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Abstract
During the last two decades, the issue of optimal operation of dam reservoirs has received 
much attention among water resources management researchers. Also, the operation of 
dam reservoirs in terms of diversity of decision-making and target functions has complexi-
ties that sometimes cannot be solved with traditional optimization methods and requires a 
lot of time and money. Therefore, the use of new tools and advanced methods in solving 
such problems is inevitable. In this review article, 76 research articles from the most pres-
tigious journals in the world between 2002 and 2021 have been reviewed. Meta-analysis 
method (PRISMA) has been used for systematic review and selection of the studied arti-
cles. This research includes a comprehensive review regarding the application of differ-
ent optimization models in the exploitation of dam reservoirs and can provide a critical 
insight into the selection of used models and the accuracy of different modeling methods 
in the optimization of dam reservoirs. The investigated models include single-objective 
and multi-objective reservoirs, as well as single and multi-reservoirs. The results of this 
study show that researchers’ interest and popularity in hybrid algorithms (HA) (18.68%) 
and GA (16.48%) were more than the traditional or improved versions. Also, hybrid algo-
rithms showed better results than single meta-heuristic algorithms and traditional methods. 
According to the obtained results, it can be stated that the meta-heuristic algorithms used 
are capable of solving complex models in reservoir operation problems with a fast conver-
gence rate.
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AFSA  Artificial Fish Swarm Algorithm
AGA   Adaptive Genetic Algorithm
AI  Artificial Intelligence Algorithm
ANFIS  Adaptive Network-based Fuzzy Inference System
ANN  Artificial Neural Network
AOA  Accompanying Progressive Optimality
APO  Artificial physics optimization
ARIW  Adaptive random inertia weight
BA  Bat Algorithm
BBO  Biogeography-based optimization
C-GA  Chaos-genetic algorithm
CGA   Constrained genetic algorithm
CIPSO  Constrained version of IPSO algorithm
COA  Chaos Optimization Algorithm
CPSO  Chaotic particle swarm optimization
CSA  Clonal Selection Algorithm
CSA  Cuckoo Search Algorithm
CSO  Cat Swarm Optimization
DE  Differential Evolution
DP  Dynamic Programming
ELM  Extreme Learning Machine
EMPSO  Elitist-mutated particle swarm optimization
FA  Firefly algorithm
FCACOA  Fully Constrained Ant Colony Optimization
FFNN  Feed-forward neural network
FIS  Fuzzy Inference System
FOA  Fruit Fly Optimization Algorithm
GA  Genetic Algorithm
GA–KNN  Genetic Algorithm–K Nearest Neighborhood
BSGA  Bayesian Stochastic GA
GAOM  Genetic Algorithm Optimization Model
GEP  Gene Expression Programming
GP  Genetic Programming
GPR  Gaussian Process Regression
GSA  Gravity Search Algorithm
GWO  Grey Wolf Optimizer
GWO  Grey Wolf Optimizer
HBMO  Honey-Bee Mating Optimization
HB-SA  Hybrid bat–swarm algorithm
HSA  Harmony Search Algorithm
HSLSO  Hybridizing sum-local search optimizer
HWGA   Hybrid whale-genetic algorithm
IBA  Improved bat algorithm
ICA  Imperialist Competitive Algorithm
IDEPSO  Improved hybrid DE and PSO
IDP  Incremental Dynamic Programming
IGWO  Improved Grey Wolf Optimization
IPSO  Improved particle swarm optimization
ISO  Implicit stochastic reservoir optimization
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IWO  Invasive weed optimization
JA  Jaya Algorithm
KA  Kidney Algorithm
LBA  Lévy Flight Bat Algorithm
LFWOA  Lévy flight and distribution
LP  Linear Programming
LPA  Lion Pride Algorithm
LSO  Lion Swarm Optimization
LTHG  Long Term Hydropower Generation
LTMIF  Long-Term Mean Inflow Forecast
MA  Metaheuristic algorithms
MBA  Monarch Butterfly Algorithm
MFOA  Modified Fruit Fly Optimization Algorithm
ML  Machine Learning
MSA  Moth Swarm Algorithm
MS-DEPSO  Multi-strategy
NDSs  Nondominated solutions
NFIS  Neuro-Fuzzy Inference System
NFL  No Free Lunch theorem
NLP  Non-Linear Programming
NSGA-II  Non-Dominated Sorting Genetic Algorithm-II
NSGA-III  Non-Dominated Sorting Genetic Algorithm-III
PA-DDS  Pareto Archived Dynamically Dimensioned Search
PCACOA  Partially Constrained Ant Colony Optimization Algorithm
PFDO  Perfect-Forecast Deterministic Optimization
POA  Progressive Optimization Algorithm
PSO  Particle Swarm Optimization
R  Correlation Coefficient
R2  Coefficient of Determination
RVM  Relevance Vector Machine
SA  Simulated ANeuro-Fuzzynnealing
SCE  Shuffled Complex Evolution
SDP  Stochastic dynamic programming
SLGA  Self-Learning Genetic Algorithm
SM  Simulation Model
SMA  Spider Monkey Algorithm
SMLA  Shark Machine Learning Algorithm
SOM  Self-Organizing Map
SOP  Standard reservoir operating policy
SOS  Symbiotic Organisms Search
SQP  Sequential Quadratic Programming algorithm
SVM  Support Vector Machine
SVR  Support Vector Regression
TLBO  Teaching Learning Based Optimization
VNS  Variable Neighborhood Search
WA  Weed Algorithms
WCA   Water Cycle Algorithm
WOA  Weed Optimization Algorithm
WOA  Whale Optimization Algorithm
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1 Introduction

The limitation of water resources in the world and the increasing water needs in the 
fields of drinking, agriculture, industry, electricity generation, environmental issues, 
etc. require that studies of planning and management of water resources in order to store 
and optimally operate reservoirs of dams to The desired syntax and within the frame-
work of the objectives of the plan and according to the priority of needs should be pre-
sented as a standard study method. Therefore, the operation of dam reservoirs with the 
correct use of modern studies in the world is of particular importance. Optimization can 
be considered a practical tool for simplifying and solving linear and non-linear formulas 
of big problems and interpreting the solutions. Optimization is an effective method of 
finding the answer that provides the best result with the highest profit and lowest cost. 
Today, in order to make optimal use of available resources, including water resources 
and related issues, it has led researchers use various optimization techniques around the 
world (Singh 2012). Optimization methods are a step forward in researchers’ studies 
to solve reservoir exploitation problems and improve water resources management in 
water shortage situations. In the studies conducted, new optimization methods, includ-
ing classical and evolutionary algorithms, have been used to improve the performance 
of the reservoir system (Ahmadi et al. 2014; Ashofteh et al. 2015). Zhang et al. (2014) 
used the tank optimization method for the optimal use of water resources in hydroe-
lectric power plants during the operation period according to physical and operational 
limitations. The main purposes of the reservoir are to provide hydroelectric power and 
water supply, which is aimed at meeting human demand (Chang et al. 2010a, b). Today, 
evolutionary algorithms are considered efficient and effective methods in reservoir opti-
mization and maximizing electricity production. Considering that traditional optimiza-
tion is a complex and difficult task in solving high-dimensional non-linear problems 
in multi-reservoir systems and large-scale power plants, therefore, solving such a large 
problem with traditional approaches will be impractical. Therefore, it seems necessary 
to provide powerful dimensionality reduction techniques to improve the computational 
performance of conventional methods (Feng et al. 2019). Classical methods and evolu-
tionary algorithms or meta-heuristics (EAs) are the main methods of reservoir opera-
tion optimization. Of course, the developed evolutionary algorithms are more useful 
in today’s studies. High dimensions and slow convergence can be called the main rea-
son why classical methods such as linear programming (LP), dynamic programming 
(DP), stochastic dynamic programming (SDP), and nonlinear programming (NLP) are 
not accepted by researchers. Therefore, EAs (inspired by biological phenomena) were 
developed and widely used due to their high search speed to find global nearly optimal 
solutions and have replaced classical methods (Bozorg-Haddad et al. 2015a, b; Neboh 
et al. 2015). To solve complex calculations, it is very useful to develop more efficient 
computational methods and developed intelligent control systems that are able to learn 
from different sources of knowledge and can be more suitable for the operation of res-
ervoir systems (Rani and Moreira 2010). Singh (2012), studied several new evolution-
ary algorithms for reservoir optimization problem. Ahmad et  al. (2014) gave a brief 
overview of the current optimization techniques developed in solving reservoir opera-
tion problems. They discussed the use of evolutionary and hybrid algorithms for single 
and multi-objective simulation and optimization of dam reservoirs. Evolutionary algo-
rithms have the ability to solve non-linear problems and analyze multi-objective res-
ervoirs. Recently, in order to find out the special and unique characteristics of modern 
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techniques, the use of traditional and evolutionary, and hybrid optimization methods 
has become popular. Zhang et al. (2018) used two traditional artificial intelligence mod-
els, BPNN and SVR, with the aim of optimization. Also, learning models, including 
LSTM model, have been given much attention in helping the performance of the reser-
voir. Detailed recommendations have been provided in various reservoir optimization 
researches regarding the process of model parameter settings, simulation functions and 
applications of artificial intelligence models used under different flow regimes. In engi-
neering and scientific topics, especially economic topics and structural design and water 
resources engineering, modern optimization methods are widely used to solve practical 
problems. One of the main topics of optimization in the problems of dam reservoirs is 
to minimize consumption in water supply for irrigation and demand patterns such as 
hydropower generation. Over the past two decades, new optimization methods based 
on nature-inspired meta-heuristic algorithms (MHAs) have emerged as suitable alterna-
tive optimization tools to identify optimal dam and reservoir rules (Chong et al. 2021). 
Hossain (2013) used several optimization techniques mainly artificial intelligence (AI) 
to model the reservoir operation of single and multi-reservoir systems. Optimizing 
reservoir operations can be seen as water release and transfer operations with the aim 
of water management to ensure reliable water supply, hydropower generation, reduce 
downstream floods, etc. Dobson et  al. 2019 provided an extensive and useful collec-
tion of scientific literature on the development and application of various mathematical 
optimization methods for reservoir operational problems along with their advantages, 
limitations, and scope of application.

