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Abstract
River flood routing is an important issue in current water resources management. As a pop-
ular hydrological flood routing method, Muskingum model has always been the dominant 
method of flood routing. This paper reviews the development of Muskingum model and  
the research status of its parameter estimation. The characteristics and relationships of dif-
ferent types of Muskingum models are compared, and it is found that the combination of 
mathematical techniques and evolutionary algorithms has shown good results in param-
eter estimation in recent years. In addition, this paper also gives a brief overview of six  
accuracy evaluation criteria and nine research case data sets commonly used in the litera-
ture. It also introduces some challenges of the Muskingum model and new trends in future 
research, which should interest researchers and engineers.
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Nomenclature
LMM  Linear Muskingum model
NLM  Nonlinear Muskingum model
NLM-VEP  Nonlinear Muskingum model with variable exponent parameter
LMM-LF  Linear Muskingum model with lateral flow
NLM-LF  Nonlinear Muskingum model with lateral flow
NLM-VEP-LF  Nonlinear Muskingum model with variable exponent parameter and 

lateral flow
NLM-LF-GS  Nonlinear Muskingum model with variable exponential parameters and 

transverse flow in the presence of stable GW-SW interaction process
NLM-GS  Nonlinear Muskingum model considering the nonlinear relationship 

between lateral and channel inflow
HJ  Hooke Jeeves pattern search
LR  Linear Regression
CG  Conjugate Gradient method
DFP  Davidon-Fletcher-Powell
HJ + DFP  HJ pattern search in conjunction with Davidon-Fletcher-Powell
NONLR  Nonlinear Multivariate Parameter estimation technique
GA  Genetic Algorithm
HS  Harmony Search Algorithm
PSO  Particle Swarm Optimization Algorithm
ICSA  Immune Clonal Selection Algorithm
DE  Differential Evolution Algorithm
SFLA  Shuffled Frog Leaping Algorithm
MHBMOA  Modified Honey Bee Mating Optimization Algorithm
CSA  Cuckoo Search Algorithm
IGSA  Improved Gravitational Search Algorithm
NMS  Nelder-Mead simplex Algorithm
GRG   Generalized Reduced Gradient Algorithm
BFGS  Broyden–Fletcher–Goldfarb–Shanno
GA-NMS  Hybrid GA and Nelder-Mead simplex Algorithm
GA-GRG   Hybrid GA and GRG 
HS-BFGS  Hybrid HS and BFGS
SFLA-GRG   Hybrid SFLA and GRG 
BA  Bat Algorithm
GGA   Gray-encoded Genetic Algorithm
BGA  Binary-encoded Genetic Algorithm
HCGA   Hybrid Chaotic Genetic Algorithm
SAA  Simulated Annealing Algorithm
SAVCA  Self-Adaptive Vision Correction Algorithm
CSS   Charged System Search
LM  Leven Berg-Marquardt Algorithm
PRP  Polak–Ribière–Polyak method
SA   Shark Algorithm
SSD  Sum of squared deviations
SAD  Sum of absolute value of deviations,
DPO  Absolute value deviations between peaks of observed and routed flows
DPOT  Absolute value of deviations of peak times of observed and routed flows
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MARE  Mean absolute relative error
NSC  Nash-Sutcliffe criterion

1 Introduction

Flood is one of the most deadly disasters in the world, and it is also the most common 
and frequent natural disaster for life, property, economy and environment in the world 
(Wijayarathne and Coulibaly 2020). Therefore, flood routing has become a hot issue 
in water resources management (Yuan et  al. 2016). River flood routing is an important 
aspect of water resources management and one of most challenging practical problems. Its 
essence is to predict reservoir discharge for specific inflow processes. Generally speaking, 
the flood path method can be divided into two main methods, namely “hydraulic routing” 
and “hydrologic routing”. The former is based on the concept of storage function, while the 
latter is based on the principle of mass conservation and momentum conservation.

However, the hydraulic routing method is often not so widely used in practice, mainly 
due to the unavailability of morphological and hydrological inputs required at small spatial 
scales (Perumal and Price 2013). Many researchers have conducted research in this topic 
(Price Roland 2009; Reggiani et  al. 2016; Swain and Sahoo 2015; Todini 2007; Yadav 
et  al. 2015). Simplification methods developed from the continuity equations and simpli-
fied forms of mass and momentum equations provide many important contributions. Many 
researchers have provided assessments, reviews, comparisons, and field applications (Fenton 
2019; Gąsiorowski and Szymkiewicz 2022; Koussis 2009; Perumal et al. 2001; Perumal and 
Sahoo 2012, 2007; Wei and Song 2022).

McCarthy (1938) proposed a primitive hydrological computation method, the Muskingum 
model, which is based on the storage-continuity relationship and involves multiple computa-
tion parameters, and all hydraulic and geomorphological characteristics of the river reach are 
concentrated into multiple model parameters (Todini 2007). As a popular hydrological flood 
routing method, the classical Muskingum model and its development can efficiently deal with 
many complex problems and are widely used in flood routing problems.

