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Abstract
Groundwater storage is of grave significance for humanity by sustaining the required water 
for agricultural irrigation, industry, and domestic use. Notwithstanding the impressive 
contribution of the state-of-the-art Gravity Recovery and Climate Experiment (GRACE) 
to detecting the groundwater storage anomaly (GWSA), its feasibility for the characteri-
zation of GWSA variation hotspots over small scales is still a major challenge due to its 
coarse resolution. In this study, a spatial water balance approach is proposed to enhance 
the spatial depiction of groundwater storage and depletion changes that can detect the hot-
spots of GWSA variation. In this study, Random Forest Machine Learning (RFML) model 
was utilized to simulate fine-resolution (10 km) groundwater storage based on the coarse 
resolution (50 km) of GRACE observations. To this end, parameters including soil mois-
ture, snow water, evapotranspiration, precipitation, surface runoff, surface elevation, and 
GRACE data were integrated into the RFML model. The results show that with a correla-
tion of above 0.98, the RFML model is very successful in simulating the fine-resolution 
groundwater storage over the Western Anatolian Basin (WAB), Türkiye. The results indi-
cate an estimated annual depletion rate of 0.14 km3/year for the groundwater storage of the 
WAB, which is equivalent to about 2.57 km3 of total groundwater depletion from 2003 to 
2020. The findings also suggest that the downscaled GWSA is in harmony with the original 
GWSA in terms of temporal variations. The validation of the results demonstrates that the 
correlation is increased from 0.56 (for the GRACE-derived GWSA) to 0.60 (for the down-
scaled GWSA) over the WAB.
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1  Introduction

Groundwater is a predominant part of the world’s water resources and is critical for human 
life. Groundwater aquifers are deemed ideal water supply reservoirs providing high-quality 
water with wide distribution and convenience. Almost all the agricultural, domestic, and 
industrial water requirements of the users in semi-arid and arid parts of the world are met 
by groundwater. The rate of water exploitation from groundwater aquifers has skyrock-
eted in the last decades mainly on account of the increased population, economic devel-
opment, and climate change impact (Khorrami and Gunduz 2021a). The uncontrolled use 
of groundwater has triggered a sharp diminish in the groundwater level, which is gener-
ally accompanied by the deterioration of water quality and the formation of geological 
problems, such as land deformation (Khorrami et al. 2021). The problems ascribed to the 
fluctuations in groundwater storage signify the importance of groundwater monitoring and 
management at regional and local scales (Long et al. 2016).

As the first remote sensing mission to monitor the large-scale variations of the grav-
itational pull, The Gravity Recovery and Climate Experiment (GRACE) started its task 
in March 2002 and has been providing the monthly Terrestrial Water Storage Anomalies 
(TWSA) at large scales (Meng et  al 2021; Khorrami and Gunduz 2021a). Although the 
spatial footprint of the GRACE twin satellites is coarse, it has been very successful in pro-
viding unprecedented opportunities for the scientific community. To date, the GRACE/
GRACE-FO estimates have been utilized to understand the regional and global trends in 
water storage changes over different areas of the world (e.g., Seyoum and Milewski 2016; 
Lezzaik and Milewski 2018; Banerjee & Kumar 2018; Moghim 2020; Ali et  al. 2021; 
Meng et al. 2021).

As a central compartment of the hydrological water cycle, Terrestrial Water Storage 
(TWS) controls the water, energy, and biogeochemical states (Ning et  al. 2014). There-
fore, having a determining impact on the Earth’s climate system, the TWS variations are 
crucial for the sustainable management of water resources and weather and climate mod-
eling (Ning et  al. 2014). The inception of the GRACE mission paved the way for tack-
ling the challenges of the scarcity of direct observations of large-scale TWS estimates. The 
medium and large-scale variations of the Earth’s TWSA can now be traced by GRACE 
(Rodell et al. 2018). However, the GRACE-derived TWSA values are of coarse resolution, 
which limits their application for local to regional-scale purposes (Miro and Famiglietti 
2018). Therefore, downscaling the data is a mandatory task to unearth the local-scale fluc-
tuations of groundwater storage and depletion from the GRACE estimates.