Jahandideh-Tehrani et  al. (2019) showed in their review that non-animal EAs per-
form better than classical methods such as LP and NLP in solving reservoir optimiza-
tion problems. Evolutionary algorithms used in solving reservoir operation problems have 
advantages and disadvantages. The best way to solve this problem, in order to provide 
an optimal solution, many researchers consider it appropriate to use hybrid models and 
believe that the disadvantages of one algorithm are corrected and completed by another 
algorithm. Hybrid algorithms have become widely used and common in solving com-
plex water resource management problems. Hydropower, flood control, inflow forecast-
ing, ecological base flow, and water distribution systems are a few of these operations 
(Adeyemo and Stretch 2018). Energy maximization is one of the objective functions of 
the meta-heuristic algorithms that have been widely used to manage operational poli-
cies for dam reservoirs. However, the continued advancement of meta-heuristic methods 
aids in the resolution of issues with real-time reservoir operation. (Azad et al. 2020). Per-
haps the most important question and concern of most researchers in using optimization 
algorithms, especially metaheuristic algorithms, is choosing the right algorithm to solve 
the problem. It is not possible to say with certainty which optimization or metaheuris-
tic algorithm is suitable for solving a problem, and only by comparing the results can it 
be claimed which algorithm offers a better method. Although previous and current stud-
ies have shown that a particular algorithm can be better for a particular case study using 
performance appraisal indicators than other algorithms, our understanding of the reasons 
for such success is limited and a comprehensive study is needed. Therefore, to take fur-
ther steps in this area of research, it is necessary to better understand the interrelation-
ships between the characteristics of the reservoir water system under optimization, the 
mathematical search method of the optimization algorithm, and the performance of the 
algorithm used. This article reviews studies on reservoir system operation optimization, 
including the use of conventional optimization methods as well as the range of compu-
tational intelligence methods like evolutionary computation, meta-heuristic algorithms, 
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fuzzy set theory, and artificial neural networks. Since the use of meta-heuristic algorithms 
in reservoir system research has been used in the last few decades and the interest of 
researchers in this field has increased day by day, this study mainly focuses on the latest 
optimization algorithms for water resources, especially dam reservoirs. Review articles 
related to dam reservoirs optimization techniques are shown in Table 1.

2  Methodology of Survey

2.1  Collection of Studied Articles

In this review article, a systematic review has been conducted based on the PRISMA 
guidelines for a detailed review of the research conducted regarding the optimization 
of the reservoir performance of dams. For this purpose, the content of the articles 
related to the research subject, which includes the abstract, methods, results, discus-
sion, and references, was carefully examined. The studied collection only included 
articles from reputable journals with an impact factor that have used meta-heuristic 
algorithms and intelligent models in research related to the optimization of reser-
voir performance of dams. Databases in Elsevier, ASCE, Springer, John Wiley, ICE, 
IWA, Taylor and Francis, Scopus, PubMed, Science Direct, IEEE Xplore, and Google 
Scholar were considered for the search, screening, and selection process. In the pro-
cess of searching for relevant articles, there was no time limit for publication. To 
ensure the retrieval of all usable articles, the reference list of all articles was retrieved 
again. The keywords used in the mentioned databases were: “reservoir”, “optimiza-
tion”, “dam”. Also, the combined words of “evolutionary algorithm”, “Meta-Heuristic 
algorithm”, “reservoir operation”, “optimization Algorithm”, “neural network”, and 
also some meta-heuristic algorithms such as PSO, ABC, ACO, etc. were used along 
with “reservoir optimization”. In the first stage, the number of 535 articles related to 
the review article was identified. The number of articles that were obtained through 
searching the database as well as additional records obtained through other sources is 
included. After that, there is the screening stage, and using Endnote and Excel soft-
ware, duplicate articles were removed by searching the title and author, and finally, 
187 articles unrelated to the subject of this article were removed. Of course, 11 new 
articles were retrieved from the list of sources of reviewed articles. Then, the full text 
of 123 eligible articles was examined, and among these complete articles, 47 articles 
were excluded by mentioning the reason and exclusion criteria. In the last stage, 76 
articles were approved for compiling this review article (Fig. 1).

Figure  2 displays the number and proportion of articles published between 2005 and 
2021.The general trend of publishing articles shows the popularity of meta-heuristic algo-
rithms in dam reservoir optimization problems among researchers so it has increased by 
69.74% in the last six years.

2.2  Region of Study

Out of a total of 73 case studies conducted in articles on dams reservoirs optimiza-
tion using metaheuristic algorithms, 60.27% of the studies have been conducted in 
Iran. Limited water resources in Iran and increasing water demand in the fields of 
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drinking, agriculture, industry, electricity generation, environmental issues, etc. have 
led researchers to pay more attention to studies in the field of storage and optimal use 
of dam reservoirs Fig. 3.

Fig. 1  Selected articles in databases based on PRISMA

Fig. 2  Distribution of the total and percentage of articles that have been reviewed and published
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Out of a total of 93 dams studied in dam reservoir optimization articles using metaheuris-
tic algorithms (in several articles more than one dam or reservoir has been studied), in 11 
articles Karun 4 dam has been selected as a case study. Karun 4 Dam is the largest double-
arch dam in the Middle East. Various goals and benefits of Karun 4 dam (hydropower gen-
eration, surface water control of the region, water supply required by industry and agriculture 
in the downstream plains, and control of seasonal destructive floods), relatively large reser-
voir volume, location importance of the dam, and easy access to basic and hydrological data 
the dam can be considered as one of the main interests of researchers in its selection (Fig. 4).

2.3  Physical Specifications of the Reservoirs

2.3.1  Reservoir Capacity of the Studied Dams

The set of physical characteristics of reservoir includes reservoir volume at normal level, 
maximum reservoir volume, active storage, dead storage, reservoir capacity (useful volume), 

Fig. 3  Frequency of studied dams in optimization of dams reservoir operation using metaheuristic algorithms

Fig. 4  Distribution of dams used in optimization studies
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maximum and minimum operating level, flood control storage, and freeboard, which is 
shown in Fig. 5.

The different volumes of reservoir studied are shown in Fig. 6. The main part of the res-
ervoir is active storage. The volume between the minimum operating level and the normal 
water level is called active storage, the main task of which is to regulate the output currents 
according to the input currents in the dry and high-water seasons. A noteworthy point in 
the table of the capacity of dam reservoirs is that Aswan Dam is a volume of 44.3 MCM 
that impounds a reservoir, Lake Nasser, that has a gross capacity of 169 BCM.

2.3.2  Classification of Dam Reservoirs

Dam reservoirs are divided into two main groups: single-purpose reservoirs and multi-
purpose reservoirs. Also, reservoirs of dams are divided into single-reservoir systems and 
multi-reservoir systems according to their number on a river. The number and percent of 
dams reservoirs system, reservoir system operation, number of objective functions and pur-
poses of the dam reservoir in the optimization of dam reservoirs using meta-algorithms 
(articles reviewed in the present article) are shown in Fig. 7. 65% of the studied dams are 
single reservoir and 74% are single purpose. Irrigation (23%), hydropower (19%), and 
drinking water supply (16%) are the three main objectives of the construction of the stud-
ied dams.

2.3.3  Baseline Period

The validity of dam reservoir optimization studies depends on the accuracy of the 
statistics and information used. Therefore, input and base data need to be accurate 
enough. In these studies, data collection and information such as topographic maps, 

Fig. 5  Allocation of reservoir capacity of dams to different volumes
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surface-volume-height curves, hydrological data (river discharge, river sediment, water 
infiltration in the reservoir), meteorological data (rainfall, reservoir evaporation losses), 
needs Water (drinking, industrial, agriculture, hydroelectric, environmental, flood con-
trol, shipping, recreation, etc.) is very important. Figure 8 shows that 44.59% of research-
ers used 60-month (24.32%) and 240-month (20.27%) data.

2.4  Analysis of the Selected Papers Based on Modeling Techniques and Publication Years

Information about the chosen articles concerning the optimal operation of dams reser-
voir employing meta-heuristic algorithms is presented in Table 2; it includes case study 
(dam/ reservoir system), author(s)(year), no. citations, journal name, impact factor, 

Fig. 6  Reservoir volumes of studied dams, a  Capacity reservoir and reservoir inflow, b  Active and dead 
storage
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period of study (month), reservoir capacity, reservoir inflow, active storage, dead stor-
age, meta-heuristic algorithm, best (objective function/ solutions), global optimum, and 
objectives of the dam reservoir. The meta-heuristic algorithm for optimizing the opera-
tion of dam reservoirs is a hot topic, as shown by the number of citations in Table 2. 
However, articles published in recent years have been cited by few articles or have not 
yet been cited.

Fig. 7  Number and percent of dams reservoirs system in the present study, a Reservoir system operation, b 
Number of objective functions, c Purpose of the dam reservoir
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2.4.1  Review of Publications, Journals, Country, and Citations of the Studied Articles

Scimago Journal & Country Rank (SJR) is used to determine the validity and qual-
ity of the articles under review. Most articles (35.53% of articles) on optimization 
of dams reservoir operation using meta-heuristic algorithms have been published in 
the journal Water Resources Management. Springer Netherlands (39.47%) and the 
American Society of Civil Engineers (ASCE) (14.47%) also have the most publica-
tions on reservoir optimization and related topics, respectively. Quality journal arti-
cles were used in this study, and the journals’ and articles’ published quality was 
assessed using a Q or Quartile score. Out of 76 articles reviewed, 53 (69.74%) are 
Q1, 16 (21.05%) are Q2, 5 (6.58%) are Q3, and 2 (2.63%) are Q4, according to the 
Quartile scale. Engineering Applications of Computational Fluid Mechanics (9.55) 
and Knowledge-Based Systems (9.42) have the highest impact factors among the 
articles under review (Fig. 9).

Most articles in Netherlands magazines 38 articles (50%) have been published. It 
is clear that on the subject of dam reservoir optimization using ultra-innovative algo-
rithms, the Netherlands magazines have received the most acceptance and publication 
of articles Fig. 10.

A total of 2688 citations from 2005 to 2021 were used for the selected articles in this 
review article, which are among the best and most cited articles that have been published 
so far. Figure 11 represents the annual cumulative citations. Eight of the papers published 
before 2015 stand out thanks to their high citation counts. These are Nagesh Kumar and 
Janga Reddy (2007) [322], Reddy and Kumar (2006) [163], Bozorg-Haddad et al. (2015a, 
b) [138], Ahmed and Sarma (2005) [131], Ashofteh et  al. (2015)[119], Chang et  al. 
(2010a, b) [119], Fallah-Mehdipour et al. (2012) [102], and Bozorg-Haddad et al. (2015a, 
b) [101] respectively.

