(w;)) + S, (fit (w;) — min fir)
max fit — min fit

n(w,) =

Spectral Spread: The following equation results in the seeds produced by the group in
the normal distribution with a mean planting position and standard deviation (SD):

D

T—r\"
0 = <T) (Uinilial - Gﬁnal) + O final (2)

where n is the nonlinear modulation index, T is the maximum number of iterations,
and _t is the current standard deviation (Mehrabian and Lucas 2006). His conversion
ensures that the fall of grain in the range decreases nonlinearly at each step, producing
more suitable plants while removing unsuitable plants, and displays the transfer mode
from r to a choice of K.

Competitive deprivation: If the number of grasses in the colony exceeds the maximum
allowable number (Pmax), the grass with the worst fitness is eliminated from the colony,
leaving a fixed number of herbs.

The minimum colony cost function of the grasses is then stored after this process is
completed in the maximum number of iterations (Misaghi and Yaghoobi 2019). Asgari
et al. (2016) developed a study that applied the WOA algorithm to an ideal reservoir
operation. Azizipour et al. (2016) presented the use of the invasive IWO algorithm, a
novel evolutionary algorithm motivated by colonizing weeds, for the best performance
of hydropower reservoir systems in their paper. The outcomes are contrasted with those
currently available from the two most popular evolutionary algorithms, GA and PSO.
The findings demonstrated that for both single-reservoir and multi-reservoir hydropower
operation issues, the IWO is more efficient and effective than PSO and GA.

Bat Algorithm (BA) The echolocation of microbats serves as the basis for the bat algo-
rithm (BA) (Yang 2010). The echolocation technique used by bats is called the bat algo-
rithm. Echolocation is a type of sonar that bats use to find prey and avoid obstacles. These
bats use echolocation, which involves emitting a very loud sound pulse and listening for
the echo that is reflected from nearby objects. Their pulses vary in properties and can be
correlated with their hunting strategies, depending on the species. Most bats sweep through
a range of about an octave using brief, frequency-modulated signals. Each species’ signal
bandwidth is different, and it is frequently widened by adding more harmonics. The follow-
ing rules can be used to represent the echolocation traits of microbats in BA.

L.

2.

All bats use echolocation to gauge distance, and somehow, they can distinguish between
background barriers and food/prey.

To find prey, bats randomly fly with a speed of Vi at a position Xi while using a fixed
frequency fmin, variable wavelength k, and loudness AQ. Depending on how close their
target is, they can automatically change the pulses’ wavelength (or frequency) and rate
of emission r€[0; 1].

Although there are many possible ways for the loudness to change, it is assumed that
it ranges from a large (positive) AO to a small constant value Amin. At position Xi, the
ith bat flies at a fixed frequency of fmin at a random velocity of Vi. To find food, the bat
changes its wavelength and loudness A,,. The rules that determine how their positions
Xi and velocities Vi in a D-dimensional search space are updated must be specified.
The current best location (solution), known as Xbest, was found by comparing all other
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locations among all n bats (Yang 2010). When g is defined as the index of the best bat
in the population and the iteration number is denoted by superscripts, the new solutions
X[? and velocities Vf at time step ¢ are then provided by Egs. (3) and (4). The wavelength
A of the ultrasonic sound bursts with a constant frequency f is given by

LV
f;' =fmin + (ﬁnux _fmin) X ﬂ (4)

Vlt = Vit_l + (X;_l _Xbext) Xf;
where f € [0; 1] = a random vector drawn from a uniform distribution. X, is the current
global best location (solution), which is located after comparing all the solutions among all
the n bats. The new solutions of the ith bat at time step ¢ are given by le and Vl?
X =x"+v (5)
The loudness is presumptively assumed to range from a large (positive) A0 to a small
constant value Amin. The values of finin and fimax depend on the problem’s domain size.
Each bat is initially given a frequency that is uniformly drawn from [ finin, finax] at ran-
dom. For local search procedure (exploitation), each bat takes a random walk creating a
new solution for itself based on the best selected current solution (Xbest)

X

new

= Xbest + 5At (6)

where the random number & is drawn from [—1; 1]; and A’= the average loudness of all
bats at this time step. The loudness decreases as a bat tend closer to its food and pulse
emissions rate increases

A = Al (7)

ri =21 = exp(—y1)] (®)

where a and y = constants and r? e [0; 1].

The optimal operation of a reservoir by incorporating the hedging policy and the Bat
Algorithm (BA) was investigated in Jamshidi and Shourian’s (2019) study. Three operation
rules determine and compare the ideal monthly releases from the reservoir while mini-
mizing the deficit in the water supply provided by the dam. Yaseen et al. (2019) in their
studies propose the hybrid bat-swarm algorithm (HB-SA), a new hybrid optimization algo-
rithm built on the BA and PSO algorithms. The primary goal of this hybridization is to
enhance the BA by replacing the BA’s suboptimal solution with an optimal one obtained
from the PSOA. By avoiding the trapping in local optima brought on by using the BA,
the solutions effectively quicken the convergence process. The proposed HB-SA is suc-
cessfully examined and can be generalized for several dams and reservoir systems world-
wide, which reduces the computational time for the convergence procedure. Ehteram et al.
(2018a, b, c) research findings demonstrated that the bat algorithm with a third-order rule
curve that converged to the minimum objective function achieved the highest values of
the reliability index and resiliency index and the lowest value of the vulnerability index.
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As a result, the bat algorithm with a third-order rule curve can be thought of as a suit-
able optimization model for reservoir operation. Ahmadianfar et al. (2016) To enhance its
global searchability, introduced an improved bat algorithm (IBA) with a hybrid mutation
strategy. The explorative and exploitative mutation operators are two of the six DE muta-
tion mechanisms used in the original BA algorithm. The four-reservoir and ten-reservoir
systems’ benchmark hydropower operation problems were both solved using the suggested
approach. To replace conventional operations research algorithms like LP, NLP, and DP,
metaheuristic algorithms for optimal reservoir system operation have grown to be desirable
alternatives. Bozorg-Haddad et al. (2015a, b) in their paper present the metaheuristic BA
algorithm and its application to a hypothetical four-reservoir system as well as to the best
operation of the Karoun-4 reservoir system in Iran.

Whale Optimization Algorithm (WOA) The humpback whale algorithm serves as the
basis for the recently proposed meta-heuristic known as the whale optimization algorithm
(Mirjalili and Lewis 2016). In the WOA algorithm, humpback whales approach their prey
by spinning them up in the water and surrounding them with spherical bubbles.

Encircling the Prey Encircling their prey is the first step in the humpback whales’ hunting
ritual. It implies that the target prey is the best solution available and that each whale in the
current population is attempting to better define its location relative to the desired solution.
The mathematical representations of this are given by Egs. (9) and (10).