Downscaling of the GRACE estimates is recently implemented by utilizing simulated 
hydro-meteorological variables from hydrological models. To date, GLDAS has over-
whelmingly been used by researchers from around the world for downscaling the GRACE 
data (e.g., Rahaman et  al. 2019; Zhang et  al. 2021). With the same modeling algorithm 
and data assimilation technique, the Famine Early Warning Systems Network Land Data 
Assimilation System (FLDAS) is another model with improvements in the spatial resolu-
tion (10 km) of the variables. Unlike the GLDAS model, the application of the FLDAS is 
not widespread, especially for downscaling purposes.

Keeping in view the limitations of high-resolution data of independent variables, this 
study proposes FLDAS model data to downscale JPL mascon solution from GRACE/
GRACE-FO for extracting fine-resolution variations of groundwater storage to better 
understand the local and basin-scale variability of groundwater storage and depletion 
based on the machine learning model, which is the main contribution and novelty of this 
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study. The downscaling of GWSA is conducted based on the downscaled TWSA using 
high-resolution FLDAS model data. This study is one of the earliest examples of gen-
erating 10 km GWSA that can later be utilized for regional-scale assessment of TWSA 
and GWSA. The testing and application of the method are conducted over the Western 
Anatolian Basin (WAB), Türkiye, which has been experiencing significant groundwater 
depletion over the last decades.

2 � Methodology

2.1 � Overview of the Study Area

The Western Anatolian Basin (WAB) is situated between 37.00°–40.00° N and 26.00°–30.30° 
E and is a combination of 4 hydrological river basins namely Kucuk Menderes Basin (KMB), 
Buyuk Menderes Basin (BMB), Gediz Basin (GB) and North Aegean Basin (NAB) located 
in western Türkiye (Fig.  1). With an approximate area of 60,000 km2, the WAB covers 
the majority (71%) of western Anatolia. The climate of the WAB is predominantly a typi-
cal Mediterranean climate with dry and hot summers and cold and rainy winters (Ay 2021). 
The total annual precipitation and mean annual temperature of the region are 650.8 mm and 
15.8  °C, respectively. The description of each subbasin, their geological (Fig.  SM1) and 
hydrogeological setting as well as their groundwater potentials (Table SM1) are presented in 
the Supplementary Materials.

2.2 � Data Used

Different sources of data sets obtained by remote sensing and in-situ observations were 
used to implement this study. The characteristics of the data used are given in Table 1 and 
discussed in the following sections.

2.2.1 � GRACE/GRACE‑FO JPL Mascon

The twin-satellite GRACE project is composed of two main missions: the GRACE-1, and 
the GRACE Follow-On (GRACE-FO). The GRACE-1 mission was terminated in 2017, 
and with a year of latency, the GRACE-FO was put into orbit in 2018 and has been working 
since then. The processing of the GRACE/GRACE-FO signals is up to three data process-
ing centers such as the Center for Space Research (CSR), GeoForschungsZentrum (GFZ), 
and the Jet Propulsion Laboratory (JPL) (Chambers 2006). In this study, the GRACE JPL 
mascon (release 06) was used to extract the time series of TWSA.

2.2.2 � FLDAS Model

Famine Early Warning Systems Network Land Data Assimilation System (FLDAS) is a 
data assimilation project which, similar to the commonly used GLDAS model, simulates 
different hydro-meteorological variables by integrating remote sensed, modeled, and in-situ 
observations at a global scale (Loeser et al. 2020). The simulations are done under two land 
surface models (LSMs) including the Variable Infiltration Capacity (VIC) model and the 
Noah model (McNally et al. 2017) with spatial resolutions of 0.25° and 0.1°, respectively. 
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In this study, simulated variables of soil moisture, snow water, evapotranspiration, rainfall, 
and runoff were extracted from the latest version (version 4) of the FLDAS-Noah.