Fig. 8  Number and percent of Period of study
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Fig. 9  The most reviewed articles a in publications; b in journals

Fig. 10  Case studies published in different countries
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3  Different Modeling Techniques to Optimize the Operation of Dam 
Reservoirs

Implicit stochasticoptimization (ISO) and explicit stochastic optimization (ESO) are two 
types of optimization techniques that can be used to optimize reservoir systems. In reality, 
ISO methods are deterministic methods that employ extremely long representative hydrol-
ogy to achieve optimal operation. Although historical records can also be used, synthetic 
streamflow generators are frequently used to create hydrology. Following that, reservoir 
operating policies are typically inferred from optimized model solutions using regression 
techniques. In other words, to iteratively improve promising operating rules, ISO appli-
cations have combined optimization, regression, and simulation techniques. (Bhaskar and 
Whitlatch 1980). The explicit representation of probabilistic streamflows or other ambigu-
ous problem parameters is necessary for ESO formulations. Because they can be written 
to more accurately represent a problem, some comparative studies have found that ISO 
methods are preferable to ESOs (Karamouz and Houck 1987). Classical optimization tech-
niques are briefly discussed in this review article since they have already been covered in 
sufficient detail in other review articles. However, emerging techniques, particularly meta-
heuristic algorithms used by researchers to operate reservoir systems, are covered in more 
detail in Fig. 12.

3.1  Linear Programming

One of the most frequently used optimization techniques for modeling reservoir system 
optimization issues is linear programming (LP). It has been used to solve a variety of prob-
lems involving reservoir systems with a variety of objectives, including figuring out the 
best operating procedures (Crawley and Dandy 1993), sizing reservoir capacities (Loucks 
et  al. 1981), yield evaluation (Dahe and Srivastava 2002), flood control (Needham et al. 

Fig. 11  Cumulative citations of selected articles published

Fig. 12  Modeling techniques for optimizing dam reservoirs
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2000), and concurrent use planning (Vedula et al. 2005). The flexibility of this technique 
in the application of complex programs, convergence to the global optimal solution, and 
access to cost-effective software solutions, such as LINDO, and LINGO. The limitations 
on linear and convex objective functions and linear constraints are the primary drawbacks 
of LP. However, nonlinearity in some reservoir problems (e.g., nonlinear benefit or cost 
functions) can be tackled by approximation and extension of LP to separable LP (Crawley 
and Dandy 1993) and successive LP (Mousavi and Ramamurthy 2000; Barros et al. 2003).

3.2  Nonlinear Programming

Due to complex relationships between various physical and hydrological variables or 
because the system is designed to achieve a specific goal, nonlinearity is present in the 
problems of many reservoir systems. The majority of hydropower generation issues are 
nonlinear, which makes finding solutions challenging. LP (discussed in the previous sec-
tion) is typically applied in successive steps to these problems or by approximating a non-
linear problem to a linear problem. Additionally, dynamic programming (see Section 3.3) 
can deal with nonlinearities. Nonlinear programming (NLP) techniques, however, are 
employed specifically for a certain class of issues. The generalized reduced gradient (GRG) 
method and successive or sequential quadratic programming (SQP) are two examples of 
these algorithms. Large-scale nonlinear optimization problems can currently be solved 
using a variety of general-purpose software packages, e.g., LINGO, and LANCELOT.

3.3  Dynamic Programming

The Bellman (1957) method of dynamic programming (DP) is an optimization technique 
for resolving multistage decision-making processes. The most appealing aspect of the 
DP algorithm is that a complex multistage problem is broken down into several smaller, 
simpler problems that are then solved one at a time, recursively. Additionally, nonlinear 
problems and problems involving stochastic variables can be easily accommodated within 
the general framework of DP. Even nonconvex and discontinuous functions are capable of 
being solved by discrete DP. Yakowitz (1982) gave a thorough analysis of DP and how it 
was applied to numerous problems involving water resources. The applicability and restric-
tions of DP methods, specifically regarding problems with reservoirs, are presented by 
Nandalal and Bogardi (2007).

3.4  Bibliographic Review on Optimization of Dams Reservoir Operation Using 
the Meta‑heuristic Algorithms

Research in this field has shown that linear and nonlinear optimization methods have 
made significant progress. But using these methods to optimize large structures is dif-
ficult and sometimes impossible. To solve this problem, new meta-heuristic algorithms 
with high convergence capability can be a suitable solution. Meta-heuristic (MH) meth-
ods are discussed in this section. In general, there has been an exponential increase in the 
use of MH techniques to solve various applications. They are free gradient methods that 
produce better results than conventional techniques when used to solve extremely chal-
lenging optimization issues (Abualigah and Diabat 2021). Additionally, they are quicker 
and easier to implement than traditional optimization techniques (Abualigah and Diabat 
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2020). MH techniques can be divided into various groups according to a variety of inspi-
rations. According to Abd Elaziz et  al. 2021, these categories include human inspira-
tion algorithms, swarm intelligence (SI) techniques, evolutionary algorithms (EAs), and 
approaches to natural phenomena. Figure 13 depicts the standard procedures for using 
meta-heuristic techniques to improve dam reservoirs. Meta-heuristic algorithms typi-
cally fall into one of two categories: single-solution based (like simulated refrigeration, 
SA), or population-based (like genetic algorithm, GA). As the name suggests, the opti-
mization phase for the first type only considers one solution. At each iteration of the 
optimization process, a population of solutions (the second type) evolves. Population-
based methods frequently discover an optimal or suboptimal solution that is identical 
to or very close to the precise optimal. The main sources of inspiration and models for 
population-based metaheuristic methods (P-metaheuristics) are phenomena in nature. 
The optimization process is started by these algorithms by creating a set (population) of 
individuals, each of whom represents a potential solution to the optimization problem. 
This population changes frequently by exchanging the existing population for a brand-
new population that was created using some of the frequently random operators. Addi-
tionally, the optimization procedure goes on until the stop criteria (i.e., the maximum 
number of iterations) is met. The first set of calculations draws its inspiration from bio-
logical phenomena and the biological evolution of the natural world. These algorithms 
are Invasive Weed Optimization (IWO), Bat algorithm (BA), Whale Optimization Algo-
rithm (WOA), Water Cycle Algorithm (WCA), Symbiotic Organisms Search (SOS), and 
Shark Machine Learning (SML). The algorithms in the second class of systems, known 

Fig. 13  Meta-heuristic methods in optimizing dam reservoirs
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as EAs, were developed by simulating natural genetic principles like crossover, muta-
tion, and selection. The Genetic Algorithm (GA), Differential Evolution (DE), Genetic 
Programming (GP), and Biogeography-Based Optimization (BBO) are a few MH tech-
niques that fall under this category. Physics-based algorithms make up the third category. 
The laws of physics serve as a source of inspiration for physics-based algorithms. Simu-
lated Annealing (SA), Artificial Physics Optimization (APO), Adaptive Random Inertia 
Weight (ARIW), and Gravitational Search (GS) are a few examples of these algorithms. 
The fourth class of P-meta-heuristic algorithms is social imitation (SI) algorithms, which 
imitate the social behavior of organisms that live in herds, flocks, or groups (e.g., decen-
tralized, self-organized systems). For instance, Eberhart and Kennedy’s Particle Swarm 
Optimization (PSO) algorithm was primarily influenced by the group behaviors of birds. 
A candidate solution to the optimization problem is represented by each particle in the 
congestion in PSO. Each particle is updated during the optimization process based on 
both its best (local) position and the position of the best global particle. Additional 
examples of SI techniques include artificial bee colonies (ABC), cuckoo search (CS), and 
ant colony optimization (ACO). A group of algorithms that resemble some aspects of 
human behavior is included in the fifth category of P-meta-heuristic algorithms. The Fire 
Work Algorithm (FWA), Harmony Search (HS), Teaching Learning Based Optimization 
(TLBO), and Imperialist Competitive Algorithm (ICA) are a few examples of human-
based algorithms.

3.4.1  Bio and Nature‑Inspired Algorithms

Invasive Weed Optimization (IWO) A population-based optimization algorithm called 
the Invasive Weed Meta-heuristic finds the general optimum of a mathematical function 
by modeling the compatibility and randomness of weed colonies. Weeds are strong plants 
with aggressive growth patterns that pose a serious threat to crops. They have proven to be 
very resistant to environmental changes and adaptable. Consequently, a potent optimization 
algorithm is obtained by taking into account their characteristics. The resistance, adaptabil-
ity, and randomness of a sample of weeds are attempted to be replicated by this algorithm. 
A phenomenon in agriculture known as colonies of invasive weeds served as the inspira-
tion for this technique. A plant that grows erratically is what is commonly understood by 
the term "weed". Even though weeds may be useful in some areas, when the same plant 
grows in an area that obstructs human needs and activities, it is referred to as a weed. The 
"Invasive Weed Optimization Algorithm" is a straightforward numerical optimization algo-
rithm based on colonized weed that was introduced by Mehrabian and Lucas (2006). Using 
fundamental characteristics like seeding, growth, and competition in a weed colony, this 
algorithm is straightforward but effective in convergent to optimal solutions. Some funda-
mental aspects of the process are taken into consideration to simulate the habitat behavior 
of weeds:

1. Primary population initialization: A small number of seeds are dispersed throughout 
the search area.

2. Reproduction: Based on their fitness value, every seed develops into a flowering plant 
that then produces seeds. As we move from  Smax to  Smin, the quantity of grass grains 
decreases linearly as follows:
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3. Spectral Spread: The following equation results in the seeds produced by the group in 
the normal distribution with a mean planting position and standard deviation (SD):

where n is the nonlinear modulation index, T is the maximum number of iterations, 
and _t is the current standard deviation (Mehrabian and Lucas 2006). His conversion 
ensures that the fall of grain in the range decreases nonlinearly at each step, producing 
more suitable plants while removing unsuitable plants, and displays the transfer mode 
from r to a choice of K.

4. Competitive deprivation: If the number of grasses in the colony exceeds the maximum 
allowable number (Pmax), the grass with the worst fitness is eliminated from the colony, 
leaving a fixed number of herbs.

5. The minimum colony cost function of the grasses is then stored after this process is 
completed in the maximum number of iterations (Misaghi and Yaghoobi 2019). Asgari 
et al. (2016) developed a study that applied the WOA algorithm to an ideal reservoir 
operation. Azizipour et al. (2016) presented the use of the invasive IWO algorithm, a 
novel evolutionary algorithm motivated by colonizing weeds, for the best performance 
of hydropower reservoir systems in their paper. The outcomes are contrasted with those 
currently available from the two most popular evolutionary algorithms, GA and PSO. 
The findings demonstrated that for both single-reservoir and multi-reservoir hydropower 
operation issues, the IWO is more efficient and effective than PSO and GA.