D=|C-X*()- X )

Xt+1)=X@—A-D (10)

where, ¢ is current iteration,z and C are coefficients vectors, F(r) is the position vector
ofthe best solution achieved so far, X is the position vector, Il is absolute value and. is the
element-by-element multiplication.

The vectors A and C are calculated by Egs. (11) and (12) (Mirjalili and Lewis 2016):

A=2-7—d an

C=2-7 (12)

where d is linearly reduced from 2 to 0 during the iterations (in both phases of exploration.
and exploitation), and 7 is a random vector between 0 and 1.

Bubble-Net Attacking Method (Exploitation Phase) Along with swimming in a con-

verging circle, whales also follow a spiraling path as they circle their prey. The WOA is

assumed to choose between the spiral model or the shrinking encircling mechanism (50:50)

to update the position of the whales to model this simultaneous behavior. Eq. The math-
ematical model is described by (13) (Mirjalili and Lewis 2016):

5('(;+1)={£(t) AD ifp<0s -

D e’ cosnl) + X*(t) if p> 0.5
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where p is a random number [0, 1], D= ‘6 . )F(t) -X (t)‘ represents the distance between

whale and the prey (best solution achieved so far), b is the constant defining the shape of
logarithmic spiral, / is the random number between—1 and+ 1, is the element-by-element
multiplication, and A is used with the random values between— 1 and+ 1 to move whales
toward a reference whale.

Search for prey (Exploration Phase) Instead of using the best whale that has been discov-
ered thus far, a whale that is chosen at random updates the position of a whale. Eqs. The
mathematical model is described in (14) and (15) (Mirjalili and Lewis 2016):

— _— =

D= ‘C'Xrand'X (14)

Xt+1)=X_ —A-D (15)

rand

where Xrand is a random position vector (the random whale) selected from the current
population and A is used with random values greater than 1 or less than — 1 to move whales
far away from the reference whale.

Complex technical problems are resolved by the WOA algorithm. The aim of Lai et al.
(2021) using WOA and LFWOA algorithms, is to reduce the water deficit of KGD. Muhammad
et al. (2019), the whale-genetic hybrid algorithm (HWGA), a combination of WOA and GA
algorithms, was used to examine the optimal performance of a four-reservoir system (FRBS)
and ten-reservoir system (TRBS).

Other Bio and Nature-Inspired Algorithms Water Cycle Algorithm(WCA), Symbiotic
Organisms Search (SOS), Shark Machine Learning (SML), Spider Monkey Algorithm(SMA),
and Firefly Algorithm (FA) are very popular among researchers for dams reservoirs optimi-
zation studies. Yavari and Robati (2021) used the evolving multi-objective water cycle algo-
rithm (MOWCA) to ensure Jiroft Dam’s reservoir system operated as efficiently as possible for
downstream demand—supply, flood control, and hydropower energy generation. In the study
of Qaderi et al. (2018), the operating policy for a multi-reservoir system was derived using
a novel metaheuristic optimization algorithm called the WCA algorithm. The outcomes of
WCA were compared to those of other developed evolutionary algorithms, such as the genetic
algorithm, harmony search algorithm, particle swarm optimization algorithm, and impe-
rial competitive algorithm. The results showed that WCA is superior to other algorithms in
calculating the annual deficit. Bozorg-Haddad et al. (2015a, b), used the WCA algorithm to
determine the best operational plans for the Karon-4 reservoir and a four-reservoir system in
Iran. The outcomes show the WCA’s high effectiveness and dependability in resolving res-
ervoir operation problems. Rezaei-Estakhroueiyeh et al. (2020) presented a model based on
the SOS algorithm for the optimal operation of Safarud Reservoir. These datasets’ analyses
demonstrated that the SOS algorithm was effective in solving the reservoir problem in the best
possible way. Allawi et al. (2018) suggested using the SML algorithm to build the best rule
possible for reservoir operation. The SML started with a set of randomly generated potential
solutions and then interactively searched for the best one. The findings of their studies dem-
onstrate that the SML procedure is appropriate for use in a reservoir system because it can
address the stochastic characteristics of dam and reservoir systems. The shark algorithm is a
stochastic search optimization algorithm that begins with a set of randomly generated potential
solutions and then interactively searches for the best one. Given that the reservoir system is a
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stochastic system by nature, such a procedure is appropriate for its system characteristics. The
studies of Ehteram et al. (2017a), examine the shark algorithm’s potential as an optimization
algorithm for reservoir operation. Ehteram et al. (2018a, b, c) to optimize the operations of the
Golestan and Voshmgir dams, compared SMA’s capabilities to those of well-known optimiza-
tion algorithms. The SMA, with its high rate of convergence, is recommended as an appro-
priate tool for optimizing the operation policy of cascade reservoirs by the findings of their
studies. Garousi-Nejad et al. (2016) in their paper applies a metaheuristic algorithm called the
firefly algorithm (FA) to reservoir operation and show the effectiveness of this algorithm over
the GA using (1) five mathematical test functions, (2) the operation of a reservoir system for
irrigation supply, and (3) the operation of a reservoir system for hydropower production. The
outcomes show that, when compared to the outcomes of the GA, the FA performs better in
terms of the convergence rate to global optimum and the variance of the outcomes regarding
global optimum.