2.2.3 � Field Observations

The field-based observations of precipitation and depth to groundwater were obtained from 
the Turkish State Meteorological Service (TSMS) and the State Hydraulic Works (SHW), 
respectively. The characteristics of the groundwater observation wells utilized in this study 
are given in Table SM2 in the Supplementary Material.

To validate the GRACE-derived GWS with in-situ observations of depth-to-groundwater 
(DTG), the latter should be converted into field-based GWSA. To this end, first, the DTG 

Fig. 1   Illustration of the geographic position of the Western Anatolian Basin (WAB), west of Türkiye
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data of each observation well was changed to the groundwater level (GWL) based on the 
topographical elevation above the mean sea level (H) of each corresponding well (Eq. 1).

Then, the variations of GWLA (∆GWLA) were extracted by subtracting the same base-
line as the GRACE mission (mean of 2004–2009). And finally, the in-situ GWSA values 
were calculated by using the specific yield (Sy) of each well for the unconfined aquifers or 
storativity for the confined aquifers (Eq. 2).

The specific yield has a high spatial and temporal variability, especially for shallow 
water tables, and it can be affected by many factors including soil type, water table depth, 
time since rise or fall of the water table, hysteresis, soil texture, antecedent soil moisture 
condition, temperature, and chemical composition of water, as well as plant water demand 
(Lv et  al 2021). Accordingly, the rock type that is responsible for the soil type and tex-
ture is one of the main parameters that influence the specific yield as shown in Table SM3 
(Karasu 2019). The accurate estimation of this parameter requires the implementation of 
pumping tests. Unfortunately, there is no available information on the estimated Sy over 
the WAB. Therefore, the Sy of the seasonal observation wells, used for validation purposes, 
was estimated based on the values reported by Karasu (2019) for each lithological pattern 
of the wells in the study area. Accordingly, the Sy estimates used in this study ranged from 
17 to 26 percent.

2.3 � Random Forest Machine Learning (RFML)

As a new ensemble-based nonlinear machine learning model (Rahaman et al. 2019), Ran-
dom Forest (RF) is a supervised learning algorithm (Breiman 2001) that can be applied 
to both classification and regression problems. Consisting of a combination of multiple 
classifications and regression trees (CART), RFML generates a regression tree based on 
a set of homogenous subsets of predictors randomly and uses the average results of each 
decision tree (Rahaman et al. 2019). In light of its unique advantages, such as the feasibil-
ity of working with numerous inputs, high precision, and detection of the significance of 
the variables (Rahaman et al. 2019; Chen et al. 2019), the RFML model has started to gain 
widespread applications in remote sensing and hydrology (Hua et  al. 2018). The RFML 
model used in this study was designed as follows:

1.	 The model inputs were aggregated to the spatial resolution of the GRACE-JPL Mascon 
(50 km) and then the statistical associations between the TWSA, Digital Elevation 
Model (DEM), and the hydrological variables of soil moisture, snow water, rainfall, 
surface runoff, and evapotranspiration at 50 km resolution were used in developing the 
RFML model to predict TWSA.

2.	 The residual values were calculated by deducing the model-derived TWSA from the 
original GRACE-TWSA.

3.	 The model was applied to the fine-resolution inputs to attain the estimated 10 km TWSA.
4.	 Residuals were added to the estimated TWSA at 10 km to obtain the downscaled TWSA 

through three steps:

(1)GWL = H − DTG

(2)ΔGWS = Sy × ΔGWL
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(a)	 Re-aggregating the 10 km predictors to the original GRACE resolution (50 km),
(b)	 Computing the residuals between the 50 km predictors and the 50 km original 

TWSA,
(c)	 Resampling the 10 km residuals and adding them to the 10 km predicted TWSA, 

which yields the final downscaled TWSA.

5.	 Eventually, the downscaled GWSA values were extracted by subtracting the FLDAS-
derived SMS and SWE from the downscaled TWSA.