In practical applications, the accuracy of Muskingum model in predicting river flow 
depends on the definition of model structure and the determination of model parameters. In 
the past few decades, there are two main methods to improve the accuracy of the Muskingum 
model: (1) improving the structure of the Muskingum model and (2) developing optimization 
techniques for parameter estimation (Kang et al. 2017; Niazkar and Afzali 2016). In recent 
decades, some researchers have focused on changing the structure of the Muskingum model 
storage equation to improve the accuracy of fitting measured hydrological data. In general, 
the available models can be divided into the following categories: (1) Linear Muskingum 
model; (2) Nonlinear Muskingum model; (3) Muskingum model with variable exponent 
parameter; (4) Lateral flow Muskingum model; (5) Variable exponent parameters and lat-
eral flow Muskingum model and (6) Muskingum model considering the interaction between 
groundwater and surface water. With the increase of parameters, parameter optimization 
becomes more and more complex. Therefore, in practical applications, the parameter esti-
mation of Muskingum model is the key to flood routing (Sheng et  al. 2014). Up to now, 
various optimization algorithms have been developed and used to search the optimal solu-
tion of Muskingum model optimization problem. At present, the optimization techniques for 
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parameter estimation of Muskingum model can be divided into three categories: mathemati-
cal techniques, evolutionary algorithms and hybrid algorithms.

Although the research on Muskingum model has been very rich in recent years, it is 
still necessary to review and analyze the development of Muskingum model and parameter 
estimation technology. Analyzing the advantages and disadvantages of various improved 
models, so as to clearly study the challenges and improvements of the Muskingum model, 
provides better prediction skills for river flood evolution, and provides sufficient data for 
fitting observed hydrological data. In addition, this paper attempts to summarize the accu-
racy evaluation criteria used in most literature and the case data sets studied to evaluate 
various Muskingum models. Therefore, 80 years after the classic Muskingum model was 
proposed, a recent review article on this will inspire the future.

The rest of this paper is structured as follows: Section  2 introduces the Muskingum 
modelling development. Section  3 presents main optimization methods and optimiza-
tion technology for estimating the parameters of Muskingum models. Section 4 is a brief 
description of the adopted precision evaluation criteria for evaluating the performance of 
models and optimization techniques. Section 5 gives some studies case data sets. Finally, 
the work is concluded in Section 6.

2  Model Development

Many researchers focused on modifying the structure of the storage equation with the 
objective of improving accuracy in fitting observed hydrograph data. Muskingum models 
can be classified into six groups as follows:

2.1  Linear Muskingum Model

McCarthy (1938) presented continuity and storage equations for flood routing. The conti-
nuity equation is written as:

where I and Q denote upstream and downstream flow rates, respectively; S is the channel 
storage volume; t is the time; and ΔS∕Δt is the change in storage during a time interval Δt . 
The linear Muskingum model (LMM) is expressed as:

where K denotes a time storage constant for the river reach, and X is the weighting factor 
given to the inflow and outflow in a river reach.

2.2  Nonlinear Muskingum Models

The LMM has two parameters (K and X). However, it was observed to have a nonlinear 
relationship between the weighted flow and storage volume. The use of a nonlinear model 
might be more appropriate (Haddad et al. 2015). A nonlinear Muskingum model with three 
parameters was suggested by Chow (1959):

(1)
dS

dt
≈

ΔS

Δt
= I − Q

(2)S = K[XI + (1 − X)Q] (LMM)
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Gill (1978) added an exponent parameter m to Eq. (3):

Gavilan and Houck (1985) introduced a generalized NLM1 model with four parameters.

where α, α1 and α2 are flow parameters, and m is an exponent parameter.
Easa (2014b) presented a new nonlinear Muskingum model with four parameters that 

combined NLM1 and NLM2:

Easa et  al. (2014) proposed a general form of storage discharge relationship of the 
Muskingum model:

Vatankhah (2014b) proposed a nonlinear Muskingum model with five parameters:

Easa et al. (2014) proposed a nonlinear Muskingum model with six parameters based on a 
model with five parameters. It preserved the physical significance of the original Muskingum 
model parameters (Easa 2013):

Bozorg-Haddad et  al. (2015) proposed a nonlinear Muskingum model with seven 
parameters by adding two constraint coefficients (C1 and C2) based on NLM6.

Niazkar and Afzali (2017) proposed a new Muskingum model by utilizing eight con-
stant parameters in order to relate reach storage to inflow and outflow values:

Bozorg-Haddad et al. (2019) introduced four Muskingum models with improved, gener-
alized, nonlinear storage equations:

where X1 and X2 are weighting factors reflecting the significance of inflows in tth and 
(t + 1)th time intervals, respectively.