3.4.2 Evolutionary Algorithms

Genetic Algorithm (GA) A search that produces successive "generations" of answers start-
ing with an initial set of the randomly chosen population. The primary distinction between
GA and traditional optimization techniques is this. Darwin’s theory of evolution’s "survival
of the fittest" serves as the inspiration for GA. The methods used in this approach are crosso-
ver, mutation, and selection. By carrying out the aforementioned operations to enhance the
quality of the solution, the fittest individuals will be chosen and produce new populations.
Parents must be chosen from the initial population in the selection process based on their
fitness. The chromosomes with better fitness have more opportunities to serve as parents.
There are many ways to select parents for crossover, including tournaments, roulette wheels,
ranking systems, Boltzmann selection algorithms, and steady-state selection. Crossover
probability exists between the parents to produce offspring (children). In the absence of
crossover, children are exact replicas of their parents. There are various crossover opera-
tions, including single-point, two-point, multipoint, uniform, and matrix crossover. Each
locus in offspring has a low mutation probability. To keep population diversity high, the
mutation is used to help the search algorithm escape local minima. The initial population is
replaced with fresh offspring, and until the termination criteria are met, the aforementioned
operations must be carried out on the new population. An unconstrained problem can be
solved by GA by incorporating a penalty function into the objective function to transform
the constrained problem into an unconstrained problem. The GA model could perform bet-
ter if used in the reservoir’s real-world operation, according to the Jothiprakash and Shanthi
(2006) study. Reddy and Kumar (2006) used a population-based search evolutionary algo-
rithm called Multiobjective Genetic Algorithm (MOGA) to create a Pareto optimal set in
their study to outperform the traditional methods for Multi-objective Optimization Problems
(MOOQOP). Chang et al. (2010a, b) suggested using a constrained genetic algorithm (CGA)
method to identify the best reservoir operation strategy to facilitate decision-making. When
maximizing the reservoir’s 10-day storage, their suggested method takes the ecological base
flow requirements into account as a restriction on the amount of water that can be released
from the reservoir. According to the studies of Jothiprakash et al. (2011) by using the GA
model, an attempt was made to derive the optimal operating policies of multiple reservoirs.
The outcomes of the GA model were then contrasted with those of the traditional stochas-
tic dynamic programming model. To determine the best time for the Bigge Reservoir in
Germany to be released, Elabd and El-Ghandour (2014) proposed a multi-objective genetic
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algorithm optimization model, assuming two input flow scenarios for dry seasons. The out-
comes show the effectiveness of the developed model, which successfully determines the
optimal releases in the two inflow scenarios of dry seasons while meeting all constraints.
Nourani et al. (2020), to provide agricultural and municipal water supplies in both the base
period and future periods, the GA optimization model developed the best rule curves for
the reservoir. Results indicate that the methodology for evaluating and optimizing current
systems provided by the framework developed in this work emphasizes the need to take
projected climate change into account as an assessment tool for reservoir management in the
future. Mendoza Ramirez et al. (2021) simulated the operation of a reservoir in Michoacén,
Mexico, using genetic algorithms and two methods of dynamic random programming opti-
mization. El Harraki et al. (2021) to optimize multi-objective reservoir operation, proposed
an objective function combining two competitive shortage indicators. To address this issue,
a more advanced genetic algorithm that reduces impractical fluctuations in the operation of
the policy is created. In their studies, operating curves were jointly optimized to hedging
factors to avoid severe droughts and high user damage.

Genetic Programming (GP) A type of EC called GP employs the same searching tech-
nique as GA. The initial GP assertion was made by Cramer in 1985, and Koza later added
to it in 1992 and 1994. They were the ones who first applied GP to a variety of challenging
optimization and search issues. Each solution from GP is provided as a tree structure. The
evaluation of mathematical and logical expressions is required because each tree node has
an operator function and each terminal node has an operand. Two examples of mathemat-
ics are shown in the GP in Fig. 14. As it is shown, {x,5} and {x,12} are respectively the
terminal sets of y(x) = éexp(x) + xsin(x) and y(x) = 2x + 12 expressions. The arithmetic
operators (+,X,+) are internal nodes called functions. The mathematical operations (e.g.,
sin, and cos), Boolean operators (e.g., And, Or), as well as logical expressions (e.g., If—
Then—Else), are recognized as the function set. During the GP searching process, a set of
trees is generated at random, and each tree’s fitness function is calculated. Using strategies
like the roulette wheel, tournaments, or ranking methods, better individuals have a higher
chance of surviving for the next generation in most EC. Using crossover and mutation
operators, the following generation is created (Fallah-Mehdipour et al. 2012).

exp 5 x sin x X
l [ y(x) =2x+12

X X

y(x) = %exp(x) + xsin(x)

Fig. 14 GP mathematical expression examples
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(2) (b)

exp 5 X + cos 5 x +

X X X X X X

Fig. 15 Tree structures a) before and b) after mutation

In the crossover operator, two parents are chosen, and the sub-tree crossover randomly
(and independently) chooses a crossover point (a node) in each parent tree. Point mutation
is applied to each node individually in the mutation operator. That is, as shown in Fig. 15,
every node is randomly taken into account and, with a certain probability, it is exchanged
for another random variable. The input for the following generation is the trees that were
produced using genetic operators. This procedure continues until the termination criterion,
which might specify a maximum number of generations to run as well as a success criterion
specific to the problem, like when the error is less than one percent. Then, two offspring are
created by swapping out the sub-tree rooted at the crossover point in a copy of the first par-
ent with a copy of the sub-tree rooted at the crossover point in the second parent.

Ashofteh et al. (2015) used an optimization MO-GP algorithm in their paper to increase
the reliability index and decrease the reliability index of the irrigation supply provided by
the Aidoghmoush Reservoir system (East Azerbaijan, Iran). Fallah-Mehdipour et al. (2012)
the use of GP to create a reservoir operation policy concurrent with inflow prediction is
discussed in their paper.

Other Evolutionary Algorithms In studies about dam reservoir optimization problems,
members of the Evolutionary Algorithms group have utilized differential evolution (DE)
and biogeography-based optimization (BBO). The purpose of the study by Ahmadianfar
et al. (2019) is to create a powerful hybrid of DE and PSO with a multi-strategy (MS-
DEPSO) to optimize the operating policies for reservoir systems. The basic DE algorithm’s
local and global search capabilities are encouraged by the proposed MS-DEPSO to pro-
duce an efficient optimal operating policy. To evaluate the effectiveness of the suggested
optimization method, fourteen mathematical functions were used. To assess the effective-
ness of MS-DEPSO in the production of hydropower energy, a multi-reservoir hydropower
system with three different monthly operation periods over 10, 15, and 20 years were used
as a real-world case study. Bozorg-Haddad et al. (2016a, b) used the BBO algorithm to
address reservoir operation issues in their paper. The BBO algorithm is first tested by mini-
mizing three mathematical benchmark functions (Sphere, Rosenbrock, and Bukin6). To a
system with one reservoir and one with four reservoirs, they applied the BBO algorithm.
The BBO algorithm’s effectiveness in resolving the three optimization problems was com-
pared to that of the GA. The outcomes demonstrate that the BBO algorithm outperformed
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the GA in accurately minimizing the benchmark functions. The BBO successfully solved
the hydropower optimization problem for a single reservoir.

3.4.3 Physics-Based Algorithms

Simulated Annealing (SA) SA is similar to the metallurgical annealing process, in which a
metal object is heated to almost its melting point and then slowly cooled. As a result, metal
atoms can align, crystallize, and reach a minimum energy state. Kirpatrick et al. (1983),
the initial proposal for the SA algorithm is a multipurpose heuristic searching technique for
optimizing functions of many variables and will assess a series of local optimum in search
of the global optimum. On the limited but expansive space of workable solutions, the SA
algorithm imposes a neighborhood structure (Chiu et al. 2007). SA is based on the anneal-
ing process, which was inspired by the study of metallurgy. The SA Algorithm includes the
following steps (Bilal et al. 2021):

Create a haphazard first solution for the problem.