The flow of the entire analysis including the RFML stage is shown in Fig. 2.

2.4 � Extraction of Groundwater Storage

TWSA is a vertically integrated hydrologic variable that encompasses different compo-
nents such as soil moisture storage anomalies (SMSA), snow water equivalent anomalies 
(SWEA), groundwater storage anomalies (GWSA), and surface water storage anomalies 
(SWSA) (Eq.  3) (Khorrami and Gunduz 2021b). The GWSA is extracted through the 
GRACE isolation process (Eq. 4).

Because the variations of TWSA in arid and semi-arid regions are mainly controlled by 
soil water storage (Deng and Chen 2017), the GRACE isolation is done through simplified 

(3)TWSA = GWSA + SMSA + SWEA + SWSA

(4)GWSA = TWSA − [SMSA + SWEA + SWSA]

Fig. 2   Graphical description of the methodological flow of the study
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Eq. (5) by taking only the SMSA and SWEA into account. In this equation, the SMSA and 
SWEA variables were derived from the FLDAS Noah model outputs.

2.5 � Uncertainty Estimation

The associated uncertainties of the downscaled GWSA values were estimated based on the 
error propagation theory, according to which, the estimated errors in the TWSA (achieved 
from the data provider) and in the land surface model outputs culminate into the uncertain-
ties of the resulting GWSA. The GWSA errors were calculated according to Eq. (6).

where σ stands for the standard deviation of the corresponding parameter.

3 � Results

3.1 � Sensitivity of the Model Inputs

The RFML model provides the relative contribution of each input variable in the simula-
tion process to determine their importance. The importance of each variable is given in 
terms of %IncMSE, which demonstrates the possible increase in MSE by randomly per-
muted variables (Zhao et al. 2018). The sensitivity result is interpreted such that the larger 
values of %IncMSE signify more importance and thus are more favorable. Associations 
between the model inputs impact the model performance. In this study, different values 
such as precipitation, soil moisture, snow water, surface runoff, evapotranspiration, surface 
elevation, and GRACE-TWSA were integrated into the RFML model. The predictability of 
the inputs of the developed model for the study area was investigated based on the variable 
importance measures predictive (VIMP) test. The VIMP calculates the variations of the 
prediction error of each input variable before and after permutation (Rahaman et al. 2019).

The sensitivity results for the harsh climatic situation of Oct 2020 are given in Fig. SM2 in 
Supplementary Materials. It reveals that precipitation and surface elevation (DEM) are the two 
most crucial variables in predicting the GRACE TWSA using the RFML model. The anoma-
lies of the snow water storage, on the other hand, turned out to be the least effective parameter 
for the RFML-based predicting of the GRACE TWSA. This is rational because the variations 
of the snow water are restricted to a small spatial fraction of the country in the Eastern regions. 
Therefore, with its least impact on the variations of Türkiye’s TWSA, snow water manifests 
the least importance among the used variables. The results revealed that all the input variables 
were quite skillful in downscaling the TWSA with above-zero sensitivity values.

3.2 � Investigating the Predictive Precision of the RFML Model

The performance of the RFML model was tested using the original and modeled (pre-
dicted) TWSA values. Five statistical metrics (R, R2, RMSE, MAE, and D) were 
applied to show the accuracy of the model. According to the results (Fig. SM3), with a 

(5)GWSA = TWSA − [SWEA + SMSA]

(6)σGWSA =

√

(

σTWSA

)2

+
(

σSMSA

)2

+
(

σSWEA

)2
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correlation of coefficient of more than 0.98, coefficient of determination of above 0.97, 
and D value of about 0.99, the RFML model turned out to be highly successful and can 
be applied in modeling the finer resolution of TWSA and GWSA over the study area.

