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Abstract
Precise estimation of groundwater level (GWL) might be of great importance for attain-
ing sustainable development goals and integrated water resources management. Compared 
with alternative numerical models, soft computing methods are promising tools for GWL 
prediction, which need more hydrogeological and aquifer characteristics. The central aim 
of this research is to explore the performance of such well-accepted data-driven models 
to predict monthly GWL with emphasis on major meteorological components, including; 
precipitation (P), temperature (T), and evapotranspiration (ET). Artificial neural network 
(ANN), fuzzy logic (FL), adaptive neuro-fuzzy inference system (ANFIS), group method 
of data handling (GMDH), and least-square support vector machine (LSSVM) are used 
to predict one-, two-, and three-month ahead GWL in an unconfined aquifer. The main 
meteorological components (Tt, ETt, Pt, Pt-1) and GWL for one, two, and three lag-time 
(GWLt-1, GWLt-2, GWLt-3) are used as input to attain precise prediction. The results show 
that all models could have the best prediction for one month ahead in scenario 5, com-
prising inputs of GWLt-1, GWLt-2, GWLt-3, Tt, ETt, Pt, Tt-1, ETt-1, Pt-1. Based on different 
evaluation criteria, all employed models could predict the GWL with a desirable accuracy, 
and the results of LSSVM are the superior one.

Keywords  Soft computing · Groundwater level prediction · Hydrogeology · Meteorological 
components

1  Introduction

Precise groundwater level (GWL) prediction is vital in developing water resources 
management strategies since they provide reliable quantitative information (Wunsch 
et  al. 2020; Samani 2021). Recently, numerous studies have explored GWL predic-
tion using different numerical and data-driven models (Chakraborty et al. 2020; Rezaei 
et al. 2021). The main drawback of physics-based models is a need for an extensive and 
uncertain dataset, including hydrogeological, water budget, and geophysical data. Such 
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limitations have pushed engineers and researchers to apply data-driven methods in prac-
tice. Data-driven modeling utilizes real-time tolerance to model the hydrological events 
in an inaccurate and uncertain environment (Ghazi et al. 2021; Roy 2021; Antonopoulos 
and Gianniou 2022; Rahbar et al. 2022).

Hydrological time series exhibit nonlinear time-dependent behavior, which are too 
complicated to solve with standard numerical and statistical models (Rajaee et  al. 2019). 
Recently, artificial intelligence (AI)-based methods such as artificial neural networks 
(ANNs), group method of data handling (GMDH), gene expression programming (GEP), 
least-square support vector machine (LSSVM), fuzzy logic (FL), adaptive neuro-fuzzy infer-
ence system (ANFIS), model tree (MT), multivariate adaptive regression splines (MARS), 
and evolutionary polynomial regression have been widely employed to predict GWL 
(Suryanarayana et al. 2014; Rajaee et al. 2019; Roshni et al. 2019; Mohammadrezapour et al. 
2020; Ghazi et al. 2021; Mozaffari et al. 2022; Poursaeid et al. 2022). Such well-accepted 
models can cope with the complexity of GWL prediction and could provide relatively a bet-
ter accuracy than numerical models.

Comparison of several AI-based models in GWL prediction is still highly demanded. 
In a study, Moghaddam et al. (2021) used combinations of parameters including GWL, 
groundwater withdrawal, recharge, precipitation (P), evapotranspiration (ET), and tem-
perature (T) to predict GWL. Results pointed out that GMDH had a better outcome than 
the Bayesian network and ANN in GWL prediction. Shiri et  al. (2020) used six AI-
based models, ANN, BT, MARS, RF, GEP, and SVM, in a coastal aquifer to forecast 
GWL, and they figured out that GEP’s outcomes were the superior one. A brief detail 
of studies regarding applying the AI-based models for GWL prediction is presented in 
Table  1. The ANN model is the most common AI-based model for GWL prediction 
based on Table 1.

The ANN has been recently utilized for GWL prediction (e.g., Banadkooki et al. 2020). 
Likewise, ANFIS and SVM have been applied to predict GWL and indicated an improve-
ment in accuracy compared to ANN in GWL prediction (Kasiviswanathan et  al. 2016; 
Khedri et  al. 2020). Even though the ANNs, SVMs, and ANFIS have been commonly 
employed in GWL prediction whereas the efficiency of the GMDH model has seldomly 
been investigated in groundwater modeling. However, this method has been successfully 
applied in civil engineering, water quality management, and soil science (Najafzadeh et al. 
2013; Tayebi et al. 2019; Lin et al. 2020). One of the motivations of this study is to assess 
the viability of the GMDH model in GWL prediction.