For the initialized solution Fi, determine its fitness.

Create a new solution for the problem, then determine fitness for the new solution Fj.
If Fj is strictly better than Fi, accept the new solution.

When the comparison between "acceptance probability" and "random number" yields
a favorable result, the new solution is accepted even if Fj is not strictly superior to Fi.

NS

Following is a calculation of the new solution’s acceptance probability.

AE

P=c¢ 1 (16)

where AE: Energy difference;T: Temperature; e: 2.71828.

6. Update temperature using the following formulawhere AT: Temperature change.

T=T-AT (17)

7. Up until the allotted iterations are used up or the stopping criteria are satisfied, repeat
steps 3—6.

In their study, Bilal et al. (2021) investigated the implementation and comparison of
six well-known meta-heuristics, namely: simulated annealing, genetic algorithms, particle
swarm optimization, differential evolution, and artificial bee colony to optimize reservoir
operation policy. In the research done by Rouzegari et al. (2019) by utilizing the SA and
NLP methods, the optimal operating model of the reservoir was created with the goals of
reducing the deficiencies and taking into account the downstream demands of the reservoir,
particularly the environmental water Mahabad River demands. Chiu et al. (2007) introduced
a method for optimizing reservoir operation using fuzzy programming and hybrid evolu-
tion algorithms SA and GA. In the hybrid search process, the GA provides a global search
and the SA algorithm provides a local search. According to the findings of their studies, the
hybrid GA-SA model performs parallel analyses that raise the likelihood of locating an ideal
solution while decreasing the amount of time needed for reservoir operation.
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Gravitational Search Algorithm (GSA) The GSA, the second component of our hybrid
algorithm, looks for the best solution in the problem’s search space using physical laws.
The GSA is based on Newton’s theory of gravity. Accordingly, the gravitational force of
each mass acts to absorb the others during the algorithm’s execution. Let’s say there is a
system with N masses. The expression x; = (xl.l, ,x;j ..., ;) displays the location of each
mass, with x;.i denoting the mass’s position in dimension d and N denoting the problem’s
dimensions. The algorithm begins the search by dispersing the objects throughout the
problem space at random. The following equation is then used to define the gravitational

force of the j-th factor at each iteration’s step:
M,,;(1) X M,,;(1)

Fit) = G@)
y Rij(t)R,,W,

x (o ) (18)

where M,;(?) is the active gravitational mass of mass j; M,,(?) is the inactive gravitational
mass of i-th mass; G(7) is the gravitational constant at time #; R;(?) is the distance between
the two masses i and j; R,,,,,, is the power of the distance between the two masses; and
F g(t) is the force between the two particles. Following that, using the following equations,

the gravitational constant and the separation between two particles are calculated.

R = (0. x50l (19)

—k X iter

G(t) = Gy X exp( -
max iter

(20)

where max iter is the number of iterations that can be made, G, is the initial gravitational
constant, and K is the descending coefficient. The general force that is posed over i in the
d-dimensional problem space is based on the following equation:

depn _ NV d
Fin) = ijl#lrandeij(t) @1

A random number between 0 and 1 is represented by rand, in this scenario. The second
law of Newton states that each mass accelerates in the direction of the d dimension propor-
tional to the force applied to it in that direction and the inverse mass of its inertia. Thus:

Fi(0)
A . =
Yo M0

(22)
d stands for the problem’s dimension, and M;;(¢) is the mass of the inertia of the system. The
i-th object. Based on the following equations, the object’s position and velocity are determined.

Vit + 1) = rand; x V(1) + a? (1) (23)

M+ D =xO+ e+ 1) (24)

where rand; is a random number ranging between 0 and 1, v;i(t + 1) is the new velocity of
each mass a: mass acceleration, and xf(t + 1) is the new position of each mass. GSA con-
siders both gravitational objects and inertial objects according to Eq. (25), which is used to
change the objective function value of objects according to Eq. (26). After that, Eq. (27) is
used to normalize the object values:
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My =M, =M, =M, (25)
_ fit,(t) — worst(t)
q,() = best(t) — worst(l) (26)
q,-(t)
M) = —
=40 @

where M,; is the active gravitational mass, M, is the inactive gravitational mass, and M;; is
the mass of inertia, all of which are equal to M,. g;(¢) is meanwhile the value of the objec-
tive function at time ¢, fit;(¢) is the value of the i-th mass at time 7, M,(¢) are the normalized
mass at time t, and worst(t) and best(t) are the worst and best values of the objective func-
tion respectively. The steps for running the GSA are as follows:

A random state is used to create the initial population and particle positions.

Based on a sensitivity analysis, the parameters a, R,,,,,,, and G, are computed at their

initial values.

3. Each mass has its objective function value calculated.

4. The masses are specified with the best and worst values of the objective function, and
G’s value is updated accordingly.

5. Egs. (21), (22) and (27) are used to determine the acceleration and mass values.

6. Updates the position and speed.

7. The convergence condition is examined. The algorithm is finished if it meets the require-

ments. Otherwise, we proceed to step 3 (Karami et al. 2019).

[N

An evolutionary optimization algorithm called the GSA is based on mass interactions
and the law of gravity. Bozorg-Haddad et al. (2016a, b) investigated the GSA’s performance
in their paper for optimization problems, single reservoir, and four-reservoir operations. In
three optimization problems, the GSA’s solutions were contrasted with those of the well-
known GA. The outcomes demonstrated that the GSA’s results in minimizing the optimiza-
tion problems are closer to the optimal solutions than the GA’s results. Karami et al. (2019)
to reduce irrigation deficiencies in a multi-reservoir system, introduced a hybrid algorithm
(HA) including GSA and PSO algorithms. Iran’s Golestan Dam and Voshmgir Dam system,
a significant multi-reservoir system, served as the test case for the proposed algorithm. The
results of HA demonstrated that it was capable of guaranteeing a high volumetric reliability
index (VRI) to satisfy the pattern of water demand downstream from the dams, as well as
outperforming the other algorithms on other crucial indices. As a global optimizer for dam
and reservoir operations, the proposed HA appears to have a lot of potentials.

Other Physics-Based Algorithms In the Physics-Based Algorithms group, Adaptive
Random Inertia Weight (ARIW) and Artificial Physics Optimisation (APO) have been
used in studies related to dam reservoir optimization problems. The paper by Chen et al.
(20204, b) is based on traditional PSO and describes an effective and trustworthy heu-
ristic method for building a multi-objective optimization model for reservoir operation
using PSO with an adaptive ARIW strategy, known as the ARIW-PSO algorithm. In
their research, the effectiveness of the ARIWPSO algorithm was examined using a few

@ Springer



A Systematic Review of Optimization of Dams Reservoir Operation... 3503

traditional test functions, and the outcomes were compared to those of the GA, the tradi-
tional PSO, and other enhanced PSO methods. In research, Wang et al. (2021) The use of
representative heuristic algorithms from the DE, PSO, and APO categories for reservoir
optimal operation was reviewed, and their performance was evaluated using a designed
experiment. Additionally, a general solution procedure for the application of HAs was
created for the MOROO problem, along with the necessary tools for handling constraints
and designing fitness functions.