(3)S = K[XI� + (1 − X)Q�] (NLM1)

(4)S = K[XI + (1 − X)Q]m (NLM2)

(5)S = K[XI�1 + (1 − X)Q�2 ] (NLM3)

(6)S = K[XI� + (1 − X)Q�]m (NLM4)

(7)S = [C1I
�1 + C2Q

�2 ]m (NLM5)

(8)S = K[XI�1 + (1 − X)Q�2 ]m (NLM6)

(9)S = [X(C1I
�1 ) + (1 − X)(C2Q

�2 )]m (NLM7)

(10)S = K[X(C1I
�1 ) + (1 − X)(C2Q

�2 )]m (NLM8)

(11)S = K[X1I
�1 (1 + X2I

�2 ) + X3Q
�3 )]m (NLM9)

(12)St = K[X1It
� + X2I

�

t+1
+ (1 − X1 − X2)Q

�

t
)] (NLM10)

(13)St = K[X1It + X2It+1 + (1 − X1 − X2)Qt)]
m (NLM11)

(14)St = K[X1It
� + X2I

�

t+1
+ (1 − X1 − X2)Q

�

t
)]m (NLM12)

(15)St = K[X1(C1It
�) + X2(C1I

�

t+1
) + (1 − X1 − X2)C2Q

�

t
)]m (NLM13)
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2.3  Muskingum Models with a Varying Exponent Parameter

Based on the NLM2 model, Easa (2013) proposed an improved Muskingum model with a 
varying exponent parameter. The exponent parameter, which has no physical meaning, is 
assumed to vary with the inflow level.

where mt is related to It, mt denotes exponent parameter at time t, and letting the inflow 
range be divided into L levels, mt is defined as

where �i denotes inflow dividing value for level I; and �i is given as

where ri denotes inflow dividing parameters for level i, and Imax denotes the maximum 
inflow.

Vatankhah (2014a) employed a general functional mt based on NLM-VEP1:

where the angle of the sine function is expressed in radian, and constant coefficients 
�i(i = 1, 2,… , 5) are obtained by using an optimization procedure.

Easa (2015) proposed a general model formulation nonlinear Muskingum model with a 
varying exponent parameter:

where K(�t) , X(�t) , �(�t) , and m(�t) are varying parameters and �t is a dimensionless 
inflow variable (0 to 1) for time interval t, given by

where It denotes the inflow for time interval t and Imax denotes the maximum inflow during 
the routing period.

Easa (2014a) proposed a Muskingum model with an inflow based continuous parameter 
by assuming a continuous parameter m(�t) , which is a function of dimensionless inflow 
variable �t:

(16)St = K[XIt + (1 − X)Qt]
mt (NLM-VEP1)

(17)mt

⎧
⎪⎪⎪⎨⎪⎪⎪⎩

m1 It ≤ �1

m2 �1 ≤ It ≤ �2

⋯ ⋯

mi �i−1 ≤ It ≤ �i

⋯ ⋯

mL It ≥ �L−1

(18)�i = ri × Imax, i = 1, 2,…(L − 1)

(19)St = K[XIt + (1 − X)Qt]
mt (NLM-VEP2)

(20)mt = �1 + �2sin[a3 + a4(t + 1)a5 ]

(21)St = K(�t)[X(�t)I
a(�t)

t
+ (1 − X(�t))Q

a(�t)

t
]
m(�t) (NLM-VEP3)

(22)�t=It∕Imax

(23)St = K[XIt + (1 − X)Qt]
m(�t) (NLM-VEP4)
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where m(�t) denotes exponent parameter for time interval t, a, b, c denote coefficients to 
be determined using optimization, and �t denotes dimensionless inflow variable (0 to 1), 
expressed by Eq. (22).

2.4  Muskingum Models with Lateral Flow

All the above introduced models ignored the reality that lateral flow existed in the river reach 
in actual flood events (Kang et  al. 2017). O’Donnell (1985) proposed the first Muskingum 
model with lateral flow and assumed that the lateral flow entering the river reach was directly 
proportional to the inflow with a proportionality factor β:

The LMM-LF was used for studying flow routing process during river ice thawing-
breakup period (Yang et al. 2019).

Karahan et al. (2015) presented a nonlinear Muskingum model with lateral flow by inte-
grating lateral flow assumption with NLM2, and

where m is a positive exponent different from 1.
Kang et al. (2017) proposed a nonlinear Muskingum model with lateral flow by intro-

ducing a similar lateral flow assumption into NLM4.

2.5  Muskingum Models with Varying Exponent Parameter and Lateral Flow

Zhang et al. (2017) presented a varying exponent parameter Muskingum model with lateral 
flow by considering that the exponent parameter mt of NLM-LF1 varied with inflow levels:

Kang et al. (2017) proposed another nonlinear Muskingum model with lateral flow by 
considering that the exponent parameter mt of NLM-LF2 varied with inflow levels.

2.6  Muskingum Models Considering Interaction of Groundwater and Surface Water

Lu et al. (2021) presented an improved NLM-LF1 by assuming that a stable GW-SW inter-
action process existed before a flood event:

(24)m(�t) = a + be−e
c�t

(25)
dSt

dt
= (1 + �)It − Qt

(26)St = K[X(1 + �)It + (1 − X)Qt] (LMM-LF)

(27)St = K[X(1 + �)It + (1 − X)Qt]
m (NLM-LF1)

(28)St = K[X(1 + �)I�
t
+ (1 − X)Q�

t
]m (NLM-LF2)

(29)St = K[X(1 + �)It + (1 − X)Qt]
mt (NLM-VEP-LF1)

(30)St = K[X(1 + �)I�
t
+ (1 − X)Q�

t
]mt (NLM-VEP-LF2)
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where e denotes the stable lateral inflow due to the GW-SW interaction.
Considering the nonlinear relationship between lateral inflow and channel inflow, the 

following equation is given by Lu et al. (2021):

where β denotes a power exponent.