Bat Algorithm (BA) The echolocation of microbats serves as the basis for the bat algo-
rithm (BA) (Yang 2010). The echolocation technique used by bats is called the bat algo-
rithm. Echolocation is a type of sonar that bats use to find prey and avoid obstacles. These 
bats use echolocation, which involves emitting a very loud sound pulse and listening for 
the echo that is reflected from nearby objects. Their pulses vary in properties and can be 
correlated with their hunting strategies, depending on the species. Most bats sweep through 
a range of about an octave using brief, frequency-modulated signals. Each species’ signal 
bandwidth is different, and it is frequently widened by adding more harmonics. The follow-
ing rules can be used to represent the echolocation traits of microbats in BA.

1. All bats use echolocation to gauge distance, and somehow, they can distinguish between 
background barriers and food/prey.

2. To find prey, bats randomly fly with a speed of Vi at a position Xi while using a fixed 
frequency fmin, variable wavelength k, and loudness A0 . Depending on how close their 
target is, they can automatically change the pulses’ wavelength (or frequency) and rate 
of emission r ∈ [0; 1].

3. Although there are many possible ways for the loudness to change, it is assumed that 
it ranges from a large (positive) A0 to a small constant value Amin . At position Xi , the 
ith bat flies at a fixed frequency of fmin at a random velocity of Vi . To find food, the bat 
changes its wavelength and loudness A0 . The rules that determine how their positions 
Xi and velocities Vi in a D-dimensional search space are updated must be specified. 
The current best location (solution), known as Xbest , was found by comparing all other 
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locations among all n bats (Yang 2010). When g is defined as the index of the best bat 
in the population and the iteration number is denoted by superscripts, the new solutions 
Xt
i
 and velocities Vt

i
 at time step t are then provided by Eqs. (3) and (4). The wavelength 

� of the ultrasonic sound bursts with a constant frequency f  is given by

where � ∈ [0; 1] = a random vector drawn from a uniform distribution. Xbest is the current 
global best location (solution), which is located after comparing all the solutions among all 
the n bats. The new solutions of the ith bat at time step t are given by Xt

i
 and Vt

i

The loudness is presumptively assumed to range from a large (positive) A0 to a small 
constant value Amin . The values of fmin and fmax depend on the problem’s domain size. 
Each bat is initially given a frequency that is uniformly drawn from [ fmin , fmax ] at ran-
dom. For local search procedure (exploitation), each bat takes a random walk creating a 
new solution for itself based on the best selected current solution ( Xbest)

where the random number � is drawn from [− 1; 1]; and At = the average loudness of all 
bats at this time step. The loudness decreases as a bat tend closer to its food and pulse 
emissions rate increases

where � and � = constants and r0
i
 ∈ [0; 1].

The optimal operation of a reservoir by incorporating the hedging policy and the Bat 
Algorithm (BA) was investigated in Jamshidi and Shourian’s (2019) study. Three operation 
rules determine and compare the ideal monthly releases from the reservoir while mini-
mizing the deficit in the water supply provided by the dam. Yaseen et al. (2019) in their 
studies propose the hybrid bat-swarm algorithm (HB-SA), a new hybrid optimization algo-
rithm built on the BA and PSO algorithms. The primary goal of this hybridization is to 
enhance the BA by replacing the BA’s suboptimal solution with an optimal one obtained 
from the PSOA. By avoiding the trapping in local optima brought on by using the BA, 
the solutions effectively quicken the convergence process. The proposed HB-SA is suc-
cessfully examined and can be generalized for several dams and reservoir systems world-
wide, which reduces the computational time for the convergence procedure. Ehteram et al. 
(2018a, b, c) research findings demonstrated that the bat algorithm with a third-order rule 
curve that converged to the minimum objective function achieved the highest values of 
the reliability index and resiliency index and the lowest value of the vulnerability index. 
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As a result, the bat algorithm with a third-order rule curve can be thought of as a suit-
able optimization model for reservoir operation. Ahmadianfar et al. (2016) To enhance its 
global searchability, introduced an improved bat algorithm (IBA) with a hybrid mutation 
strategy. The explorative and exploitative mutation operators are two of the six DE muta-
tion mechanisms used in the original BA algorithm. The four-reservoir and ten-reservoir 
systems’ benchmark hydropower operation problems were both solved using the suggested 
approach. To replace conventional operations research algorithms like LP, NLP, and DP, 
metaheuristic algorithms for optimal reservoir system operation have grown to be desirable 
alternatives. Bozorg-Haddad et al. (2015a, b) in their paper present the metaheuristic BA 
algorithm and its application to a hypothetical four-reservoir system as well as to the best 
operation of the Karoun-4 reservoir system in Iran.

Whale Optimization Algorithm (WOA) The humpback whale algorithm serves as the 
basis for the recently proposed meta-heuristic known as the whale optimization algorithm 
(Mirjalili and Lewis 2016). In the WOA algorithm, humpback whales approach their prey 
by spinning them up in the water and surrounding them with spherical bubbles.

Encircling the Prey Encircling their prey is the first step in the humpback whales’ hunting 
ritual. It implies that the target prey is the best solution available and that each whale in the 
current population is attempting to better define its location relative to the desired solution. 
The mathematical representations of this are given by Eqs. (9) and (10).

where, t is current iteration, �⃗A and ��⃗C are coefficients vectors, ���⃗X∗(t) is the position vector 
ofthe best solution achieved so far, �⃗X is the position vector, || is absolute value and. is the 
element-by-element multiplication.

The vectors �⃗A and ��⃗C are calculated by Eqs. (11) and (12) (Mirjalili and Lewis 2016):

where �⃗a is linearly reduced from 2 to 0 during the iterations (in both phases of exploration.
and exploitation), and r⃗ is a random vector between 0 and 1.

Bubble‑Net Attacking Method (Exploitation Phase) Along with swimming in a con-
verging circle, whales also follow a spiraling path as they circle their prey. The WOA is 
assumed to choose between the spiral model or the shrinking encircling mechanism (50:50) 
to update the position of the whales to model this simultaneous behavior. Eq. The math-
ematical model is described by (13) (Mirjalili and Lewis 2016):

(9)��⃗D =
|||
��⃗C ⋅

���⃗X∗(t) − �⃗X(t)
|||

(10)�⃗X(t + 1) = ���⃗X∗(t) − �⃗A ⋅
��⃗D

(11)�⃗A = 2 �⃗a ⋅ r⃗ − �⃗a

(12)��⃗C = 2 ⋅ r⃗

(13)�⃗X(t + 1) =

{
��������⃗X∗(t) − �⃗A ⋅

��⃗D if p < 0.5

��́⃗
D ⋅ ebl ⋅ cos(2𝜋l) + ���⃗X∗(t) if p ≥ 0.5
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where p is a random number [0, 1], ��́⃗D =
|||
��⃗C ⋅

���⃗X∗(t) − �⃗X(t)
||| represents the distance between 

whale and the prey (best solution achieved so far), b is the constant defining the shape of 
logarithmic spiral, l is the random number between − 1 and + 1, is the element-by-element 
multiplication, and �⃗A is used with the random values between − 1 and + 1 to move whales 
toward a reference whale.

Search for prey (Exploration Phase) Instead of using the best whale that has been discov-
ered thus far, a whale that is chosen at random updates the position of a whale. Eqs. The 
mathematical model is described in (14) and (15) (Mirjalili and Lewis 2016):

where ����������⃗Xrand is a random position vector (the random whale) selected from the current 
population and �⃗A is used with random values greater than 1 or less than − 1 to move whales 
far away from the reference whale.

Complex technical problems are resolved by the WOA algorithm. The aim of Lai et  al. 
(2021) using WOA and LFWOA algorithms, is to reduce the water deficit of KGD. Muhammad 
et al. (2019), the whale-genetic hybrid algorithm (HWGA), a combination of WOA and GA 
algorithms, was used to examine the optimal performance of a four-reservoir system (FRBS) 
and ten-reservoir system (TRBS).

Other Bio and Nature‑Inspired Algorithms Water Cycle Algorithm(WCA), Symbiotic 
Organisms Search (SOS), Shark Machine Learning (SML), Spider Monkey Algorithm(SMA), 
and Firefly Algorithm (FA) are very popular among researchers for dams reservoirs optimi-
zation studies. Yavari and Robati (2021) used the evolving multi-objective water cycle algo-
rithm (MOWCA) to ensure Jiroft Dam’s reservoir system operated as efficiently as possible for 
downstream demand–supply, flood control, and hydropower energy generation. In the study 
of Qaderi et al. (2018), the operating policy for a multi-reservoir system was derived using 
a novel metaheuristic optimization algorithm called the WCA algorithm. The outcomes of 
WCA were compared to those of other developed evolutionary algorithms, such as the genetic 
algorithm, harmony search algorithm, particle swarm optimization algorithm, and impe-
rial competitive algorithm. The results showed that WCA is superior to other algorithms in 
calculating the annual deficit. Bozorg-Haddad et al. (2015a, b), used the WCA algorithm to 
determine the best operational plans for the Karon-4 reservoir and a four-reservoir system in 
Iran. The outcomes show the WCA’s high effectiveness and dependability in resolving res-
ervoir operation problems. Rezaei-Estakhroueiyeh et al. (2020) presented a model based on 
the SOS algorithm for the optimal operation of Safarud Reservoir. These datasets’ analyses 
demonstrated that the SOS algorithm was effective in solving the reservoir problem in the best 
possible way. Allawi et al. (2018) suggested using the SML algorithm to build the best rule 
possible for reservoir operation. The SML started with a set of randomly generated potential 
solutions and then interactively searched for the best one. The findings of their studies dem-
onstrate that the SML procedure is appropriate for use in a reservoir system because it can 
address the stochastic characteristics of dam and reservoir systems. The shark algorithm is a 
stochastic search optimization algorithm that begins with a set of randomly generated potential 
solutions and then interactively searches for the best one. Given that the reservoir system is a 

(14)��⃗D =
|||
��⃗C ⋅

�������⃗Xrand ⋅
�⃗X
|||

(15)�⃗X(t + 1) = �������⃗Xrand −
�⃗A ⋅

��⃗D
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stochastic system by nature, such a procedure is appropriate for its system characteristics. The 
studies of Ehteram et al. (2017a), examine the shark algorithm’s potential as an optimization 
algorithm for reservoir operation. Ehteram et al. (2018a, b, c) to optimize the operations of the 
Golestan and Voshmgir dams, compared SMA’s capabilities to those of well-known optimiza-
tion algorithms. The SMA, with its high rate of convergence, is recommended as an appro-
priate tool for optimizing the operation policy of cascade reservoirs by the findings of their 
studies. Garousi-Nejad et al. (2016) in their paper applies a metaheuristic algorithm called the 
firefly algorithm (FA) to reservoir operation and show the effectiveness of this algorithm over 
the GA using (1) five mathematical test functions, (2) the operation of a reservoir system for 
irrigation supply, and (3) the operation of a reservoir system for hydropower production. The 
outcomes show that, when compared to the outcomes of the GA, the FA performs better in 
terms of the convergence rate to global optimum and the variance of the outcomes regarding 
global optimum.