To check the spatial consistency of the pre-and post-downscaling TWSA and GWSA 
over the WAB, the variations of Oct 2020 were mapped as an example. As observed 
in Fig.  3, the original and downscaled distribution of the TWSA and GWSA is con-
sistent from the perspective of spatial distribution. Figure  3 manifests the good per-
formance of the RFML model in filling in the spatial gaps of the TWSA and GWSA 
values in the basin, which overall correspond with the trends of the original values. The 
spatial variations of the original and the downscaled TWSA and GWSA are consistent 
throughout the WAB with increased values towards the north and the south and concen-
trated decreasing values inside the basin. The thematic maps for the TWSA and GWSA 
before and after downscaling process suggest that by using the downscaled products the 
area texture information can be better retrieved than by using the original GRACE data 
(Zhang et al. 2021).

Fig. 3   Spatial variation of the original and downscaled TWSA and GWSA in Oct 2020
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3.3 � Validating the Downscaled Groundwater Storage

For the validation of GWSA derived from GRACE/GRACE-FO, RFML-downscaled, and 
in-situ were used. The point-wise validation results (Fig. 4) show that while the correlation 
of coefficient between the original GRACE-GWSA and the in-situ GWSA is 0.56 at the 
seasonal scale, the downscaled GWSA has a higher correlation of 0.60. The improvement 
of the correlation indicates that the RFML model was successful in modeling the finer res-
olution (10 km) GWSA.

3.4 � Temporal Fluctuations of Terrestrial and Groundwater Storage

The time series of the downscaled TWSA and GWSA over the WAB is shown in 
Fig. 5a, b, respectively. The basin-wise monthly variations of the TWSA and GWSA 
manifest decreasing trends for all the studied basins that stress they have lost water 
storage over time. The monthly fluctuations of the TWSA and GWSA indicate a gen-
erally critical situation for the study area in 2007, 2008, 2014, 2016, 2018, 2019, and 
2020. The maximum storage loss detected in 2020 for the TWSA over the basins is 
calculated as 266.86 mm (Oct 2020) for the NAB, 233.87 mm (Dec 2020) for the GB, 
211.07 mm (Oct 2020) for the KMB, and 206.96 mm (Dec 2020) for the BMB. The 
GWSA, on the other hand, manifests the maximum storage loss in Nov 2007 for all the 

Fig. 4   Validation of the original (50 km) GWSA (a) and downscaled (10 km) GWSA (b) against seasonal 
groundwater level
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Fig. 5   Temporal fluctuations of terrestrial (a) and groundwater (b) storage over the WAB and thematic map 
of the annual GWSA trend (c)
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basins with loss values of 265.07 mm, 238.45 mm, 217.19 mm, and 191.29 mm over 
the NAB, the GB, the KMB, and the BMB, respectively. Overall, the dry periods for 
the TWSA and GWSA time series over the WAB are in accordance with the drought 
analysis results for Türkiye (Khorrami and Gunduz 2021b).

3.5 � Trend and Uncertainty Estimates

The trend values and associated uncertainties of each component of the hydrologi-
cal cycle over the study area are reported in Table  2. The ERA-5 Land model sim-
ulates 10  km resolution hydrometeorological parameters that were applied for the 
uncertainty evaluation of data from the Noah model (10 km). The standard deviation 
between the Noah-derived and ERA5-derived soil moisture and snow water values 
was used to estimate the uncertainties associated with the soil moisture and snow 
water over the WAB. Consequently, the uncertainty of GWSA was estimated based on 
the error propagation theory.