2.7  Comparison and Summary of Each Model

In the development of nonlinear Muskingum model, researchers have continued to improve 
it by increasing the method of considering parameters, so that it has higher degrees of free-
dom, better fitting ability, and the development tends to be realistic. But to some extent, it 
will also increase the complexity of the model.

However, only studying the nonlinear Muskingum model is obviously not in line with real-
ity and lacks practical significance, because there are many factors in the actual flood process. 
Therefore, scholars began to consider the exponential case on the basis of non-linearity, lateral 
flow, and the later Muskingum models contained both conditions. These models further opti-
mized the ability to predict flood paths. Not only that, some researchers have also considered 
the exchange of surface water and groundwater in reality, so the Muskingum model includ-
ing surface water and groundwater is studied, which renders the development of Muskingum 
model closer the actual situation. The following appendix shows the advantages and disad-
vantages of each Muskingum model. It is believed that with the development of science and 
technology, scholars will constantly improve the Muskingum model according to the reality.

3  Parameter Estimation Methods

From literature, it is known that the estimation of model parameters is the most important 
work for applying Muskingum models. Thus, many research works carried out over recent 
decades have focused on estimating the parameters of Muskingum models. Based on sur-
veyed literature, the parameter estimation techniques of the Muskingum models can be 
divided into three groups as follows:

3.1  Mathematical Techniques

S-LSM method was suggested by Gill (1978) to solve a system of nonlinear equations at 
each time using a trial-and-error procedure. But, if more than a few time steps are included, 
the S-LSM method could be very time-consuming (Barati 2011). The LSR technique was 
adapted to estimate Muskingum flood routing model coefficients for multiple tributaries 
(Khan 1993). An iterative nonlinear multivariate parameter estimation technique (NONLR) 
was proposed by Yoon and Padmanabhan (1993), which was an iterative procedure includ-
ing nonlinear least squares regression and required an initial assumption of parameter values. 
The tedium of piecewise linearization could be avoided by using NONLR, which directly 
fitted the nonlinear model to the data using nonlinear least-squares regression (Yoon and 
Padmanabhan 1993). Das (2007) proposed a chance-constrained optimization-based model, 

(31)St = K[X(1 + �)It + (1 − X)Qt + e]m (NLM-LF1-GS)

(32)St = K[XIt + (1 − X)Qt + e + I
�

t ]
m
(NLM2-GS)
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which determined the parameters of the Muskingum model by minimizing the SSD of dif-
ference between the observed and routed outflows. However, the developed model by Das 
(2007) was very complex and required massive computation for parameter estimation of the 
Muskingum model (Niazkar and Afzali 2015). Barati (2011) recommended Nelder-Mead 
simplex algorithm (NMS) to find the values of parameters in nonlinear Muskingum model. 
Although the algorithm was simple for programming and it converged quickly to optimal 
values, it demanded an initial guess for the parameter estimation (Barati 2011; Niazkar and 
Afzali 2015). In order to eliminate the limitation of parameter estimation procedures, Barati 
(2013) developed parameter estimation for nonlinear Muskingum models using Excel Gen-
eralized Reduced Gradient (GRG) Solver, which was a deterministic method and needed ini-
tial value assumption for parameter estimation. Gasiorowski and Szymkiewicz (2020) used 
Powell’s algorithm for the identification of parameters influencing the accuracy of the solu-
tion of the nonlinear Muskingum Equation. Spiliotis et al. (2021) proposed a fuzzy Musk-
ingum model, which treated the parameters as fuzzy symmetric trigonometric numbers to 
make the fuzzy parameters closer to nature and increase the security of prediction. These 
mathematical techniques were easy programmed and were quite efficient for finding an opti-
mal solution very quickly, but they lacked global optimality and achieved global optimal 
solutions contingent on the specification of suitable initial parameter estimates, which was a 
nontrivial task (Barati 2011; Bozorg-Haddad et al. 2015).