3.4.2  Evolutionary Algorithms

Genetic Algorithm (GA) A search that produces successive "generations" of answers start-
ing with an initial set of the randomly chosen population. The primary distinction between 
GA and traditional optimization techniques is this. Darwin’s theory of evolution’s "survival 
of the fittest" serves as the inspiration for GA. The methods used in this approach are crosso-
ver, mutation, and selection. By carrying out the aforementioned operations to enhance the 
quality of the solution, the fittest individuals will be chosen and produce new populations. 
Parents must be chosen from the initial population in the selection process based on their 
fitness. The chromosomes with better fitness have more opportunities to serve as parents. 
There are many ways to select parents for crossover, including tournaments, roulette wheels, 
ranking systems, Boltzmann selection algorithms, and steady-state selection. Crossover 
probability exists between the parents to produce offspring (children). In the absence of 
crossover, children are exact replicas of their parents. There are various crossover opera-
tions, including single-point, two-point, multipoint, uniform, and matrix crossover. Each 
locus in offspring has a low mutation probability. To keep population diversity high, the 
mutation is used to help the search algorithm escape local minima. The initial population is 
replaced with fresh offspring, and until the termination criteria are met, the aforementioned 
operations must be carried out on the new population. An unconstrained problem can be 
solved by GA by incorporating a penalty function into the objective function to transform 
the constrained problem into an unconstrained problem. The GA model could perform bet-
ter if used in the reservoir’s real-world operation, according to the Jothiprakash and Shanthi 
(2006) study. Reddy and Kumar (2006) used a population-based search evolutionary algo-
rithm called Multiobjective Genetic Algorithm (MOGA) to create a Pareto optimal set in 
their study to outperform the traditional methods for Multi-objective Optimization Problems 
(MOOP). Chang et al. (2010a, b) suggested using a constrained genetic algorithm (CGA) 
method to identify the best reservoir operation strategy to facilitate decision-making. When 
maximizing the reservoir’s 10-day storage, their suggested method takes the ecological base 
flow requirements into account as a restriction on the amount of water that can be released 
from the reservoir. According to the studies of Jothiprakash et al. (2011) by using the GA 
model, an attempt was made to derive the optimal operating policies of multiple reservoirs. 
The outcomes of the GA model were then contrasted with those of the traditional stochas-
tic dynamic programming model. To determine the best time for the Bigge Reservoir in 
Germany to be released, Elabd and El-Ghandour (2014) proposed a multi-objective genetic 
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algorithm optimization model, assuming two input flow scenarios for dry seasons. The out-
comes show the effectiveness of the developed model, which successfully determines the 
optimal releases in the two inflow scenarios of dry seasons while meeting all constraints. 
Nourani et al. (2020), to provide agricultural and municipal water supplies in both the base 
period and future periods, the GA optimization model developed the best rule curves for 
the reservoir. Results indicate that the methodology for evaluating and optimizing current 
systems provided by the framework developed in this work emphasizes the need to take 
projected climate change into account as an assessment tool for reservoir management in the 
future. Mendoza Ramírez et al. (2021) simulated the operation of a reservoir in Michoacán, 
Mexico, using genetic algorithms and two methods of dynamic random programming opti-
mization. El Harraki et al. (2021) to optimize multi-objective reservoir operation, proposed 
an objective function combining two competitive shortage indicators. To address this issue, 
a more advanced genetic algorithm that reduces impractical fluctuations in the operation of 
the policy is created. In their studies, operating curves were jointly optimized to hedging 
factors to avoid severe droughts and high user damage.

Genetic Programming (GP) A type of EC called GP employs the same searching tech-
nique as GA. The initial GP assertion was made by Cramer in 1985, and Koza later added 
to it in 1992 and 1994. They were the ones who first applied GP to a variety of challenging 
optimization and search issues. Each solution from GP is provided as a tree structure. The 
evaluation of mathematical and logical expressions is required because each tree node has 
an operator function and each terminal node has an operand. Two examples of mathemat-
ics are shown in the GP in Fig. 14. As it is shown, {x,5} and {x,12} are respectively the 
terminal sets of y(x) = 1

5
exp(x) + xsin(x) and y(x) = 2x + 12 expressions. The arithmetic 

operators (± , × , ÷) are internal nodes called functions. The mathematical operations (e.g., 
sin, and cos), Boolean operators (e.g., And, Or), as well as logical expressions (e.g., If—
Then—Else), are recognized as the function set. During the GP searching process, a set of 
trees is generated at random, and each tree’s fitness function is calculated. Using strategies 
like the roulette wheel, tournaments, or ranking methods, better individuals have a higher 
chance of surviving for the next generation in most EC. Using crossover and mutation 
operators, the following generation is created (Fallah-Mehdipour et al. 2012).

Fig. 14  GP mathematical expression examples
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In the crossover operator, two parents are chosen, and the sub-tree crossover randomly 
(and independently) chooses a crossover point (a node) in each parent tree. Point mutation 
is applied to each node individually in the mutation operator. That is, as shown in Fig. 15, 
every node is randomly taken into account and, with a certain probability, it is exchanged 
for another random variable. The input for the following generation is the trees that were 
produced using genetic operators. This procedure continues until the termination criterion, 
which might specify a maximum number of generations to run as well as a success criterion 
specific to the problem, like when the error is less than one percent. Then, two offspring are 
created by swapping out the sub-tree rooted at the crossover point in a copy of the first par-
ent with a copy of the sub-tree rooted at the crossover point in the second parent.

Ashofteh et al. (2015) used an optimization MO-GP algorithm in their paper to increase 
the reliability index and decrease the reliability index of the irrigation supply provided by 
the Aidoghmoush Reservoir system (East Azerbaijan, Iran). Fallah-Mehdipour et al. (2012) 
the use of GP to create a reservoir operation policy concurrent with inflow prediction is 
discussed in their paper.

Other Evolutionary Algorithms In studies about dam reservoir optimization problems, 
members of the Evolutionary Algorithms group have utilized differential evolution (DE) 
and biogeography-based optimization (BBO). The purpose of the study by Ahmadianfar 
et  al. (2019) is to create a powerful hybrid of DE and PSO with a multi-strategy (MS-
DEPSO) to optimize the operating policies for reservoir systems. The basic DE algorithm’s 
local and global search capabilities are encouraged by the proposed MS-DEPSO to pro-
duce an efficient optimal operating policy. To evaluate the effectiveness of the suggested 
optimization method, fourteen mathematical functions were used. To assess the effective-
ness of MS-DEPSO in the production of hydropower energy, a multi-reservoir hydropower 
system with three different monthly operation periods over 10, 15, and 20 years were used 
as a real-world case study. Bozorg-Haddad et  al. (2016a, b) used the BBO algorithm to 
address reservoir operation issues in their paper. The BBO algorithm is first tested by mini-
mizing three mathematical benchmark functions (Sphere, Rosenbrock, and Bukin6). To a 
system with one reservoir and one with four reservoirs, they applied the BBO algorithm. 
The BBO algorithm’s effectiveness in resolving the three optimization problems was com-
pared to that of the GA. The outcomes demonstrate that the BBO algorithm outperformed 

(a) (b)

Fig. 15  Tree structures a) before and b) after mutation
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the GA in accurately minimizing the benchmark functions. The BBO successfully solved 
the hydropower optimization problem for a single reservoir.

3.4.3  Physics‑Based Algorithms

Simulated Annealing (SA) SA is similar to the metallurgical annealing process, in which a 
metal object is heated to almost its melting point and then slowly cooled. As a result, metal 
atoms can align, crystallize, and reach a minimum energy state. Kirpatrick et al. (1983), 
the initial proposal for the SA algorithm is a multipurpose heuristic searching technique for 
optimizing functions of many variables and will assess a series of local optimum in search 
of the global optimum. On the limited but expansive space of workable solutions, the SA 
algorithm imposes a neighborhood structure (Chiu et al. 2007). SA is based on the anneal-
ing process, which was inspired by the study of metallurgy. The SA Algorithm includes the 
following steps (Bilal et al. 2021):

1. Create a haphazard first solution for the problem.
2. For the initialized solution Fi , determine its fitness.
3. Create a new solution for the problem, then determine fitness for the new solution Fj.
4. If Fj is strictly better than Fi , accept the new solution.
5. When the comparison between "acceptance probability" and "random number" yields 

a favorable result, the new solution is accepted even if Fj is not strictly superior to Fi.

Following is a calculation of the new solution’s acceptance probability.

where ΔE : Energy difference;T  : Temperature; e: 2.71828.

6. Update temperature using the following formulawhere ΔT: Temperature change.

7. Up until the allotted iterations are used up or the stopping criteria are satisfied, repeat 
steps 3–6.

In their study, Bilal et  al. (2021) investigated the implementation and comparison of 
six well-known meta-heuristics, namely: simulated annealing, genetic algorithms, particle 
swarm optimization, differential evolution, and artificial bee colony to optimize reservoir 
operation policy. In the research done by Rouzegari et al. (2019) by utilizing the SA and 
NLP methods, the optimal operating model of the reservoir was created with the goals of 
reducing the deficiencies and taking into account the downstream demands of the reservoir, 
particularly the environmental water Mahabad River demands. Chiu et al. (2007) introduced 
a method for optimizing reservoir operation using fuzzy programming and hybrid evolu-
tion algorithms SA and GA. In the hybrid search process, the GA provides a global search 
and the SA algorithm provides a local search. According to the findings of their studies, the 
hybrid GA-SA model performs parallel analyses that raise the likelihood of locating an ideal 
solution while decreasing the amount of time needed for reservoir operation.