The results reveal that, from 2003 to 2020, the NAB, the GB, the KMB, and the 
BMB basins have suffered from diminishing TWSA with annual rates of 6.63 mm/year, 
6.44  mm/year, 6.69  mm/year, and 5.56  mm/year, respectively. The annual variations 
of the GWS over these basins are 2.65  mm/year, 3.20  mm/year, 2.40  mm/year, and 
2.18 mm/year, respectively in the given order. The variations of GWSA over the GB 
are the largest among the basins of the study area, which are ascribed to the over-
whelming water consumption as a result of industrial and agricultural development as 
well as population growth (Harmancioglu et  al. 2008). Although the NAB is a basin 
with good standing in terms of the groundwater situation, the results indicate that it 
is the second river basin in the WAB suffering from large decreasing variations of 
groundwater storage during the time. This can be justified considering the fact that the 
NAB experiences relatively large variations in the SWEA compared to other basins. 
While the GB, the KMB, and the BMB manifest no significant variations of SWEA 
over the study duration, the NAB shows an annual rate of 0.02  mm/year. The trend 
results also suggest that, except for the NAB, the variations of the SMSA over the 
WAB basins are more than those of the GWSA, which stresses the determining impact 
of the soil moisture changes on the variations of the TWSA over the study area. This 
finding is in accordance with the findings of Okay Ahi and Jin (2019) where they have 
reported a noteworthy impact of soil moisture on the variations of the GRACE-derived 
TWSA over Türkiye.

The spatial depiction of the annual trend of the GWSA (Fig.  5c) indicates that 
during the last 18  years, almost all the WAB has suffered from groundwater deple-
tion with the maximum depletion rates of -9.2  mm/year mainly in the eastern areas, 
which include the eastern parts of the BMB and GB basins. The annual trend map also 
suggests that in small proportions of the southern BMB and western GB basins, the 
GWSA shows an increasing trend, which reaches + 5.8 mm/year.

The volumetric trends of the variations of GWSA over each basin (Table  2) were 
calculated by taking the number of pixels and the underlying area of each basin into 
account. The results reveal that the groundwater aquifer in the WAB has lost about 
2.57 km3 of its storage during the last 18 years. The BMB and GB turned out to be 
the most critical basins in terms of total groundwater depletion (0.97 km3). The total 
depletion in the KMB, on the other hand, is the least (0.29 km3) among the basins.
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3.6 � Temporal Associations Between the TWSA and Drought Indices

To relate the water storage fluctuations of the study area to the climate of the region, the 
interactions between drought indices (SPI, SPEI, and scPDSI) and the variations of the 
TWSA over the WAB were investigated at various timescales. The SPI values were calcu-
lated based on the in-situ precipitation records. The SPEI and scPDSI, on the other hand, 
were retrieved from the gridded data repository, which provides global distribution of the 
SPEI and scPDSI values (Table 1).

According to the results, the basin-wise variations of TWSA are better correlated with 
the SPEI than the scPDSI and SPI at a monthly timescale. The monthly correlation between 
the zonal TWSA and SPEI is 0.4 over the NAB and the GB, 0.45 over the KMB, and 0.46 
over the BMB. The monthly variations of the TWSA turn out to be in lower agreement 
with the SPI over all the basins with a correlation of 0.38 over the NAB and the KMB, 0.41 
over the GB, and 0.43 over the BMB.

According to the annual time series, the annual variations of the drought indices show 
higher correlations with the fluctuations of the TWSA over the basins. The best correla-
tion (0.71) for the annual TWSA with the SPEI and scPDSI is seen over the BMB. While 
the annual associations between the SPEI, scPDSI and the TWSA over the GB are the 
least among the basins, the variations of the TWSA over the GB show the highest correla-
tion (0.71) with the annual SPI. The monthly and annual association graphs are given in 
Figs. SM4 and SM5, respectively, in the Supplementary Material.

4 � Discussions

4.1 � RFML Downscaling

The RFML demonstrated a good performance in simulating the finer resolution of TWSA 
and GWSA over the study area. Higher associations between the downscaled TWSA 
and the GRACE-TWSA have been found by several researchers in different study areas 
(e.g.,Milewski et  al. 2019; Rahaman et  al. 2019). The RFML algorithm works based on 
the statistical relationships between the independent and the dependent input variables. 
Therefore, the accuracy of the input variables is a critical issue regarding the reliability and 
uncertainty of the downscaled values. The GLDAS has been a leading data model used for 
downscaling the GRACE data. The FLDAS model makes use of better and more accurate 
simulations of different hydrometeorological variables at a higher resolution than GLDAS 
(Shahzaman et al. 2021). The downscaling task in this study is based on the FLDAS simu-
lations and the results confirm a good potentiality for the FLDAS model to be integrated 
into the RFML for GRACE downscaling purposes.