3.2  Evolutionary Algorithms

Genetic algorithm (GA) is an evolutionary iterative search engine, which was first used by Mohan 
(1997) to find optimal parameters of nonlinear Muskingum model. GA could reach better results 
without requiring initial guesses close to optimal parameter values (Niazkar and Afzali 2015). 
Wang et  al. (2009) proposed a hybrid chaotic genetic algorithm (HCGA) based on chaotic 
sequence and GA for parameter estimation of Muskingum model. Chu and Chang (2009) applied 
PSO to the parameter estimation for nonlinear Muskingum model. PSO did not require any initial 
guess of each parameter and thus avoided the subjective estimation usually found in traditional 
estimation methods and reduced the likelihood of finding a local optimum of parameter values 
(Chu and Chang 2009). Although results achieved by PSO were better than those of GA, they were 
not as good as those by other algorithms such as HS and BFGS (Niazkar and Afzali 2015). Luo 
and Xie (2010) proposed an immune clonal selection algorithm (ICSA), which did not demand 
any initial estimate of values to solve parameters of nonlinear Muskingum model. However, 
a sensitivity analysis was required for the determination of algorithm parameters such as clonal 
scale, mutation probability, and crossover probability (Barati 2011). Xu et al. (2012) investigated 
DE for parameter estimation problem of nonlinear Muskingum model, and the application results 
demonstrated that using DE to estimate parameters could get the best objective values compared 
with LSM, HJ + DFP, NONLR, GA, HS, BFGS and PSO. Orouji et al. (2013) applied simulated 
annealing algorithm (SAA) and SFLA to determine parameters in the Muskingum model, and 
the application results of two benchmarks and real cases showed that SFLA could give the best 
parameter estimation compared to SAA. Niazkar and Afzali (2015) used a modified honey bee 
mating optimization algorithm (MHBMOA) with a modified routing procedure for the estimation 
of Muskingum parameters. Although MHBMOA did not require initial guesses to initiate 
parameters, it necessitated that they be selected wisely (Niazkar and Afzali 2015). Karahan et al. 
(2015) used CSA for the calibration of parameters of a modified nonlinear Muskingum model. 
Yuan et al. (2016) developed an improved BSA to estimate parameters of nonlinear Muskingum 
model, and results indicated the improved BSA could obtain better performance of solution 
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precision and computational efficiency than PSO, GA and DE. Kang and Zhang (2016) applied 
elitist-mutated PSO and IGSA to estimate parameters of Muskingum flood routing models. They 
suggested that the two approaches could be confidently employed to estimate parameters of both 
linear and nonlinear Muskingum models in engineering applications. Farzin et al. (2018) used 
IBA to optimize estimated values of three parameters associated with the Muskingum model. 
Farahani et al. (2019) used Shark Algorithm (SA) to estimate parameters of nonlinear Muskingum 
with four parameters and results indicated SA outperformed several other evolutionary 
algorithms. In order to improve the accuracy of outflow prediction, Akbari et al. (2020) proposed 
a nonlinear Muskingum model with four variable parameters. This model was superior to 
other nonlinear Muskingum models used by other researchers at that time. Lee (2021) used the 
meta-heuristic optimization algorithm SAVCA to adjust the parameters of a Muskingum flood 
evolution model. Norouzi and Bazargan (2021) used particle swarm optimization to optimize 
the parameters of a linear Muskingum method and data from a single elementary flood, and then 
applied these parameters to compute outflow hydrographs for four floods, which improved the 
accuracy of the linear Muskingum method for estimating hydrographs. Bozorg-Haddad et  al. 
(2021) used the Teaching-Based Optimization Algorithm (TLBO) to estimate three parameters 
of the nonlinear Muskingum model. The combination of TLBO and Muskingum bypassed the 
need for specific algorithms to optimize parameters, which rendered the Muskingum model 
flood routing more accurate. Sun et  al. (2021) used genetic algorithms to optimize uncertain 
parameters in Muskingum’s method and compared them with the measured flow. Results 
showed that the absolute error of about 85% of the observed data was less than 15%, and the 
runoff and groundwater level changes were well simulated. Norouzi and Bazargan (2022) used 
particle swarm optimization algorithm to optimize linear Muskingum parameters through the 
time variation of Y, and proposed a computation method for downstream flood depth with high 
accuracy. These algorithms did not need initial values of the designed parameters and search 
randomly for a near-global optimal solution. But these algorithms required careful attention for 
algorithm parameters, which would affect the execution of the algorithm.

3.3  Hybrid Algorithms

In the last ten years, hybrid global–local optimization algorithms have become popular 
solution approaches for solving engineering optimization problems (Ayvaz et  al. 2009;  
Kayhan et al. 2010). Easa (2013) used GA and GRG to obtain the global optimal solution 
for an improved nonlinear Muskingum model with a varying exponent parameter. Karahan 
et  al. (2013) proposed a hybrid HS and BFGS algorithm for improving the Muskingum 
parameters by coupling a heuristic method for global search and a gradient-based method for  
local search. Ouyang et al. (2014) combined PSO with NMS to optimize parameters of the 
Muskingum model. The hybrid PSO-NMS did not require initial values for each parameter,  
which helped to decrease the computation for global optimum search of parameter values. 
Hamedi et  al. (2015) proposed a hybrid optimization (SFLA-GRG) method for optimal  
parameter estimation of nonlinear Muskingum. Results demonstrated that SFLA-GRG  
method was more effective than Excel solver for parameter optimization of nonlinear 
Muskingum models. Haddad et  al. (2015) proposed a novel hybrid SFLA-NMS method 
for optimal parameter estimation of two new nonlinear Muskingum models in three case 
studies. Results showed that the hybrid SFLA-NMS method could be successfully applied 
to optimize parameter values of nonlinear Muskingum models. Niazkar and Afzali (2016, 
2017) proposed a new hybrid technique, which combined MHBMO and GRG algorithms 
for Muskingum parameter estimation. Kang et al. (2017) combined an improved real-coded 
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adaptive GA and NMS algorithm, which was utilized for parameter estimation of two 
improved nonlinear Muskingum models considering lateral flow. Ehteram et  al. (2018) 
reported a hybrid PSO and BA which could prevent trapping in local optima and increase 
the convergence speed by substituting a weaker BA solution with the best PSO solution. 
Bozorg-Haddad et  al. (2019) successfully used SFLA-NMS method to estimate optimal 
parameter values with different generalized nonlinear Muskingum models. Okkan and  
Kirdemir (2020) mixed PSO with the Levenberg–Marquardt (LM) algorithm to estimate the  
parameters of a nonlinear Muskingum model with three parameters. Compared with other 
algorithms, the optimal results were obtained faster. Akbari and Hessami-Kermani (2021) 
used PSO-GA algorithm to optimize Muskingum parameters with faster convergence speed 
and higher accuracy. Yuan et al. (2021) proposed a modified PRP algorithm based on line 
search technique and modified PRP formula, which had better performance in estimating  
the parameters of nonlinear Muskingum model. These hybrid methods overcame the 
shortcomings of both mathematical optimization techniques and evolutionary algorithms, 
and thus appeared to be the most efficient in solving parameter estimation with nonlinear 
Muskingum models (Bozorg-Haddad et al. 2019; Niazkar and Afzali 2016).