(16)P = e
−

ΔE

T

(17)T = T − ΔT
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Gravitational Search Algorithm (GSA) The GSA, the second component of our hybrid 
algorithm, looks for the best solution in the problem’s search space using physical laws. 
The GSA is based on Newton’s theory of gravity. Accordingly, the gravitational force of 
each mass acts to absorb the others during the algorithm’s execution. Let’s say there is a 
system with N masses. The expression xi = (x1

i
,… , xd

i
… , xn

i
) displays the location of each 

mass, with xd
i
 denoting the mass’s position in dimension d and N denoting the problem’s 

dimensions. The algorithm begins the search by dispersing the objects throughout the 
problem space at random. The following equation is then used to define the gravitational 
force of the j-th factor at each iteration’s step:

where M�j(t) is the active gravitational mass of mass j ; Mpi(t) is the inactive gravitational 
mass of i-th mass; G(t) is the gravitational constant at time t ; Rij(t) is the distance between 
the two masses i and j ; Rpower is the power of the distance between the two masses; and 
Fd
ij
(t) is the force between the two particles. Following that, using the following equations, 

the gravitational constant and the separation between two particles are calculated.

where max iter is the number of iterations that can be made, G0 is the initial gravitational 
constant, and K is the descending coefficient. The general force that is posed over i in the 
d-dimensional problem space is based on the following equation:

A random number between 0 and 1 is represented by randj in this scenario. The second 
law of Newton states that each mass accelerates in the direction of the d dimension propor-
tional to the force applied to it in that direction and the inverse mass of its inertia. Thus:

d stands for the problem’s dimension, and Mii(t) is the mass of the inertia of the system. The 
i-th object. Based on the following equations, the object’s position and velocity are determined.

where randi is a random number ranging between 0 and 1, vd
i
(t + 1) is the new velocity of 

each mass � : mass acceleration, and xd
i
(t + 1) is the new position of each mass. GSA con-

siders both gravitational objects and inertial objects according to Eq. (25), which is used to 
change the objective function value of objects according to Eq. (26). After that, Eq. (27) is 
used to normalize the object values:

(18)Fd
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where M�i is the active gravitational mass, Mpi is the inactive gravitational mass, and Mii is 
the mass of inertia, all of which are equal to Mi . qi(t) is meanwhile the value of the objec-
tive function at time t , fiti(t) is the value of the i-th mass at time t , Mi(t) are the normalized 
mass at time t, and worst(t) and best(t) are the worst and best values of the objective func-
tion respectively. The steps for running the GSA are as follows:

1. A random state is used to create the initial population and particle positions.
2. Based on a sensitivity analysis, the parameters � , Rpower , and G0 are computed at their 

initial values.
3. Each mass has its objective function value calculated.
4. The masses are specified with the best and worst values of the objective function, and 

G’s value is updated accordingly.
5. Eqs. (21), (22) and (27) are used to determine the acceleration and mass values.
6. Updates the position and speed.
7. The convergence condition is examined. The algorithm is finished if it meets the require-

ments. Otherwise, we proceed to step 3 (Karami et al. 2019).

An evolutionary optimization algorithm called the GSA is based on mass interactions 
and the law of gravity. Bozorg-Haddad et al. (2016a, b) investigated the GSA’s performance 
in their paper for optimization problems, single reservoir, and four-reservoir operations. In 
three optimization problems, the GSA’s solutions were contrasted with those of the well-
known GA. The outcomes demonstrated that the GSA’s results in minimizing the optimiza-
tion problems are closer to the optimal solutions than the GA’s results. Karami et al. (2019) 
to reduce irrigation deficiencies in a multi-reservoir system, introduced a hybrid algorithm 
(HA) including GSA and PSO algorithms. Iran’s Golestan Dam and Voshmgir Dam system, 
a significant multi-reservoir system, served as the test case for the proposed algorithm. The 
results of HA demonstrated that it was capable of guaranteeing a high volumetric reliability 
index (VRI) to satisfy the pattern of water demand downstream from the dams, as well as 
outperforming the other algorithms on other crucial indices. As a global optimizer for dam 
and reservoir operations, the proposed HA appears to have a lot of potentials.

Other Physics‑Based Algorithms In the Physics-Based Algorithms group, Adaptive 
Random Inertia Weight (ARIW) and Artificial Physics Optimisation (APO) have been 
used in studies related to dam reservoir optimization problems. The paper by Chen et al. 
(2020a, b) is based on traditional PSO and describes an effective and trustworthy heu-
ristic method for building a multi-objective optimization model for reservoir operation 
using PSO with an adaptive ARIW strategy, known as the ARIW-PSO algorithm. In 
their research, the effectiveness of the ARIWPSO algorithm was examined using a few 

(25)M�i = Mpi = Mii = Mi

(26)qi(t) =
fiti(t) − worst(t)

best(t) − worst(t)

(27)Mi(t) =
qi(t)

∑N

j=1
qj(t)
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traditional test functions, and the outcomes were compared to those of the GA, the tradi-
tional PSO, and other enhanced PSO methods. In research, Wang et al. (2021) The use of 
representative heuristic algorithms from the DE, PSO, and APO categories for reservoir 
optimal operation was reviewed, and their performance was evaluated using a designed 
experiment. Additionally, a general solution procedure for the application of HAs was 
created for the MOROO problem, along with the necessary tools for handling constraints 
and designing fitness functions.

3.4.4  Swarm Intelligence Algorithms

Particle Swarm Optimization (PSO) PSO shares many similarities with evolutionary com-
putation techniques such as GA. PSOs are initialized with a population of random solutions 
and search for optima by updating generations. Algorithms and distributed problem solvers 
that were motivated by the cooperative behavior of insect colonies and other animal socie-
ties are referred to as "swarm intelligence". According to this perspective, PSO is a swarm 
intelligence technique for resolving optimization issues. An algorithm for population-based 
heuristic search and particle swarm optimization was first proposed by Eberhart and Kennedy 
(1995) and was modeled after the social behavior of flocking birds. PSO and evolutionary 
computing methodologies like GA have many similarities. PSOs start with a population of 
random solutions and update generations to look for optimum solutions. Contrary to tech-
niques like GAs, basic PSO does not employ any operators based on the principles of natural 
evolution to find a new batch of candidate solutions. PSO, on the other hand, is dependent on 
the communication of individual population swarm particles. According to Parsopoulos and 
Vrahatis (2004), each particle effectively modifies its trajectory to move toward both its own 
current best position and the best position previously attained by any other members in its 
neighborhood. The following formulas are used in this algorithm to determine each particle’s 
velocity and new location based on the position of the best particle in the group and the best 
location that the particle has personally experienced.

Here, vt+1
i

 is the velocity at time t + 1, w is the inertial coefficient, c1 and c2 are the accel-
eration coefficients, a rand is a random number between 0 and 1, pbest is the best particle in 
the i-th iteration, gbest is the best particle among all the iterations, and xt+1

i
 is the position of 

the particle at time t + 1. The PSO begins by dispersing particles at random throughout the 
issue area. With each iteration, the particle velocity is determined using Eq. (28), and the 
particle position is then updated using Eq. (29). Up until it satisfies the requirements, the 
particle position is changed (Karami et al. 2019). By combining an enhanced PSO algo-
rithm with an SVM technique, Moeini and Babaei (2020) proposed new hybrid methods to 
address the challenges of optimizing reservoir operations for water inflow conditions. The 
IPSO algorithm’s efficiency was increased by using the constrained version, or CIPSO. 
The CIPSO algorithm explicitly satisfies the problem constraints, which results in a smaller 
search area and, ultimately, a lower computational cost. The Chen et al. (2020a, b) paper 
is based on traditional PSO. To create a multi-objective optimization model for reservoir 
operation, present an effective and trustworthy heuristic method using PSO in conjunc-
tion with an adaptive ARIW strategy. This method is known as the ARIW-PSO algorithm. 

(28)vt+1
i

= wvt
i
+ c1rand

(
pbest − xt

i

)
+ c2rand(gbest − xt

i
)

(29)xt+1
i

= xt
i
+ vt+1

i
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In their studies, the effectiveness of the ARIWPSO algorithm was examined using a few 
traditional test functions, and the outcomes were compared with those of the GA, the tra-
ditional PSO, and other enhanced PSO methods in the research done by Al-Aqeeli et al. 
(2020), to maximize annual hydroelectric generation, the PSO model for a single reser-
voir (PSOS) was developed. In their paper, SaberChenari et al. (2016) to operate the mul-
tipurpose Mahabad reservoir dam in the northwest of Iran, researchers adopted the PSO 
method. The operation problem of the multipurpose Mahabad reservoir dam in northwest 
Iran was solved using the PSO method. The goal is to reduce the discrepancy between 
downstream monthly demand and release, which is the desired outcome or target function. 
The approach was used by taking into account the likelihood that inflow would decrease 
under each of the four normal and drought-related scenarios. The findings of their stud-
ies demonstrated that the PSO model performs well in minimizing reservoir water losses, 
and this can be a good operation strategy for the reservoir in drought conditions. He et al. 
(2014) proposed an improved logistic map-based chaotic particle swarm optimization 
(CPSO) algorithm that uses the discharge flow process as the decision variable in conjunc-
tion with the penalty function.

Artificial Bee Colony (ABC) The ABC algorithm uses the search method with the intel-
ligent behavior of the honey bee swarm to find and exploit the impossible region. This 
algorithm imitates the self-organization, division of labor, and foraging strategies used by 
honey bee swarms. Employed bees (EB), onlookers (O), and scouts (S) make up the three 
bee swarm groups. The EB is the type of bee that uses the food sources (possible solutions) 
from the designated area of the search area. The bee known as the O waits for the EB to 
bring back the information while remaining inside the hive. The bees use a waggle dance 
to exchange information about the sources of food. Poor food sources are avoided in favor 
of high-quality ones, which the O memories for future use. Once their food source has been 
fully utilized and abandoned, S is the bee that is used to randomly search for a new food 
source (Choong et al. 2017). A set of release options was used as the food source math-
ematically. Each source is expressed as Eq. (30):

where yi is the ith member of a single food source for the population size of F. The best 
source with the finest fitness value in the population is recorded. EB improved its cur-
rent location using local search steps as described by Diwold et al. (2011) in each iteration 
where yi is the ith member of a single food source for the population size of F. The best 
source with the highest recorded fitness value in the population. EB improves its current 
position using local search steps in each iteration (Diwold et al. 2011).

where yij is the current single release of the jth source, j stands for the dimensional vector, 
xij is the newly updated value of the release for the ith location of the jth source, and ykj 
stands for additional randomly selected releases. It must be obtained from an alternative 
nearby source. In the range of -1 and 1, �ij is chosen at random. The best fitness value that  
is compatible with the ideal solution will determine whether to choose an endurance solu-
tion. The O, on the other hand, decides which food source to pursue based on its likelihood 
of being picked once the EB has updated its position. The following equation, first presented 
by Eiben and Smith (2003), uses a standard roulette wheel selection to draw in more O:

(30)yi = (i = 1, 2,… ,F)

(31)xij = yij + �ij(yij − ykj)
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where N is the total amount of the food source and Pi , the probability of any ith source, is 
the ratio of its fitness to the sum of all the other sources’ fitnesses. S needs to find a new 
food source to come up with a better solution if the source has a low fitness value. Soghrati 
and Moeini (2020) used the ABC algorithm to optimize the reservoir. Choong et al. (2017) 
the ABC algorithm was created to solve the problem of optimizing Chenderoh reservoir 
operations in the Malaysian state of Perak. In their study, the suggested algorithm sought to 
reduce the reservoir water deficit and analyze the performance impact based on input from 
weekly and monthly data. The ABC algorithm offers promising and comparable solutions 
for ideal release curves because it can identify various potential events occurring in the res-
ervoir. Then the release of the reservoir was done using the ideal release curves at different 
operating times and different inflow scenarios.