The present study evaluates the ability of various AI-based models in GWL prediction. 
The main aim to conduct this research could be summarized as a) modeling the behavior of 
a rising GWL in monitoring well while the other parts of the aquifer demonstrate a severe 
declining GWL; b) predicting GWL at the aquifer scale using monthly GWL, P, T, ET 
dataset as inputs; and c) comparing the efficiency of the FL, ANFIS, ANN, GMDH and 
LSSVM models in GWL prediction. To the best of the authors’ knowledge and based on 
Table 1, limited research has been implemented to predict groundwater levels using a com-
bination of FL, ANFIS, ANN, GMDH, and LSSVM competitive methods in GWL predic-
tion, and there is no study in the literature which compares all these methods in GWL pre-
diction using monthly P, T, ET datasets as inputs. Hence, this paper tried to provide more 
evidence on the ability of these models to predict GWL using climatic inputs. The present 
study sheds light on the GWL modeling in aquifers with poor hydrological and hydrogeo-
logical datasets. The outcomes of this sort of AI-based models provide a reliable perspec-
tive for decision-makers to attain sustainable water resources management goals. Figure 1 
shows the procedural outline of the applied AI-based models.
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2 � Methods

2.1 � Artificial Neural Network (ANN)

The ANN approach is biologically inspired by the human brain (Patel et  al. 2022). This 
model approximates the brain in two phases: (a) knowledge is obtained by the network 
from its environment as a result of a learning procedure, and (b) interneuron connection 
strengths are used to collect the obtained knowledge (Haykin 2004). The ANN procedure 
comprises five stages: selecting inputs, selecting an appropriate architecture, neural net-
work construction, training and testing procedure, and finally, evaluating the developed 
model (Sahoo and Jha 2013). Multilayer perceptron (MLP), as the most widely used ANN 

Fig. 1   Methodological framework of the proposed groundwater models



3631Groundwater Level Simulation Using Soft Computing Methods…

1 3

in hydrological studies, was used in this study (McGarry et al. 1999). The MLP comprises 
three layers (input, hidden and output). The number of layers and neurons in each layer 
is essential to reach an optimum model structure. One hidden layer was used in the ANN 
model because this is sufficient for GWL prediction based on previous studies,.

MATLAB® (Mathworks 2014) software was employed to develop AI-based models in 
this study and Levenberg–Marquardt (LM) algorithm was implemented for ANN model. 
The overall framework of AI-based models is presented in Fig. 2.

2.2 � Fuzzy Logic (FL)

FL can overcome the intrinsic uncertainty between defined sets in mathematical form 
(Zadeh 1995). A fuzzy controller comprises three basic processes: fuzzification, infer-
ence, and defuzzification (Bai and Wang 2006). The fuzzification step involves transform-
ing a crisp dataset into a fuzzy dataset or membership function (MF). The fuzzy inference 

Fig. 2   The general structure of AI-based models
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system (FIS) combines MFs and fuzzy if–then rules to achieve the fuzzy output. The most 
useful FIS in water resources, Mamdani, Sugeno, and Tsukamoto, differ in aggregation 
and defuzzification. The defuzzification procedure converts the fuzzy outputs to crips 
results based on a fuzzy rule-based system. In this study, genfis-2 was applied to develop 
the FL model, which generates a Sugeno-type FIS structure using subtractive clustering 
and requires clustering radius as input parameters. The clustering radius was investigated 
for the range [0.2,0.9] based on trial and error. This parameter determines the number of 
clusters and fuzzy inference system rules. The smaller radius produces a model with fewer 
clusters and rules and vice versa (Chiu 1994).