3.4.4 Swarm Intelligence Algorithms

Particle Swarm Optimization (PSO) PSO shares many similarities with evolutionary com-
putation techniques such as GA. PSOs are initialized with a population of random solutions
and search for optima by updating generations. Algorithms and distributed problem solvers
that were motivated by the cooperative behavior of insect colonies and other animal socie-
ties are referred to as "swarm intelligence". According to this perspective, PSO is a swarm
intelligence technique for resolving optimization issues. An algorithm for population-based
heuristic search and particle swarm optimization was first proposed by Eberhart and Kennedy
(1995) and was modeled after the social behavior of flocking birds. PSO and evolutionary
computing methodologies like GA have many similarities. PSOs start with a population of
random solutions and update generations to look for optimum solutions. Contrary to tech-
niques like GAs, basic PSO does not employ any operators based on the principles of natural
evolution to find a new batch of candidate solutions. PSO, on the other hand, is dependent on
the communication of individual population swarm particles. According to Parsopoulos and
Vrahatis (2004), each particle effectively modifies its trajectory to move toward both its own
current best position and the best position previously attained by any other members in its
neighborhood. The following formulas are used in this algorithm to determine each particle’s
velocity and new location based on the position of the best particle in the group and the best
location that the particle has personally experienced.

Vf'+l = WV? +c rand(pbest - Xi) + C2rand(gbest - xt) (28)

1 1

X = (29)

Here, v?“ is the velocity at time t+4 1, w is the inertial coefficient, ¢; and c, are the accel-
eration coefficients, a rand is a random number between 0 and 1, p,,,, is the best particle in
the i-th iteration, g,,, is the best particle among all the iterations, and xﬁ“ is the position of
the particle at time t+ 1. The PSO begins by dispersing particles at random throughout the
issue area. With each iteration, the particle velocity is determined using Eq. (28), and the
particle position is then updated using Eq. (29). Up until it satisfies the requirements, the
particle position is changed (Karami et al. 2019). By combining an enhanced PSO algo-
rithm with an SVM technique, Moeini and Babaei (2020) proposed new hybrid methods to
address the challenges of optimizing reservoir operations for water inflow conditions. The
IPSO algorithm’s efficiency was increased by using the constrained version, or CIPSO.
The CIPSO algorithm explicitly satisfies the problem constraints, which results in a smaller
search area and, ultimately, a lower computational cost. The Chen et al. (2020a, b) paper
is based on traditional PSO. To create a multi-objective optimization model for reservoir
operation, present an effective and trustworthy heuristic method using PSO in conjunc-
tion with an adaptive ARIW strategy. This method is known as the ARTW-PSO algorithm.
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In their studies, the effectiveness of the ARIWPSO algorithm was examined using a few
traditional test functions, and the outcomes were compared with those of the GA, the tra-
ditional PSO, and other enhanced PSO methods in the research done by Al-Ageeli et al.
(2020), to maximize annual hydroelectric generation, the PSO model for a single reser-
voir (PSOS) was developed. In their paper, SaberChenari et al. (2016) to operate the mul-
tipurpose Mahabad reservoir dam in the northwest of Iran, researchers adopted the PSO
method. The operation problem of the multipurpose Mahabad reservoir dam in northwest
Iran was solved using the PSO method. The goal is to reduce the discrepancy between
downstream monthly demand and release, which is the desired outcome or target function.
The approach was used by taking into account the likelihood that inflow would decrease
under each of the four normal and drought-related scenarios. The findings of their stud-
ies demonstrated that the PSO model performs well in minimizing reservoir water losses,
and this can be a good operation strategy for the reservoir in drought conditions. He et al.
(2014) proposed an improved logistic map-based chaotic particle swarm optimization
(CPSO) algorithm that uses the discharge flow process as the decision variable in conjunc-
tion with the penalty function.

Artificial Bee Colony (ABC) The ABC algorithm uses the search method with the intel-
ligent behavior of the honey bee swarm to find and exploit the impossible region. This
algorithm imitates the self-organization, division of labor, and foraging strategies used by
honey bee swarms. Employed bees (EB), onlookers (O), and scouts (S) make up the three
bee swarm groups. The EB is the type of bee that uses the food sources (possible solutions)
from the designated area of the search area. The bee known as the O waits for the EB to
bring back the information while remaining inside the hive. The bees use a waggle dance
to exchange information about the sources of food. Poor food sources are avoided in favor
of high-quality ones, which the O memories for future use. Once their food source has been
fully utilized and abandoned, S is the bee that is used to randomly search for a new food
source (Choong et al. 2017). A set of release options was used as the food source math-
ematically. Each source is expressed as Eq. (30):

yi=@G=12,...F) (30)

where yi is the ith member of a single food source for the population size of F. The best
source with the finest fitness value in the population is recorded. EB improved its cur-
rent location using local search steps as described by Diwold et al. (2011) in each iteration
where yi is the ith member of a single food source for the population size of F. The best
source with the highest recorded fitness value in the population. EB improves its current
position using local search steps in each iteration (Diwold et al. 2011).

X =Yy 0305 = yiy) 3D

where y; is the current single release of the jth source, j stands for the dimensional vector,
x;; is the newly updated value of the release for the ith location of the jth source, and yy;
stands for additional randomly selected releases. It must be obtained from an alternative
nearby source. In the range of -1 and 1, 6 is chosen at random. The best fitness value that
is compatible with the ideal solution will determine whether to choose an endurance solu-
tion. The O, on the other hand, decides which food source to pursue based on its likelihood
of being picked once the EB has updated its position. The following equation, first presented

by Eiben and Smith (2003), uses a standard roulette wheel selection to draw in more O:
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_ SO
D YD) 52)

where N is the total amount of the food source and P;, the probability of any ith source, is
the ratio of its fitness to the sum of all the other sources’ fitnesses. S needs to find a new
food source to come up with a better solution if the source has a low fitness value. Soghrati
and Moeini (2020) used the ABC algorithm to optimize the reservoir. Choong et al. (2017)
the ABC algorithm was created to solve the problem of optimizing Chenderoh reservoir
operations in the Malaysian state of Perak. In their study, the suggested algorithm sought to
reduce the reservoir water deficit and analyze the performance impact based on input from
weekly and monthly data. The ABC algorithm offers promising and comparable solutions
for ideal release curves because it can identify various potential events occurring in the res-
ervoir. Then the release of the reservoir was done using the ideal release curves at different
operating times and different inflow scenarios.