Other Physics‑Based Algorithms In the swarm intelligence algorithms group, cuckoo 
search (CS), ant colony optimization (ACO), moth swarm algorithm (MSA), cat swarm 
optimization (CSO), and artificial fish swarm algorithm (AFSA) have been used in stud-
ies related to dam reservoir optimization problems. In Hosseini-Moghari et al (2015), the 
imperialist competitive algorithm (ICA) and cuckoo optimization algorithm (COA), which 
are two evolutionary methods, are used in the optimal operation of the reservoir. Firstly, 
these algorithms were used in solving several benchmark problems. Afterward, the optimal 
operation policy of the Karun4 reservoir was extracted. Finally, results obtained from these 
methods were compared with GA algorithm and NLP. To solve the mixed integer nonlin-
ear programming problem, To solve the mixed integer nonlinear programming problem, a 
hybrid algorithm of ACO and LP model was proposed. The water supply and hydropower 
operation of the Dez reservoir in Iran over operation periods are problems that must be 
solved as efficiently as possible using the methods put forth by Afshar and Shahidi (2009). 
The solutions obtained using the three methods of GA, ACO, and PSO are also presented. 
Afshar and Moeini (2008) presented the ACO algorithm for the optimization of complex 
reservoir operation problems. The research studies of Akbarifard et al. (2021), on two pow-
erful meta-heuristic algorithms HS and ICA, were used to compare the performance of 
the butterfly swarm algorithm (MSA) with each other. First, seven benchmark functions 
with dimensions ranging from 2 to 30 were used to evaluate how well these algorithms 
performed. They were then contrasted to optimize the operation of four-reservoir and ten-
reservoir systems, which is a challenging problem. Overall, the comparison found that 
MSA was the best of the 12 algorithms examined, and it is advised as a reliable and prom-
ising tool for the best operation of multi-reservoir systems. Akbarifard et al. (2020) in their 
paper claim that created a model based on the MSA algorithm to optimize water resources. 
The analysis of these datasets showed that the MSA algorithm outperformed the GA and 
PSO algorithms in the hydropower reservoir problem’s optimal operation. In the research 
by Bahrami et al. (2018), using a single reservoir system and a hypothetical four-reservoir 
system, the CSO algorithm was used to calculate the reservoir systems’ optimal perfor-
mance. The superiority of this metaheuristic algorithm is shown by comparison with GA. 
Yaseen et al. (2018) found in their study that it is possible to optimize the Karun-4 reser-
voir by using a combined strategy of AFSA and PSOA algorithms. In their optimization 
method, energy production is increased and water shortage is minimized. Khorsandi et al. 
(2022) integrated the multi-objective firefly with the K-nearest neighbor to accelerate the 

(32)Pi =
f (yi)

∑N

j=1
f (yj)
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optimal operation of multi-objective reservoirs. Rahmati et al. (2021) applied the Grass-
hopper Optimization Algorithm (GOA) to the optimal operation of hydropower reservoir 
systems under climate change. Moghadam et al. (2022) performed the optimal allocation of 
surface and ground water resources with Invasive Weed Optimization Algorithm (IWOA) 
modeling. Azadi et  al. (2021b) presents a simulation–optimization approach linking the 
CE-QUAL-W2 with the firefly algorithm k-nearest neighbor (FA-KNN) model to obtain 
optimal reservoir discharges to achieve water quality objectives. Azadi et al. (2021a) evalu-
ated the effects of climate change on thermal stratification of reservoirs using FA-KNN.

3.4.5  Human‑Based Algorithms

Harmony Search (HS) Geem et al. (2001) proposed the harmony search (HS) It was used 
to solve optimization problems. The HS is a population-based metaheuristic algorithm that 
draws its inspiration from musical phenomena that seek out the most harmonious condi-
tion. In two studies, the HS technique was used to optimize the reservoir (Dariane and 
Karami 2014; Bashiri-Atrabi et al. 2015). The latter authors contrasted the HS and HBMO 
and found that the HS displayed promising results in terms of convergence speed.

Imperialist Competitive Algorithm (ICA) Atashpaz-Gargari and Lucas (2007a, b) intro-
duced ICA. The population-by-population approach used by this algorithm is similar to 
that of many other evolutionary algorithms. ICA simulates political–social evolution. 
A population of initial solutions (countries) is generated at the start of the ICA process 
(much like a chromosome in GA). Some nations are viewed as colonies, while others are 
seen as imperialists. N decision variables may include variables such as culture, language, 
etc. for each optimization problem. Each nation is defined as an array of 1 × N as follows 
(Hosseini-Moghari et al 2015):

where F is the objective function, cost is the value of F, and V1,V2,… ,VN are decision var-
iables. The imperialists then recruit colonies into their empires through a process known 
as assimilation policy (colonies are impacted by the imperialists’ culture and language). In 
this phase, colonies with � deviation of and x units transfer to the imperialists. A more thor-
ough search in the decision space results from this deviation. Both x and � are uniformly 
distributed random variables.

where � = a number greater than one which makes colonies close to imperialists from two 
sides, d is a distance between imperialists and colonies and � is a parameter that deter-
mines the amount of deviation from the original direction. Some nations that don’t make 
much progress each generation experience revolution. The revolution operator stops the 

(33)country =
[
V1,V2,… ,VN

]

(34)cost = F(country)

(35)x ∼ U(0, � × d)

(36)� ∼ U(−� , �)
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algorithm from becoming stuck at the local optimum. One of the colonies may end up in 
a better situation than its imperialist after moving colonies toward imperialist or revolu-
tion events. It might swap colonial and imperialist stances. Imperialistic competition, in 
which all empires compete to have more colonies, is the most crucial stage of ICA. This 
procedure is carried out by the weakest colony leaving the realm of the weakest empire 
and affiliating with stronger empires. Colonies are merged with stronger empires based  
on probability. This probability is proportional to each imperialist power plus a random 
percentage from the average power of colonies.

where T .Cn = total cost of the nth empire, and � = a positive number less than one, which 
is a user-defined parameter.

Afshar et  al. (2014) compared the ICA and ACO algorithms’ performance in a case 
study involving a single-objective hydropower reservoir and found that the ICA showed 
quick convergence to nearly optimal solutions for linear operating rule curves and outper-
formed ACO. The ideal reservoir operation curve was obtained in Shenava and Shourian 
(2018) study with the dual goals of increasing water supply and lowering flood damage. 
The operation of the Gotvand Reservoir in Iran was optimized in this way by simulta-
neously increasing the downstream water supply and decreasing flood damage using the 
ICA algorithm.

3.4.6  Hybrid Algorithm (HA)

There are only certain problems that can be solved by current heuristic optimization 
algorithms. No algorithm can sufficiently solve all optimization problems (Mirjalili and 
Hashim 2010). Hybrid algorithms, which combine two or more algorithms, are useful for 
handling challenging multi-objective optimization problems. Algorithm hybrid offers the 
same advantages as individual algorithms, plus it builds on one approach’s advantages to 
address another’s weaknesses. The estimation of energy production reservoir operations 
and scheduling issues have both been addressed using hybrid algorithms (Uzlu et al. 2014). 
The combination of evolutionary algorithms with other local search algorithms has been 
successfully used in the optimization of hydropower. Zarei et  al. (2019) investigated the 
performance of a multi-purpose water tank to meet agricultural, urban, industrial and envi-
ronmental needs. The total monthly water release was first determined by a new evolution-
ary hybrid algorithm (BA algorithm and PSA) to operate the best reservoir and satisfy the 
total monthly needs (agricultural, urban, industrial, and environmental). By removing the 
weak responses of one algorithm and substituting the strong responses of the other, the 
new Hybrid Algorithm (HA) assists BA and PSA in accelerating convergence and achiev-
ing an ideal solution. In the study of Karnatapu et al. (2020) to determine the best operat-
ing policies for a multi-purpose reservoir, a hybrid genetic and algorithmic programming 
(GA-NLP) model was proposed. Results show that the GA-NLP model can be success-
fully applied for the best distribution of limited available water resources to any reservoir. 
Mohammadi et  al. (2019) in their paper by examining the optimal operation of continu-
ous-time four-reservoir systems (FRBS) and ten-reservoir systems (TRBS) using a hybrid 
whale optimization algorithm (HWGA) that combines GA and WOA algorithms.

(37)T .Cn = cost
(
imperialistn

)
+ �mean

{
cost(colonies of empiren)

}
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3.4.7  Other Meta‑heuristic Optimization Algorithms

Ehteram et al. (2018a) used the kidney algorithm (KA) in their study to optimize the opera-
tion of the reservoir of the Aydoghmoush dam in the eastern Azerbaijan province of Iran to 
lower the irrigation deficit downstream of the dam. The algorithm’s outcomes were com-
pared with those of other evolutionary algorithms, such as the BA, GA, PSO, SA, and WA 
algorithms. Tabari et al. (2020) integrated the reservoir structure simulation model and the 
optimization approach to creating a multi-objective model that would meet the demands 
for water supply while maintaining the structural stability of the dam. A dynamic artifi-
cial neural network was also employed for this reason as an interfaced model to connect 
the outcomes of the simulator model to those of the suggested strategy. A non-dominated 
sorting genetic algorithm (NSGA-II) and multi-criteria decision-making techniques were 
used to create the optimal trade-off curve, from which the best solution was extracted. The 
findings demonstrated that, given the stability of the dam, the downstream water demand 
allocation was utilized to the fullest extent possible. The reliability and vulnerability coef-
ficient values in the optimal conditions are higher than those in the existing conditions, 
according to a comparison between the existing and optimal conditions. The results show 
that, in comparison to the optimal conditions, the fuzzy stability index increased by 7%, 
indicating that the optimal model performs better. With a water supply of 30%, summer 
had the highest deficiency, and spring with a water supply of 30% had the lowest deficiency 
when compared to downstream water demands. During summer, the average optimal allo-
cation and the average demands were 20.51 MCM and 67.50 MCM, respectively. Chen 
et  al. (2020a, b) suggested using the NSGA-III algorithm to optimize a multi-objective 
risk management model for real-time flood control operations. Sharifi et al. (2021) in their 
study from 2021, five recently-introduced robust evolutionary algorithms (EAs) of Harris 
hawk’s optimization algorithm (HHO), seagull optimization algorithm (SOA), sooty tern 
optimization algorithm (STOA), tunicate swarm algorithm (TSA). The moth swarm algo-
rithm (MSA) was used for the first time to optimize the Halilrood multi-reservoir system.