2.3 � Adaptive Neuro Fuzzy Inference System (ANFIS)

The ANFIS is a single structure that can capture the benefits of the adaptive neural net-
work and the FIS (Jang 1993). The ANFIS is an AI-based model with a flexible statistical 
structure that can identify complicated nonlinearity and uncertainties due to vagueness and 
randomness between variables without trying to achieve an insight into the nature of the 
events. ANFIS models are based on the Sugeno system. The ANFIS structure utilized here 
consists of five layers (Fig. 2):

Layer 1: Fuzzy Membership, The most frequently applied MFs are: Triangular, 
Trapezoidal, Gaussian, Two-sided Gaussian, Generalized Bell, and Sigmoidal Z- and 
S-functions (Nguyen et al. 2002). There is no typical rule to find the optimum number 
of MFs in the ANFIS model, and the large number of MFS is commonly avoided due 
to increasing calculation time (Keskin et al. 2006). According to Shiri and Kisi (2011), 
two, three, or four MFs are enough to predict GWL.
Layer 2: Fuzzification, this layer utilizes a fuzzification interface to convert the crisp 
input dataset into levels of belongingness with linguistic values,
Layer 3: Normalization,
Layer 4: Defuzzification, converts the fuzzy outputs of the interface to a crisp output, 
and
Layer 5: Output (Jang 1993).

The SC is used in this research to divide an input space into n-subdivided particular 
areas by evaluating n-dimensional input data to produce clusters. The cluster radius rang-
ing from 0 to 1 optimizes the range of influence from the cluster centroid. The number 
of clusters and then the number of if–then fuzzy rules increase when the cluster radius is 
set small since the size of the clusters comes to be small (Chiu 1994). Identifying cluster 
radius is a critical element in determining the number of clusters. The optimum cluster 
radius for the ANFIS method in this paper was chosen by the trial and error approach.

2.4 � Group Method of Data Handling (GMDH)

Ivakhnenko (1968) proposed GMDH to solve complicated and nonlinear problems. This 
method generates a self-organizing model (SOM) to solve classification, prediction, and 
other system questions. The number of neurons, hidden layers, influential input variables, 
and network framework is necessarily defined in the GMDH model. GMDH as a polyno-
mial neural network is so similar to ANNs. Ivakhnenko (1970) argues that GMDH systems 
can be called "systems of perceptron type" since the differences between perception and 
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GMDH are not essential. Based Mueller et al. (1998), ANNs, statistical analysis, and statis-
tical neural networks are deductive techniques that cannot detect complicated objects since 
they require a sizeable amount of a priori info. Instead, GMDH is considered a regres-
sion-based technique that combines the best of both neural networks and statistic analysis 
while embedding the additional fundamental property of induction (Lemke 1997). Hence, 
GMDH can overcome the shortfalls of ANN, while statistical neural networks can some-
what resolve them. Based on the GMDH, all model structures (e.g., neuron and layer num-
bers) can be defined by default. Detailed information about the GMDH could be obtained 
from Nariman-Zadeh et al. (2002).

2.5 � Least Square Support Vector Machine (LSSVM)

Fundamental concepts of SVM and its theory have been proposed by Vapnik (1998). The 
broad overview capability of the SVM is deemed better than ANN because it is on the basis 
of structural risk minimization, while the ANN uses experimental risk minimization. The 
primary procedure of the SVM comprises support vectors selections that support the model 
framework and define their weights. A complete mathematical outline of SVM was pro-
posed by Vapnik (1998). The LSSVM model was established by Suykens and Vandewalle 
(1999), based on the SVM model. It is a robust technique for resolving function estimation, 
nonlinear classification, and density estimation problems. LSSVM resolves one of the linear 
programming problems by adjusting inequality constraints in the SVM method to equality 
constraints (Kumar and Kar 2009). Furthermore, the LSSVM has faster training and there-
fore, it is superior to the SVM (Gu et al. 2010).

Various algorithms have been suggested to resolve the dual optimization problem of 
SVMs. The recent SVM learning algorithm is known as Sequential Minimal Optimization 
(SMO). SMO utilizes an analytical QP phase (Platt 1999), and as a straightforward algo-
rithm, an SMO is able to instantly resolve the SVM problem without the necessity to use a 
quadratic optimizer and without any additional matrix space. The SMO was utilized in this 
study.

The outcome of the LSSVM model depends firmly on the suitable choice of the kernel 
function and adjusting the correct C and γ parameters. The present study used the polyno-
mial kernel function for the LSSVM model because of its superior results in GWL predic-
tion based on the used dataset in the study area. The trial-and-error procedure was applied 
to get the optimal parameters of the LSSVM model (Suryanarayana et  al. 2014). The 
LSSVM was applied using LIBSVM library codes presented by Chang and Lin (2011).

3 � Study Area

Qazvin Aquifer is situated in the east of Ghazvin province and it is one of the most impor-
tant aquifers for agricultural purposes in Iran. Due to the absence of a stable river flow 
in this area, groundwater resources supply water demands for agricultural, domestic, and 
industrial usage. This caused 1 m drop rating in GWL yearly. Declining GWLs in the Qaz-
vin Aquifer have caused a negative water budget balance of 300 million cubic meters and 
deteriorating groundwater quality.