Other Physics-Based Algorithms In the swarm intelligence algorithms group, cuckoo
search (CS), ant colony optimization (ACO), moth swarm algorithm (MSA), cat swarm
optimization (CSO), and artificial fish swarm algorithm (AFSA) have been used in stud-
ies related to dam reservoir optimization problems. In Hosseini-Moghari et al (2015), the
imperialist competitive algorithm (ICA) and cuckoo optimization algorithm (COA), which
are two evolutionary methods, are used in the optimal operation of the reservoir. Firstly,
these algorithms were used in solving several benchmark problems. Afterward, the optimal
operation policy of the Karun4 reservoir was extracted. Finally, results obtained from these
methods were compared with GA algorithm and NLP. To solve the mixed integer nonlin-
ear programming problem, To solve the mixed integer nonlinear programming problem, a
hybrid algorithm of ACO and LP model was proposed. The water supply and hydropower
operation of the Dez reservoir in Iran over operation periods are problems that must be
solved as efficiently as possible using the methods put forth by Afshar and Shahidi (2009).
The solutions obtained using the three methods of GA, ACO, and PSO are also presented.
Afshar and Moeini (2008) presented the ACO algorithm for the optimization of complex
reservoir operation problems. The research studies of Akbarifard et al. (2021), on two pow-
erful meta-heuristic algorithms HS and ICA, were used to compare the performance of
the butterfly swarm algorithm (MSA) with each other. First, seven benchmark functions
with dimensions ranging from 2 to 30 were used to evaluate how well these algorithms
performed. They were then contrasted to optimize the operation of four-reservoir and ten-
reservoir systems, which is a challenging problem. Overall, the comparison found that
MSA was the best of the 12 algorithms examined, and it is advised as a reliable and prom-
ising tool for the best operation of multi-reservoir systems. Akbarifard et al. (2020) in their
paper claim that created a model based on the MSA algorithm to optimize water resources.
The analysis of these datasets showed that the MSA algorithm outperformed the GA and
PSO algorithms in the hydropower reservoir problem’s optimal operation. In the research
by Bahrami et al. (2018), using a single reservoir system and a hypothetical four-reservoir
system, the CSO algorithm was used to calculate the reservoir systems’ optimal perfor-
mance. The superiority of this metaheuristic algorithm is shown by comparison with GA.
Yaseen et al. (2018) found in their study that it is possible to optimize the Karun-4 reser-
voir by using a combined strategy of AFSA and PSOA algorithms. In their optimization
method, energy production is increased and water shortage is minimized. Khorsandi et al.
(2022) integrated the multi-objective firefly with the K-nearest neighbor to accelerate the
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optimal operation of multi-objective reservoirs. Rahmati et al. (2021) applied the Grass-
hopper Optimization Algorithm (GOA) to the optimal operation of hydropower reservoir
systems under climate change. Moghadam et al. (2022) performed the optimal allocation of
surface and ground water resources with Invasive Weed Optimization Algorithm (IWOA)
modeling. Azadi et al. (2021b) presents a simulation—optimization approach linking the
CE-QUAL-W?2 with the firefly algorithm k-nearest neighbor (FA-KNN) model to obtain
optimal reservoir discharges to achieve water quality objectives. Azadi et al. (2021a) evalu-
ated the effects of climate change on thermal stratification of reservoirs using FA-KNN.

3.4.5 Human-Based Algorithms

Harmony Search (HS) Geem et al. (2001) proposed the harmony search (HS) It was used
to solve optimization problems. The HS is a population-based metaheuristic algorithm that
draws its inspiration from musical phenomena that seek out the most harmonious condi-
tion. In two studies, the HS technique was used to optimize the reservoir (Dariane and
Karami 2014; Bashiri-Atrabi et al. 2015). The latter authors contrasted the HS and HBMO
and found that the HS displayed promising results in terms of convergence speed.

Imperialist Competitive Algorithm (ICA) Atashpaz-Gargari and Lucas (2007a, b) intro-
duced ICA. The population-by-population approach used by this algorithm is similar to
that of many other evolutionary algorithms. ICA simulates political-social evolution.
A population of initial solutions (countries) is generated at the start of the ICA process
(much like a chromosome in GA). Some nations are viewed as colonies, while others are
seen as imperialists. N decision variables may include variables such as culture, language,
etc. for each optimization problem. Each nation is defined as an array of 1 XN as follows
(Hosseini-Moghari et al 2015):

country = [V}, V,, ..., Vy] (33)
cost = F(country) (34)
where F is the objective function, cost is the value of F, and V|, V,, ..., V), are decision var-

iables. The imperialists then recruit colonies into their empires through a process known
as assimilation policy (colonies are impacted by the imperialists’ culture and language). In
this phase, colonies with 8 deviation of and x units transfer to the imperialists. A more thor-
ough search in the decision space results from this deviation. Both x and # are uniformly
distributed random variables.

x~ U@, pxd) (35)

0~U(-y,y) (36)

where f = a number greater than one which makes colonies close to imperialists from two
sides, d is a distance between imperialists and colonies and y is a parameter that deter-
mines the amount of deviation from the original direction. Some nations that don’t make
much progress each generation experience revolution. The revolution operator stops the
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algorithm from becoming stuck at the local optimum. One of the colonies may end up in
a better situation than its imperialist after moving colonies toward imperialist or revolu-
tion events. It might swap colonial and imperialist stances. Imperialistic competition, in
which all empires compete to have more colonies, is the most crucial stage of ICA. This
procedure is carried out by the weakest colony leaving the realm of the weakest empire
and affiliating with stronger empires. Colonies are merged with stronger empires based
on probability. This probability is proportional to each imperialist power plus a random
percentage from the average power of colonies.

T.C,= cost(imperialist,,) + ijean{cost(colonies of empire,,)} 37)

where T.C, = total cost of the nth empire, and £ = a positive number less than one, which
is a user-defined parameter.

Afshar et al. (2014) compared the ICA and ACO algorithms’ performance in a case
study involving a single-objective hydropower reservoir and found that the ICA showed
quick convergence to nearly optimal solutions for linear operating rule curves and outper-
formed ACO. The ideal reservoir operation curve was obtained in Shenava and Shourian
(2018) study with the dual goals of increasing water supply and lowering flood damage.
The operation of the Gotvand Reservoir in Iran was optimized in this way by simulta-
neously increasing the downstream water supply and decreasing flood damage using the
ICA algorithm.