3.4  Method Summary

In the above mathematical methods for optimizing the Muskingum model, from the initial 
S-LSM method to the recent fuzzy parameter method, it has been constantly closer to the 
uncertainty of the problem. Among them, the fuzzy estimation method is relatively good, 
which not only makes the fuzzy parameters closer to nature but also improves the safety of 
prediction. Moreover, the generated blur band can largely include the output of observation 
data. Global optimization is the key advantage of such methods, but the premise is that the 
initial guess of the optimal solution should be close to the global optimum.

With the continuous development of computer technology, researchers continue to 
explore new optimization algorithms and pertinent modified algorithms to improve the 
accuracy of the Muskingum model in the process of river flood routing. Among the above 
evolutionary algorithms, PSO and GA algorithm are the fastest, most accepted and most 
widely used. However, these algorithms need to pay close attention to the parameters of the 
algorithm, because they are plagued by the slow convergence of random search computa-
tion intensive to the global optimum, which will affect the execution of the algorithm.

Using hybrid algorithms to estimate parameters can continuously combine the advan-
tages and disadvantages of different algorithms to complement each other. Recently, Akbari 
and Hessami-Kermani (2021) used PSO-GA algorithm to estimate for continuous improve-
ment. At present, the combination of PSO-GA is the best. They have fast convergence 
speed, high precision and are superior to other hybrid algorithms in the Muskingum model. 
Among these parameter estimation methods, the third type (hybrid algorithm) seems to be 
the most effective solution to parameter estimation of the nonlinear Muskingum model.

4  Performance Evaluation Criteria

Parameters of different versions of Muskingum models can be estimated by various 
techniques. To evaluate the performance of models and optimization techniques, six 
precision evaluation criteria are generally employed, namely sum of squared deviations 
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(SSD), sum of absolute value of deviations (SAD), absolute value deviations between 
peaks of observed and routed flows (DPO), absolute value of deviations of peak times 
of observed and routed flows (DPOT), mean absolute relative error (MARE), and 
Nash–Sutcliffe criterion (NSC) (Barati 2013; Niazkar and Afzali 2015).

4.1  Outflow Criteria

The accuracy of the outflow can be determined by SSD or SAD (Barati 2011; Mohan 
1997; Xu et al. 2012):

where Ot
o
 and Ot

r
 are observed and routed outflows respectively at time t, and N is the total 

number of time intervals.

4.2  Peak Magnitude Criterion

DPO is a measure of the accuracy of the peak magnitude of the outflow (Yoon and 
Padmanabhan 1993):

where Op
o
 and Op

r
 are peak magnitudes of observed and routed outflows, respectively.

4.3  Peak Time Criterion

DPOT is a measure of the accuracy of the peak time of the outflow (Yoon and Padmanabhan 
1993):

where Tp
o and Tp

r  are peak times of observed and routed outflows, respectively.

4.4  Mean Absolute Relative Criterion

MARE is a measure of error between observed and routed outflows (Toprak 2009):
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4.5  Nash–Sutcliffe Criterion

NSC is recommended by the ASCE Task Committee on Definition of Criteria for Evalua-
tion of Watershed models (McCuen et al. 2006; Perumal and Sahoo 2007):

5  Studied Case Data Set

Based on the literature review, several case studies were often considered to test the per-
formance of all the above different versions of Muskingum models and various param-
eter estimation techniques. Common cases of nonlinear river flood routing model were 
considered to reflect the linear and nonlinear characteristics of flood routing in different 
regions. The Wilson dataset was a smooth unimodal process whilst the flood of Wye River 
in December 1960 was a non-smooth unimodal process. The Viessman and Lewis datasets 
and the October 1982 flood of the Wye River were multi-peak hydrological processes, and 
the 1961 flood of the South Canal was a hydrological process that included heavy rainfall. 
These were representative test sets.