The study area map is presented in Fig. 3. The mean annual precipitation and tempera-
ture of the study area are 330 mm and 12 °C, respectively, and elevation varies between 
1000 and 3000 m above mean sea level.
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4 � Model Development

To predict the GWL for one-, two-, and three-month ahead over Ghazvin Aquifer, monthly 
GWL, temperature (T), precipitation (P), and evapotranspiration (ET) data were considered. 
In the present study, GWL changes were explored with an observation well. In this well, the 
GWL is rising, which is a different behavior related to severe declining groundwater levels in 
the entire aquifer. The Ghazvin Regional Water Authority issued the monthly groundwater 

Fig. 3   Location map of the study area
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levels for 15 years from 2005 to 2020. A monthly time interval has been deemed as the most 
appropriate interval for GWL prediction (Nourani and Mousavi 2016a, b). As the most com-
monly used interval based on previous studies (Rajaee et al. 2019), the monthly GWL interval 
was used in the present study. To assess the models’ potential in predicting the GWL, the 
dataset was split into training and testing datasets (70% and 30% of total data, respectively).

5 � Model Implementation

The input–output dataset undertook a normalization procedure to leave out dimension effects. 
GWL changes in the Qazvin Aquifer strongly rely on hydro-meteorological changes. Hence, 
meteorological parameters as an auxiliary dataset along with GWL data were utilized to pre-
dict GWL.

Various input combinations were assessed utilizing the predictive variables with various 
lag intervals from one-month "GWLt-1" to three-month prior "GWLt-3" for GWL prediction 
with different lead times (one- to three-month ahead). The ideal combinations based on data 
correlations among the inputs and GWL were used in the present study. The overall correla-
tion analysis revealed that meteorological components followed by the GWL in one, two- and 
three-month lag times are the most crucial predictors of GWL. According to the correlation 
analysis, we could add two other combinations with P, T, and ET data in two and three-month 
lag times. However, the parsimonious principle was also considered in selecting the best com-
bination besides correlation analysis. Increasing the number of model parameters (overpa-
rameterization) increased the quality of model fit between observations and simulations, lead-
ing to uncertainty in the models. When the number of parameters defined for a given model 
increases, information from observations is distributed among more parameters. One way to 
reduce uncertainty is to choose a model that compromises between a low number of param-
eters and a high level of performance, i.e., a parsimonious model (Hill and Tiedeman 2006; 
Zare et al. 2011; Samani et al. 2018). In addition, one advantage of finding optimal numbers 
of input parameters is the computational economy, a decrease in computation time and cost.

According to the above explanations, five combinations implemented in this study are:

1.	 GWLt-1, GWLt-2, GWLt-3;
2.	 GWLt-1, GWLt-2, GWLt-3, Tt, ETt, Pt;
3.	 GWLt-1, GWLt-2, GWLt-3, Tt, ETt, Pt, Pt-1;
4.	 GWLt-1, GWLt-2, GWLt-3, Tt, ETt, Pt, Pt-1, ETt-1;
5.	 GWLt-1, GWLt-2, GWLt-3, Tt, ETt, Pt, Pt-1, ETt-1, Tt-1.

GWLt-1, GWLt-2, GWLt-3 are GWLs with various lag times from the one-month "t-1" to 
three-month "t-3"; Tt, ETt and Pt are the temperature, evapotranspiration and precipitation at 
the current month and vice versa. The mentioned combinations were employed to achieve the 
most optimum prediction for every lead time (GWLt+1, GWLt+2, GWLt+3).

6 � Efficiency Criteria

Various statistical criteria were utilized to assess the effectiveness of the implemented 
methods, comprising correlation coefficient (R), Nash–Sutcliffe efficiency (NSE), mean 
absolute error (MAE), and root means squared error (RMSE). The closer the value of R 
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and NSE to one, the higher the estimation capability of the model will be, and vice versa. 
The values of MAE and RMSE close to zero indicate better model efficiency.

7 � Results and Discussion

7.1 � Results of the ANN Model

The structural design of the ANN is a critical stage of the modeling since an improper mod-
el’s structure can cause under/over-fitting and computational overload problems. Three-
layered ANN was considered to predict GWL. Based on different combinations, designed 
ANN models were trained and then tested to predict GWLt+1, GWLt+2, and GWLt+3. Pre-
liminary findings of the present study showed that one hidden layer was enough to find a 
relationship between GWL and the other predictor inputs. Overall, a trial and error process 
was used to define the neuron numbers in the hidden layer. The optimum number of nodes 
in the hidden layer for input combination five was identified as 6 (Table 2).