3.4.6 Hybrid Algorithm (HA)

There are only certain problems that can be solved by current heuristic optimization
algorithms. No algorithm can sufficiently solve all optimization problems (Mirjalili and
Hashim 2010). Hybrid algorithms, which combine two or more algorithms, are useful for
handling challenging multi-objective optimization problems. Algorithm hybrid offers the
same advantages as individual algorithms, plus it builds on one approach’s advantages to
address another’s weaknesses. The estimation of energy production reservoir operations
and scheduling issues have both been addressed using hybrid algorithms (Uzlu et al. 2014).
The combination of evolutionary algorithms with other local search algorithms has been
successfully used in the optimization of hydropower. Zarei et al. (2019) investigated the
performance of a multi-purpose water tank to meet agricultural, urban, industrial and envi-
ronmental needs. The total monthly water release was first determined by a new evolution-
ary hybrid algorithm (BA algorithm and PSA) to operate the best reservoir and satisfy the
total monthly needs (agricultural, urban, industrial, and environmental). By removing the
weak responses of one algorithm and substituting the strong responses of the other, the
new Hybrid Algorithm (HA) assists BA and PSA in accelerating convergence and achiev-
ing an ideal solution. In the study of Karnatapu et al. (2020) to determine the best operat-
ing policies for a multi-purpose reservoir, a hybrid genetic and algorithmic programming
(GA-NLP) model was proposed. Results show that the GA-NLP model can be success-
fully applied for the best distribution of limited available water resources to any reservoir.
Mohammadi et al. (2019) in their paper by examining the optimal operation of continu-
ous-time four-reservoir systems (FRBS) and ten-reservoir systems (TRBS) using a hybrid
whale optimization algorithm (HWGA) that combines GA and WOA algorithms.

@ Springer



3508 B. Beiranvand, P-S. Ashofteh

3.4.7 Other Meta-heuristic Optimization Algorithms

Ehteram et al. (2018a) used the kidney algorithm (KA) in their study to optimize the opera-
tion of the reservoir of the Aydoghmoush dam in the eastern Azerbaijan province of Iran to
lower the irrigation deficit downstream of the dam. The algorithm’s outcomes were com-
pared with those of other evolutionary algorithms, such as the BA, GA, PSO, SA, and WA
algorithms. Tabari et al. (2020) integrated the reservoir structure simulation model and the
optimization approach to creating a multi-objective model that would meet the demands
for water supply while maintaining the structural stability of the dam. A dynamic artifi-
cial neural network was also employed for this reason as an interfaced model to connect
the outcomes of the simulator model to those of the suggested strategy. A non-dominated
sorting genetic algorithm (NSGA-II) and multi-criteria decision-making techniques were
used to create the optimal trade-off curve, from which the best solution was extracted. The
findings demonstrated that, given the stability of the dam, the downstream water demand
allocation was utilized to the fullest extent possible. The reliability and vulnerability coef-
ficient values in the optimal conditions are higher than those in the existing conditions,
according to a comparison between the existing and optimal conditions. The results show
that, in comparison to the optimal conditions, the fuzzy stability index increased by 7%,
indicating that the optimal model performs better. With a water supply of 30%, summer
had the highest deficiency, and spring with a water supply of 30% had the lowest deficiency
when compared to downstream water demands. During summer, the average optimal allo-
cation and the average demands were 20.51 MCM and 67.50 MCM, respectively. Chen
et al. (2020a, b) suggested using the NSGA-III algorithm to optimize a multi-objective
risk management model for real-time flood control operations. Sharifi et al. (2021) in their
study from 2021, five recently-introduced robust evolutionary algorithms (EAs) of Harris
hawk’s optimization algorithm (HHO), seagull optimization algorithm (SOA), sooty tern
optimization algorithm (STOA), tunicate swarm algorithm (TSA). The moth swarm algo-
rithm (MSA) was used for the first time to optimize the Halilrood multi-reservoir system.

4 Comparative Performance Analysis and Discussion
4.1 Interpretation of Algorithms Used in Dam Reservoir Optimization

Figure 16 demonstrates the results of various metaheuristic algorithms applied recently for
dam reservoir optimization. In the recently studied patterns, it has been determined that inter-
est in using some new meta-heuristic algorithms and combined meta-heuristic algorithms to
optimize reservoirs, dams, and reservoir operations has increased. Results indicate that cut-
ting-edge algorithms, particularly hybrid algorithms, have produced results that are incred-
ibly accurate when solving problems in real-time. Reduced convergence and computation
time is the main goal of algorithms. This study demonstrates hybrid algorithms have grown
in popularity for solving reservoir optimization issues and have outperformed more tradi-
tional approaches like LP and NLP as well as other meta-heuristic algorithms. After hybrid
algorithms in this study, GA has been the most well-liked evolutionary algorithm among
researchers in reservoir optimization because it is one of the most established and effective
evolutionary algorithms. Recent studies have paid more attention to hybrid algorithms and
meta-heuristic algorithms, particularly non-animal ones. GA and PSO algorithms have been
used in more comparative studies, totaling 67.21 percent of new studies that have compared
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Fig. 16 Meta-heuristic algorithms in dam reservoir optimization a The most optimal algorithm, b Com-
pared algorithms

these two algorithms. In general, it is impossible to pinpoint precisely which algorithm is
superior to the others. As a result, using techniques like hybrid algorithms can be a useful way
to solve this issue. Figure 15 shows that more research has been done using hybrid algorithms
than other single meta-heuristic algorithms. In the present review study regarding the optimi-
zation of reservoirs of dams, 76 articles were reviewed, of which 17 articles (18.68 percent of
the articles) were done using hybrid algorithms.

4.2 Statistical Criteria

The statistical indices of root mean square error (RMSE), mean absolute error (MAE),
coefficient of determination (R?) and Nash—Sutcliffe efficiency (NSE) are more than other
evaluation indices in the problems of optimizing reservoirs, meeting water needs, and man-
aging reservoirs of dams using Meta-heuristic algorithms are used (Fig. 17).
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Fig. 17 The most important criteria for evaluating the performance of dams reservoir optimization using
meta-heuristic algorithms

The most important criteria for evaluating the performance of dam reservoir optimiza-
tion studies using meta-heuristic algorithms are shown (Eq. 38 to 40):

RMSE = \/ %(ZL (/@) =y (38)
1
MAE= 53 |- (39)

— 2
(2L = Proi-7]
I =D 00

where N is the number of observations, f_i and y_i (i=1; 2;...; N) represent the predicted
and observed values, respectively; f and_y ™ represent the predicted and observed average
values, respectively; RMSE is a popular and reliable measure of researchers in most stud-
ies to measure the standard deviation between estimated values and observed values. The
closer the RMSE is to zero, the less deviation there is between the predicted and observed
results. The coefficient of determination (R?) is a good measure of the fit of a statistical
model. MAE indicates the average absolute value of the difference between the observed
and modeled values of the independent variable. Nash—Sutcliffe efficiency (NSE) is a very
important evaluation criterion in issues related and compatible with water engineering sci-
ences, which has been used in only two papers (Azari et al. 2018; Ehteram et al.2018a, b,
c) (Eq. 41).