5.1  Case 1: Data set by Wilson

Wilson (1974) reported the inflow and outflow hydrographs, which were smooth single-
peak hydrographs, as shown in Fig. 1. The data set has been demonstrated to exhibit an 
obvious nonlinear relationship between the storage and weighted-flow (Mohan 1997; Yoon 
and Padmanabhan 1993). These data were widely used for verifying different structures 
of the storage equation of Muskingum models and the effectiveness of various parameters 
estimation techniques during the optimization stage.

5.2  Case 2: River Wyre December 1960 Flood

The second case data set were about a 1960 flood in the Wye River in the United Kingdom, 
which stretched 69.75 km from Erwood to Belmont and had no tributaries and very small 
lateral inflow (Natural Environment Research Council 1975). The inflow and outflow hydro-
graphs were non-smooth single-peak hydrographs, as shown in Fig. 2. This case data set was 
first studied by O’Donnell et al. (1988) with a linear Muskingum model. This flood case was 
considered a good test case to test flood routing methods (Bajracharya and Barry 1997).

5.3  Case 3: Data set by Viessman and Lewis

The third case data set were introduced by Viessman and Lewis (2003). The inflow and 
outflow hydrographs were multiple -peak hydrographs, as shown in Fig. 3.

(38)NSC =

�
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(Ot
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r
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(Ot

o
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r
)2

�
× 100
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5.4  Case 4: River Wyre October 1982 Flood

The fourth flood event was a 1982 flood in the Wye River in the United Kingdom, which 
was first employed by O’Donnell (1985) for a direct three parameter Muskingum proce-
dure incorporating lateral inflow, as shown in Fig. 4. This flood event not only exhibited  
a considerable increase in the flood volume between the inflow and outflow sections  
(lateral flow about 25  km apart), but also had a multi-peaked inflow (O’Donnell 1985; 
Zhang et al. 2017).

Fig. 1  Inflow and outflow hydrographs by Wilson

Fig. 2  Inflow and outflow hydrographs of River Wyre December 1960 flood
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5.5  Case 5: Nanyun River 1961 Flood

The fifth flood event was about a 1961 flood in the Nanyun River in China, which stretched 
83.8 km from Chenggouwan to Linqing and had no tributaries in the middle. When there 
was heavy rainfall, there were waterlogging and water discharge, but had little impact on 
the flood, as shown in Fig. 5. The data set were employed with a linear Muskingum model 
by Wang et al. (2009).

Fig. 3  Inflow and outflow hydrographs by Viessman and Lewis

Fig. 4  Inflow and outflow hydrographs of River Wyre October 1982 flood
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6  Conclusions and Future Directions

Channel flood evolution is an important aspect of water resources management. Muskingum 
model is one of the most widely used channel flood evolution methods. This paper reviews 
the research status and progress of six types of model structures, three groups of optimization 
techniques, six commonly used performance evaluation criteria and five reference case data 
sets. According to the study on different model structures, the more were the parameters, the 
better was the performance of flood routing model in fitting historical records. However, the 
optimization process becomes more complex, and the model prediction ability deteriorates. In 
addition, the combination of mathematical techniques and evolutionary algorithms shows high 
efficiency in parameter estimation. Based on this, we present our views on future directions, 
research questions, and hotspots related to the Muskingum model on river flood routing.

1. Some special and general Muskingum models have been developed for river flood rout-
ing. The models have different numbers of parameters, and a research question is which 
model can simulate routing flood more accurately for applications to different hydro-
graph types in practice. Field and laboratory experiments should be made in future to 
better understand characteristics of Muskingum models for routing flood events.

2. It was acknowledged that an increasing number of parameters in model calibration also 
increased the data dependency of the model and worsened the prediction ability of the 
model (Karahan 2014). Although some researches have done a lot of effective work for the 
optimal parameter estimation of Muskingum Models, calibration of their parameters was 
still considered to be challenging. The recent advancement in optimization technologies 
has provided a feasible way for practical optimization problems (Wang et al. 2020). Thus, 
the application of more efficient algorithms that can determine optimal solution is recom-
mended for future studies.

3. The variations of environmental conditions can change characteristics of catchments such 
as catchment shape, river morphology, and vegetation, which have important effects on the 
channel storage. The values of parameters of Muskingum model for a given river should 

Fig. 5  Inflow and outflow hydrographs of Nanyun River 1961 flood
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be updated after any significant variations in environmental conditions. Hence, sensitivity 
analysis should be undertaken to investigate the influence of correlated parameters in Musk-
ingum models on model outputs in order to adapt to impacts of environmental changes.