The outcomes of the ANN model demonstrate that combination five as input and 
GWLt+1 as output are reasonable (Table 2). In fact, RMSE and MAE are low, R and NSE 
are close to 1 for this case. This might be owing to the increasing input variables in com-
bination 5. Performance of ANN deteriorated after 1-month ahead prediction. For the best 
combination of ANN, FL, ANFIS, GMDH, and LSSVM methods, the scattering curves 
and time-variation charts were plotted to compare different models (Fig. 4).

7.2 � Results of the Fuzzy Logic (FL) Model

FL model was applied for all five combinations to predict GWLs for one-, two- and three-
month ahead (Table 2). The range of the radius parameter altered from 0.2 to 0.9 by trial-
and-error approach considering minimum RMSE and MAE between observed and simu-
lated GWL. The optimal parameter radius was 0.8 for combinations 1 and 2 and 0.9 for 
combinations 3, 4 and 5.

The result of the FL models shows that combination 5 indicated high ability in the train-
ing step but the model ability was not reasonable in the testing step based on the values of 
RMSE, MAE, R, and NSE (see Table 2).

7.3 � Results of the ANFIS Model

The ANFIS was also employed for the GWL prediction using different input combinations. 
The structure of the ANFIS was decided based on trial–error for every input combination. 
Finding optimal cluster radius is an important issue in ANFIS efficiency. Smaller radii pro-
duces many small clusters and numerous rules; however, large radii result in a few large 
clusters in the dataset (having fewer rules) (Sanikhani and Kisi 2012). Table 2 illustrates 
the evaluation criteria of ANFIS in GWL simulation and prediction. The model with com-
bination five as input and GWLt+1 as output in the training step could present the best 
results for GWL simulation than other combinations. However, the model ability is not 
reasonable in the testing step based on RMSE, MAE, R, and NSE (see Table 2).
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Fig. 4   The observed and simulated GWL utilizing the ANN (top panel), FL (top middle panel), ANFIS 
(middle panel), GMDH (bottom middle panel) model and LSSVM (bottom panel) models in the GWLt+1 
for the combination 5
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7.4 � Results of the GMDH Model

The GMDH model, as an intelligent tool, showed promising results to predict fluctuations 
in GWL for one-, two- and three-time horizons. A GMDH model structure with four layers 
and 15 neurons was considered for GWL prediction. The model results indicated that the 
model attained the desired outcomes with the fourth layer, ten neurons in the first layer, 15 
neurons in the second and third layers, and one in the fourth layer. Table 2 illustrates the 
evaluation criteria of the GMDH in GWL simulation and prediction. In this method, also 
combination five was indicated as a suitable input dataset to predict the GWLt+1. Figure 4 
displays observed and simulated GWL results produced by the GMDH model.

7.5 � Results of the LSSVM Model

Similarly, the LSSVM was likewise used to predict GWL. In this study, trial and error 
determined the C = [0.2, 1] and γ = 5 as optimum parameters. The polynomial kernel func-
tion was chosen to represent the resemblance of vectors in the training dataset in a feature 
space over polynomials of the initial dataset.

Table  2 shows the MSE, MAE, R, and NSE for various LSSVM structures. This 
model shows that combination five can achieve accurate and reliable prediction results for 
one-month ahead GWL. Figure 4 illustrates the observed and simulated GWL using the 
LSSVM.

7.6 � Comparison According to Computational Effort and Run Times

Computational expense is often a significant limitation of real-time prediction systems. 
Here, we apply ML techniques to predict GWL to replace a computationally inten-
sive physics-based model with the trained ML models. The running times for ANN, FL, 
ANFIS, GMDH, and LSSVM for the combination one and one-month lead times are 3.47, 
1.96, 2.15, 1.35, and 0.28 s, respectively. The results show that LSSVM has a faster estima-
tion speed than the other developed models. Also, the epoch number is an essential factor. 
An appropriate iteration number can enhance the model performance in both calibration 
and validation steps and prevent the model from being over-trained. The calibration of dif-
ferent models with different structures and different calibration epoch numbers revealed 
that 100–200 epochs satisfy all models’ calibration.