4  Comparative Performance Analysis and Discussion

4.1  Interpretation of Algorithms Used in Dam Reservoir Optimization

Figure 16 demonstrates the results of various metaheuristic algorithms applied recently for 
dam reservoir optimization. In the recently studied patterns, it has been determined that inter-
est in using some new meta-heuristic algorithms and combined meta-heuristic algorithms to 
optimize reservoirs, dams, and reservoir operations has increased. Results indicate that cut-
ting-edge algorithms, particularly hybrid algorithms, have produced results that are incred-
ibly accurate when solving problems in real-time. Reduced convergence and computation 
time is the main goal of algorithms. This study demonstrates hybrid algorithms have grown 
in popularity for solving reservoir optimization issues and have outperformed more tradi-
tional approaches like LP and NLP as well as other meta-heuristic algorithms. After hybrid 
algorithms in this study, GA has been the most well-liked evolutionary algorithm among 
researchers in reservoir optimization because it is one of the most established and effective 
evolutionary algorithms. Recent studies have paid more attention to hybrid algorithms and 
meta-heuristic algorithms, particularly non-animal ones. GA and PSO algorithms have been 
used in more comparative studies, totaling 67.21 percent of new studies that have compared 
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these two algorithms. In general, it is impossible to pinpoint precisely which algorithm is 
superior to the others. As a result, using techniques like hybrid algorithms can be a useful way 
to solve this issue. Figure 15 shows that more research has been done using hybrid algorithms 
than other single meta-heuristic algorithms. In the present review study regarding the optimi-
zation of reservoirs of dams, 76 articles were reviewed, of which 17 articles (18.68 percent of 
the articles) were done using hybrid algorithms.

4.2  Statistical Criteria

The statistical indices of root mean square error (RMSE), mean absolute error (MAE), 
coefficient of determination  (R2) and Nash–Sutcliffe efficiency (NSE) are more than other 
evaluation indices in the problems of optimizing reservoirs, meeting water needs, and man-
aging reservoirs of dams using Meta-heuristic algorithms are used (Fig. 17).

Fig. 16  Meta-heuristic algorithms in dam reservoir optimization a  The most optimal algorithm, b  Com-
pared algorithms
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The most important criteria for evaluating the performance of dam reservoir optimiza-
tion studies using meta-heuristic algorithms are shown (Eq. 38 to 40):

where N is the number of observations, f_i and y_i (i = 1; 2;...; N) represent the predicted 
and observed values, respectively; f ̅ and_y ̅ represent the predicted and observed average 
values, respectively; RMSE is a popular and reliable measure of researchers in most stud-
ies to measure the standard deviation between estimated values and observed values. The 
closer the RMSE is to zero, the less deviation there is between the predicted and observed 
results. The coefficient of determination  (R2) is a good measure of the fit of a statistical 
model. MAE indicates the average absolute value of the difference between the observed 
and modeled values of the independent variable. Nash–Sutcliffe efficiency (NSE) is a very 
important evaluation criterion in issues related and compatible with water engineering sci-
ences, which has been used in only two papers (Azari et al. 2018; Ehteram et al.2018a, b, 
c) (Eq. 41).

(38)RMSE =

√
1

N
(
∑N

i=1
( f (i) − y(i))2

(39)MAE =
1

N

∑N

i=1
|| fi − yi

||

(40)R2 =

�∑N

i=1
( fi − f )(yi − y

�2

∑N

i=1
( fi − f )

2∑N

i=1
(yi − y)

2

Fig. 17  The most important criteria for evaluating the performance of dams reservoir optimization using 
meta-heuristic algorithms
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In NSE, the efficiency coefficient of the numerical model is between 5 and negative 
infinity, which is introduced as a measure to measure the prediction ability of the model, 
the explanation coefficient close to one indicates the success of the model in modeling.

4.3  Evaluation Indices

Multiple indicators can be used to evaluate the performance of the dam reservoir and the 
evolutionary algorithms used in management studies (Hashimoto et al. 1982):

4.3.1  Volumetric Reliability

This index is based on downstream demand and the amount of water released. The value 
of this index will be high if the released water can adequately meet demand (Ehteram et al. 
2017a, b, c, d):

where �V is the volumetric reliability index.

4.3.2  Resiliency Index

This index shows how quickly a system can recover from a failure. A system must be capa-
ble of regaining functionality following a single failure while it is in operation. A high 
value of this index is desirable.

where �i is the resiliency index, fsi is the number of failure series generated in the ith reser-
voir, and Fi is the number of failure periods generated in the ith reservoir.

4.3.3  Vulnerability Index

This index indicates the maximum failure percentage generated during operational periods. 
Thus, a low value of this index is desirable.

where � is the vulnerability index.
The results of evaluation indicators in dam reservoir optimization studies show that 

hybrid algorithms show better results than other single metaheuristic algorithms (Table 3). 
Also in single metaheuristic algorithms, SML and SMA algorithms show better results 
than other algorithms.

(41)NSE = 1 −

∑N

i=1
(yi − yi)

2

∑N

i=1
(yi − y)

2

(42)�V =

∑2

i=1

∑T

t=1
Ri,t

∑2

i=1

∑T

t=1
Di,t

× 100

(43)�i =
fsi

Fi

(44)� = Max2
i=1

(MaxT
t=1

(
Di,t − Ri,t

Di,t

)
)
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4.4  Investigate the Performance of Some Meta‑heuristic Algorithms According 
to Optimal Value and Best CPU Time

The performance of some metaheuristic algorithms according to the optimal amount and opti-
mal CPU time for single-reservoir system operation, four-reservoir system operation, and ten-
reservoir system operation is reviewed (Table 4).

4.4.1  Single‑Reservoir System Operation

Research by Sharifi et al. (2021) showed that the MSA algorithm had the best objective func-
tion value (6.96), the shortest run-time (6738 s), and the fastest convergence rate (< 2000 itera-
tions) compared to HHO, GA, PSO, SOA and STOA algorithms. Yavari and Robati (2021) 
showed that the MOWCA algorithm with a total of 236.07 objectives performed better than 
the NSGA-II algorithm with a total of 268.01 objectives. In the studies of Wang et al. (2021), 
it was found that DE, PSO, and APO algorithms have similar performance in terms of optimal 
objective value criterion. DE and PSO algorithms are not much affected by population size, 
while APO is affected by population growth. In the DE algorithm, the diversity and stability 
of the population are preserved better than in the PSO or APO algorithms. With the performed 
evaluations, the use of the DE algorithm is more suitable than PSO and APO for the reservoir 
operation optimization problem.

4.4.2  Discrete‑Time Four‑Reservoir Operation (DFRO) Problem

The DFRO problem was introduced by Larson (1968) using a discrete-time formulation. After 
that, Murray and Yakowitz (1979) used dynamic differential programming (DDP) in studying 
the DFRO problem. In the last two decades, many researchers, including Bozorg-Haddad et al. 
(2011); Asgari et al. (2016); Kumar and Yadav (2018) have used this problem to investigate 
the performance of different algorithms.

4.4.3  Continuous‑Time Four‑Reservoir Operation (CFRO) Problem

The CFRO problem was introduced by Chow and Cortes-Rivera (1974). The difference 
between the CFRO problem and the discrete problem is in the constraints and input param-
eters. CFRO problem by researchers including Bozorg-Haddad et al. (2011, 2015a, b); Hos-
seini-Moghari et al (2015); Bahrami et al. (2018); Akbarifard et al. (2021) has been solved 
using different algorithms.

4.4.4  Ten‑Reservoir Operation (TRO) Problem

Ten-reservoir system was presented by Murray and Yakowitz (1979). Ten-reservoir system 
is considered a complex system due to the parallel and series reservoirs. TRO problem by 
researchers including Wardlaw and Sharif (1999); Jalali et  al. (2007); Ahmadianfar et  al. 
(2016); Ehteram et al. (2017a, c) has been solved using different algorithms.
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5  Conclusions

In the past two decades, the use of modern methods of meta-heuristic optimization in 
various topics of water resources systems has increased to overcome the shortcomings of 
traditional methods and the inefficiency of mathematical methods due to the increase in 
the dimensions and complexity of the problem. Perhaps the most important concern of 
researchers in optimization issues and especially meta-heuristic algorithms is to choose 
the best algorithm considering their high number, but considering the nature of different 
reservoirs, it is not possible to say which algorithm is the most suitable. The best solution 
of the meta-heuristic algorithm is possible by finding the best speed and accuracy the in 
convergence and optimization of models. The results showed that the use of hybrid algo-
rithms (18.68%) in reservoir optimization studies has obtained better results than tradi-
tional methods and other single algorithm methods. Considering that each algorithm has 
its advantages and disadvantages, combining them to find the best solution can be use-
ful. In hybrid methods, the disadvantages of one algorithm are supplemented by another 
algorithm, and it is possible to modify the algorithms with the features of another algo-
rithm. According to the obtained results, hybrid algorithms can be recommended to solve 
the complex problem of water resource management and reservoir operation. Among 
individual algorithms, GA algorithm (16.48%) has been the most popular model among 
researchers. Of course, in recent years, the GA algorithm has been used more to compare 
with other modern meta-heuristic algorithms, so 40.98 of the studied articles consider 
this algorithm as the best comparison option. GA and PSO algorithms are the best com-
parison options with modern models considering that they have been used in many arti-
cles. Evolutionary algorithms such as GA, ACO, and PSO have great potential to solve 
nonlinear multi-objective problems. An important issue in optimization modeling is con-
sidering the physical characteristics of the dam and reservoir to generalize the process. 
To measure reservoir performance indicators (such as reliability, flexibility, and vulner-
ability), the optimization operation must be accompanied by a simulation to be able to 
optimize and compare each hydrological model. In this review study, an attempt has been 
made to review all possible literature sources regarding the optimization of reservoirs, 
however, some issues may have been ignored or briefly stated and can be investigated 
separately and comprehensively in future studies.
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