R? (40)
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N = 2
Zi:l (yl - yl)
N —\2
Zi:l (y, - y)
In NSE, the efficiency coefficient of the numerical model is between 5 and negative

infinity, which is introduced as a measure to measure the prediction ability of the model,
the explanation coefficient close to one indicates the success of the model in modeling.

NSE=1- 41)

4.3 Evaluation Indices

Multiple indicators can be used to evaluate the performance of the dam reservoir and the
evolutionary algorithms used in management studies (Hashimoto et al. 1982):

4.3.1 Volumetric Reliability

This index is based on downstream demand and the amount of water released. The value
of this index will be high if the released water can adequately meet demand (Ehteram et al.
2017a, b, c, d):

2 T
; R,
ay Z,=121=1 it % 100 @2)

T2
Zi:lzZ;]Di,t

where ay, is the volumetric reliability index.

4.3.2 Resiliency Index

This index shows how quickly a system can recover from a failure. A system must be capa-
ble of regaining functionality following a single failure while it is in operation. A high
value of this index is desirable.

= (43)

where y; is the resiliency index, f;; is the number of failure series generated in the ith reser-
voir, and F; is the number of failure periods generated in the ith reservoir.

4.3.3 Vulnerability Index

This index indicates the maximum failure percentage generated during operational periods.
Thus, a low value of this index is desirable.

4= Max._(Max,_, (DD—R >) (44)
it
where A is the vulnerability index.

The results of evaluation indicators in dam reservoir optimization studies show that
hybrid algorithms show better results than other single metaheuristic algorithms (Table 3).
Also in single metaheuristic algorithms, SML and SMA algorithms show better results
than other algorithms.
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4.4 Investigate the Performance of Some Meta-heuristic Algorithms According
to Optimal Value and Best CPU Time

The performance of some metaheuristic algorithms according to the optimal amount and opti-
mal CPU time for single-reservoir system operation, four-reservoir system operation, and ten-
reservoir system operation is reviewed (Table 4).

4.4.1 Single-Reservoir System Operation

Research by Sharifi et al. (2021) showed that the MSA algorithm had the best objective func-
tion value (6.96), the shortest run-time (6738 s), and the fastest convergence rate (<2000 itera-
tions) compared to HHO, GA, PSO, SOA and STOA algorithms. Yavari and Robati (2021)
showed that the MOWCA algorithm with a total of 236.07 objectives performed better than
the NSGA-II algorithm with a total of 268.01 objectives. In the studies of Wang et al. (2021),
it was found that DE, PSO, and APO algorithms have similar performance in terms of optimal
objective value criterion. DE and PSO algorithms are not much affected by population size,
while APO is affected by population growth. In the DE algorithm, the diversity and stability
of the population are preserved better than in the PSO or APO algorithms. With the performed
evaluations, the use of the DE algorithm is more suitable than PSO and APO for the reservoir
operation optimization problem.

4.4.2 Discrete-Time Four-Reservoir Operation (DFRO) Problem

The DFRO problem was introduced by Larson (1968) using a discrete-time formulation. After
that, Murray and Yakowitz (1979) used dynamic differential programming (DDP) in studying
the DFRO problem. In the last two decades, many researchers, including Bozorg-Haddad et al.
(2011); Asgari et al. (2016); Kumar and Yadav (2018) have used this problem to investigate
the performance of different algorithms.

4.4.3 Continuous-Time Four-Reservoir Operation (CFRO) Problem

The CFRO problem was introduced by Chow and Cortes-Rivera (1974). The difference
between the CFRO problem and the discrete problem is in the constraints and input param-
eters. CFRO problem by researchers including Bozorg-Haddad et al. (2011, 2015a, b); Hos-
seini-Moghari et al (2015); Bahrami et al. (2018); Akbarifard et al. (2021) has been solved
using different algorithms.

4.4.4 Ten-Reservoir Operation (TRO) Problem
Ten-reservoir system was presented by Murray and Yakowitz (1979). Ten-reservoir system
is considered a complex system due to the parallel and series reservoirs. TRO problem by

researchers including Wardlaw and Sharif (1999); Jalali et al. (2007); Ahmadianfar et al.
(2016); Ehteram et al. (20174, c) has been solved using different algorithms.
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5 Conclusions

In the past two decades, the use of modern methods of meta-heuristic optimization in
various topics of water resources systems has increased to overcome the shortcomings of
traditional methods and the inefficiency of mathematical methods due to the increase in
the dimensions and complexity of the problem. Perhaps the most important concern of
researchers in optimization issues and especially meta-heuristic algorithms is to choose
the best algorithm considering their high number, but considering the nature of different
reservoirs, it is not possible to say which algorithm is the most suitable. The best solution
of the meta-heuristic algorithm is possible by finding the best speed and accuracy the in
convergence and optimization of models. The results showed that the use of hybrid algo-
rithms (18.68%) in reservoir optimization studies has obtained better results than tradi-
tional methods and other single algorithm methods. Considering that each algorithm has
its advantages and disadvantages, combining them to find the best solution can be use-
ful. In hybrid methods, the disadvantages of one algorithm are supplemented by another
algorithm, and it is possible to modify the algorithms with the features of another algo-
rithm. According to the obtained results, hybrid algorithms can be recommended to solve
the complex problem of water resource management and reservoir operation. Among
individual algorithms, GA algorithm (16.48%) has been the most popular model among
researchers. Of course, in recent years, the GA algorithm has been used more to compare
with other modern meta-heuristic algorithms, so 40.98 of the studied articles consider
this algorithm as the best comparison option. GA and PSO algorithms are the best com-
parison options with modern models considering that they have been used in many arti-
cles. Evolutionary algorithms such as GA, ACO, and PSO have great potential to solve
nonlinear multi-objective problems. An important issue in optimization modeling is con-
sidering the physical characteristics of the dam and reservoir to generalize the process.
To measure reservoir performance indicators (such as reliability, flexibility, and vulner-
ability), the optimization operation must be accompanied by a simulation to be able to
optimize and compare each hydrological model. In this review study, an attempt has been
made to review all possible literature sources regarding the optimization of reservoirs,
however, some issues may have been ignored or briefly stated and can be investigated
separately and comprehensively in future studies.
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