7.7 � Comparison of the Implemented Models

The statistical criteria for the optimum input combination (i.e., combination five) and 
one-month lead time were assessed to evaluate models’ performance and explore the best 
method. Performance measures of the black-box methods indicated that the values of the 
evaluation criteria did not vary significantly, and all methods demonstrated satisfactory 
results in GWL prediction in Qazvin Plain.

A model is supposed to be ideal with the optimized results if the NSE criterion on the 
estimated values is very close to 1 or the value of NSE is more than 0.8 (Moriasi et  al. 
2015). Based on Table  2, it is apparent that all methods at the training step provide 
enough precision for GWL simulation with NSE greater than 0.8. However, the superior 
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performance is seen for the LSSVM model based on NSE values. Based on RMSE and R 
values, the LSSVM also demonstrates the best precision. In fact, the low RMSE and high 
R values in the LSSVM represent that the GWL prediction using the LSSVM is precise for 
the study area.

The models’ accuracy is further compared graphically in Fig. 4 in the form of a time 
variation graph and scatterplot. From the graphs provided in the first columns, we can see 
the detailed variation of models’ predictions and observed ones, and the graphs given in 
the second column show how each models’ predictions are scattering and fit line equations, 
and R2 values give information about the fitting accuracy of the models. From the hydro-
graphs and scatterplots, it is apparent that the simulations of LSSVM are closely following 
the observed GWL values and less scattered than the other four models. The deviations 
between simulations and observed values are clearly seen for the ANN, FL, ANFIS and 
GMDH models. LSSVM cannot catch some extreme GWL values, and the limited number 
of samples can explain this since we use monthly time intervals.

Additionally, one of the significant attributes of the applied models in GWL prediction 
is providing the most important statistics of the observed GWL, i.e., minimum, maximum, 
mean, median, upper and lower quintiles. In Fig.  5, the box plots are presented for the 
GWL changes. The chart for one month ahead prediction and combination 2 (Fig. 5a) indi-
cates that the GMDH is consistent with the observed maximum GWL fluctuation.

Likewise, the FL method has the least compatibility. A similar inference can be 
drawn for the minimum changes of the observed GWL. The results indicate that the 
GMDH cannot be suitable enough to predict maximum and minimum values for two 

Fig. 5   The observed and predicted GWL results using the five models for the combination 2 in the GWLt+1 
(a), GWLt+2 (b), GWLt+3 (c) lead months in the observation well
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and three-month ahead GWL. For two and 3-month ahead, the LSSVM outperformed 
the other methods in predicting the main statistics for combination 2 (Fig. 5b, c).

In brief, the present study indicates the superiority of the LSSVM method to the 
other methods. However, all models can predict short-term GWL and the higher the 
number of influential dependent variables, the better the network’s performance. These 
results reinforce the outcomes of the previous studies (Miraki et al. 2019; Mirarabi et al. 
2019; Nadiri et al. 2017; Guzman et al. 2019; Natarajan and Sudheer 2020).

8 � Conclusions

A well-accepted range of ML models was used to predict GWL with compelling pre-
cision in the present study. The methodology assumed that groundwater dynamics 
are generally dominated by hydrogeological and meteorological factors like monthly 
groundwater level, precipitation, temperature, and evapotranspiration. The models were 
trained (calibrated) and tested (verified) using monthly GWL data from Qazvin Aqui-
fer. Different combinations with 3, 6, 7, 8, and 9 antecedent inputs comprising GWLt-1, 
GWLt-2, GWLt-3, Tt, ETt, Pt, Tt-1, ETt-1, Pt-1 were explored for GWL prediction with 
different lead times (one to three months ahead). The performances of the various meth-
ods were explored through statistical indices (R, RMSE, MAE, and NSE) to recognize 
the superior method that can simulate the increasing trend of the GWL and provide a 
reasonable prediction. Four statistical indicators related to predictive efficacy showed 
that the LSSVM methods had the best precision in the GWL prediction, although all 
methods can yield convincing results to predict GWL. The findings showed that all the 
models achieved satisfactory results for one- and two-month ahead GWL. However, 
three months ahead, the performance of the models was not satisfactory enough. The 
results also showed that increasing the number of input variables from 3 to 9 consider-
ably increased the accuracy and precision of the model’s results. Also, this study shows 
the ML method’s ability to simulate the behavior of a rising GWL in a monitoring well 
in the urban area of the aquifer while the other parts of the aquifer demonstrate a severe 
declining GWL.
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