Appendix

Table 1

Table 1  Comparison of different models

Number Author and year of 
publication

Model type Brief description (advantages/limitations and the consequent 
application)

1 McCarthy (1938) LMM In the earliest linear Muskingum model, the nonlinear relationship 
between weighted traffic and storage is not significant

2 Chow (1959) NLM1 It has more degrees of freedom than LMM, so it usually gets 
closer to the observed outflow

3 Gill (1978) NLM2 It has more degrees of freedom than LMM, and further 
improves the fitting of the model based on NLM1.It is the 
most studied model based on different parameter estimation  
methods

4 Gavilan and Houck 
(1985)

NLM3 It is significantly more complex than NLM1 and NLM2. 
Although it increases the complexity, it greatly improves 
the accuracy and provides greater freedom in fitting the 
observation data

5 Easa (2014b) NLM4 It is significantly more complex than NLM1 and NLM2. 
Although it increases the complexity, it provides greater 
freedom when fitting the observed data, and also greatly 
improves the fitting with the observed

6 Easa (2014b) NLM5 It is the general form of the relationship between the river 
and the lake in the Muskingum model. In the three case 
studies of reference (Easa 2014b), it has achieved better 
results than NLM4

7 Vatankhah (2014b) NLM6 It is a five-parameter Muskingum model, which can provide 
more degrees of freedom than NLM1 and NLM2 by setting 
some exponential parameters. Although it usually produces 
results closer to the observed outflow or storage rate, the 
model is more complex

8 Easa et al. (2014) NLM7 It is an extension of the NLM5 model, which takes the square 
sum of the deviation between the observed outflow and the 
routing outflow ( SSQ) as the objective function, so that the 
SSQ is further reduced, and it retains the physical meaning 
of the original Muskingum model parameters

9 Bozorg-Haddad 
et al. (2015)

NLM8 It has a more complex calibration process than other nonlinear 
Muskingum models, but the additional complexity may lead 
to substantial improvements in data fitting

10 Niazkar and Afzali 
(2017)

NLM9 The SSQ obtained by using the hybrid algorithm combined 
with the nine-parameter model is 4.52% and 99.7% lower 
than the previous best results, and the effect is better

11 Bozorg-Haddad 
et al. (2019)

NLM10 The calculation of the NLM10 model requires the values of 
four parameters. Compared with NLM1, the model has 
higher degrees of freedom in fitting the measured hydraulic 
data, and its ability to predict river flow is also better than 
other nonlinear Muskingum models
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Table 1  (continued)

Number Author and year of 
publication

Model type Brief description (advantages/limitations and the consequent 
application)

12 Bozorg-Haddad 
et al. (2019)

NLM11 The calculation of the NLM11 model requires the values of 
four parameters. Compared with NLM2, the model has 
higher degrees of freedom in fitting the measured hydraulic 
data, and its prediction ability for river flow is also better 
than other nonlinear Muskingum models

13 Bozorg-Haddad 
et al. (2019)

NLM12 The calculation of the NLM12 model requires the values 
of five parameters. Compared with NLM4, the model has 
higher degrees of freedom in fitting the measured hydraulic 
data, and its ability to predict river flow is also better than 
other nonlinear Muskingum models

14 Bozorg-Haddad 
et al. (2019)

NLM13 The calculation of the NLM13 model requires the values of 
eight parameters. Compared with NLM8, the model has 
higher degrees of freedom in fitting the measured hydraulic 
data, and its ability to predict river flow is better than other 
nonlinear Muskingum models

15 Easa (2013) NLM-VEP1 Compared with NLM2, the range of optimal exponential 
parameters is smaller, and the fitting of nonlinear  
Muskingum model is significantly improved

16 Vatankhah (2014a) NLM-VEP2 This model is a nonlinear Muskingum model with more 
degrees of freedom than NLM-VEP1. Compared with  
the seven-parameter nonlinear Muskingum model, the 
accuracy is improved and the complexity is reduced

17 Easa (2015) NLM-VEP3 Compared with the traditional three-parameter model, this 
model greatly improves the prediction performance of the 
model for flood flow

18 Easa (2014a) NLM-VEP4 The NLM-VEP4 model is obviously more complex than the 
existing nonlinear models given by models NLM1 and 
NLM2. However, additional parameters in the new model 
were found to greatly improve the fitting of observed 
outflows

19 O’Donnell (1985) LMM-LF Compared with LMM, the basic two-parameter Muskingum 
model is extended to a three-parameter model, and a simple 
lateral inflow assumption is adopted, which is an advanced 
idea in the current environment

20 Karahan et al. 
(2015)

NLM-LF1 Compared with NLM2,NLM-LF1 can successfully simulate 
flood data with smaller lateral flow

21 Kang et al. (2017) NLM-LF2 This nonlinear Muskingum model considering lateral flow is 
more advantageous than NLM4

22 Zhang et al. (2017) NLM-VEP-LF1 The model includes a variable exponent parameter describing  
the nonlinearity of flood waves and a flow parameter 
representing the lateral flow of the studied river section. 
Compared with LMM and NLM2, it can generate more 
accurate flood routing process lines

23 Kang et al. (2017) NLM-VEP-LF2 This is a nonlinear Muskingum model considering lateral 
flow, which can fit the observed outflow more accurately 
than NLM-LF2

24 Lu et al. (2021) NLM-LF1-GS Based on the improvement of NLM-LF1, the physical  
evolution of river flood is more reasonable

25 Lu et al. (2021) NLM2-GS The improved model can prevent groundwater inundation 
in extreme flood events and has practical significance for 
groundwater management and flood control
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