The RFML sensitivity results revealed more contribution of precipitation and surface 
elevation to the RFML predicting over the study area. The highest weight of precipitation 
in the process of predicting GRACE-TWSA has also been reported by Ali et al. (2021). It 
can be ascribed to the determining role of precipitation in the variations of different hydro-
logical components, especially the total water storage (Khorrami and Gunduz 2021a). The 
surface topographic elevation is the second most effective parameter for the RFML model. 
This can be ascribed to the role that the diverse surface topography of the country plays 
in the variations of different hydrometeorological variables over Türkiye. Especially the 
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orographic effects (Ding et  al. 2014) of the surface elevation on the climatic parameters 
such as precipitation and temperature are probably a controlling factor for the RFML-
based model predicting the GRACE TWSA over the study area. Rahaman et  al. (2019) 
also reported a significant role of surface elevation in predicting the GRACE data over the 
United States.

4.2 � TWSA Associations with Drought Indices

The drought indices used in this study showed dry events from 2007 to 2009, 2014, and 
2016, which correspond to the results obtained by Okay Ahi and Jin (2019) and Khorrami 
and Gunduz (2021b). Although the SPI was calculated using the point precipitation obser-
vations over the study area, the results indicate that the GRACE-derived TWSA is more 
correlated with the simulated SPEI and scPDSI. The results also show that on a monthly 
and annual basis, the SPEI is better associated with the TWSA compared to the scPDSI. 
The high association of the TWSA with SPEI and scPDSI can be justified by taking their 
calculation approach into account. While the SPI is solely based on the precipitation anom-
alies, SPEI and scPDSI integrate temperature into the calculation (Beguería et  al. 2010; 
Pei et al. 2020). Especially, by using SPEI, the evaporative demand is taken into considera-
tion to better describe the global hydrometeorological extremes (Beguería et al. 2010). The 
higher correlation achieved with TWSA and SPEI over the WAB demonstrates the dual 
impacts of the climatic parameters of precipitation and evapotranspiration on the variations 
of the TWSA (Jing et al. 2020).

5 � Conclusions and Recommendations

Within the scope of the current study, the authors made use of 10 km simulated param-
eters to generate a 10 km finer resolution of GRACE data based on the RFML algorithm. 
The findings suggest that the RFML model was successful in simulating the finer resolu-
tion of TWSA and GWSA over the study area with high accuracy and low error. From 
the perspective of spatial accuracy, it is found that sub-grid variation and heterogeneity 
of the TWSA and GWSA values can be portrayed with good confidence by using the data 
inputs and following the proposed methodology. From the viewpoint of the correlations 
with the in-situ observations of groundwater level, it is also found that the RFML model 
is highly competent at improving the spatial resolution of the coarse GRACE estimates, 
which ensures the accuracy of the estimates with improved correlation value.

The statistical downscaling techniques are based on the relationship between the target 
and the input variables therefore, the final accuracy of the simulations is highly dependent 
on the accuracy of the input variables. Since the model-based parameters are associated 
with uncertainties from the used land surface model, algorithms, etc., it can be stated that 
even higher accuracy downscaled values can be achieved for other watersheds around the 
world by integrating high-accuracy satellite estimates of hydrometeorological parameters 
into the downscaling model.

The other limitation of this study was the validation of the downscaled GWSA. Although 
a good improvement in the spatiotemporal variations of the GWSA was achieved through 
this study, the limited seasonal groundwater observations and the lack of monthly ground-
water data limited this study to even better showcase the precise mission of the downscaled 
GRACE estimates in catching the basin-scale variations of the GWSA. The authors believe 
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that by using more groundwater observation data at different temporal bases, better correla-
tion values can be obtained through validation.
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