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Abstract
The uncertainty of climate model projections is recognized as being large. This represents 
a challenge for decision makers as the simulation spread of a climate model ensemble can 
be large, and there might even be disagreement on the direction of the climate change sig-
nal among the members of the ensemble. This study quantifies changes in the hydrological 
projection uncertainty due to different approaches used to select a climate model ensemble. 
The study assesses 16 Euro-CORDEX Regional Climate Models (RCMs) that drive three 
different conceptualizations of the MIKE-SHE hydrological model for the Ahlergaarde 
catchment in western Denmark. The skills of the raw and bias-corrected RCMs to simulate 
historical precipitation are evaluated using sets of nine, six, and three metrics  assessing 
means and extremes in a series of steps, and results in reduction of projection uncertainties. 
After each step, the overall lowest-performing model is removed from the ensemble and 
the standard deviation is estimated, only considering the members of the new ensemble. 
This is performed for nine steps. The uncertainty of raw RCM outputs is reduced the most 
for river discharge (5 th , 50 th and 95 th percentiles) when using the set of three metrics, 
which only assess precipitation means and one ‘moderate’ extreme metrics. In contrast, 
the uncertainty of bias-corrected RCMs is reduced the most when using all nine metrics, 
which evaluate means, ‘moderate’ extremes and high extremes. Similar results are obtained 
for groundwater head (GWH). For the last step of the method, the initial standard devia-
tion of the raw outputs decreases up to 38% for GWH and 37% for river discharge. The 
corresponding decreases when evaluating the bias-corrected outputs are 63% and 42%. For 
the bias corrected outputs, the approach proposed here reduces the projected hydrologi-
cal uncertainty and provides a stronger change signal for most of the months. Thisanalysis 
provides an insight on how different approaches used to select a climatemodel ensemble 
affect the uncertainty of the hydrological projections and, in this case,reduce the uncer-
tainty of the future projections.
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1  Introduction

The impact of climate change on the water sector in terms of duration and magnitude of floods 
and droughts has been significant, and it is expected that the impacts will accelerate during the 
coming decades (Cisneros et al. 2014; Winter et al. 2020). The assessment of climate change 
impacts on water resources has attracted substantial research interest in the last decades, focus-
ing on uncertainty assessments towards improving decision-making (e.g. Meresa and Zhang 
2021; Gaur et al. 2021). Assessing the impacts involve raw or bias-corrected outputs of an 
ensemble of General Circulation Models (GCMs) or Regional Climate Models (RCMs) as 
input to (a) calibrated hydrological model(s). Using this approach, the projected changes and 
statistics of different hydrologic variables can be estimated.

The recognised uncertainties in climate change projections result in uncertainties on 
projected hydrological impacts that are so large that, in practice, they restrain climate 
change adaptation (Kundzewicz and Stakhiv 2010; De Niel et al. 2019), particularly with 
respect to precipitation (Collins 2017). The dominating uncertainty most often originates 
from climate models (Refsgaard et al. 2016). This uncertainty can basically be reduced by 
improving climate models, which is a long-lasting and continuous effort (e.g., Flato et al. 
2013; Di Luca et  al. 2015). In the meantime, it is relevant to evaluate how realistic the 
uncertainties of currently used climate model projections are and to assess whether they 
are overestimated (or underestimated).

The skill of the GCMs and RCMs in simulating the observed climate varies with region 
and variable because of the different theories, formulations and parameterisations behind 
each model (e.g., Rummukainen 2016; Jury et al. 2015). As a result, members of a climate 
model ensemble could provide unrealistic projections for specific regions, variables and/
or metrics, which are likely to increase the ensemble spread and the uncertainty of the 
projection.

Given their different simulation skills, it seems plausible that assigning low weights to 
less trustworthy models could reduce the uncertainty of the projection. However, it should 
be noted that if the group of best performing (behavioural) climate models happens to have 
the largest spread in climate signal, a weighting may instead lead to increased projection 
uncertainty.

In practice, two approaches are used for weighting climate models. The first approach 
assumes that the different climate model projections have the same probability of being 
true, usually referred to as model democracy (Knutti 2010; Farjad et al. 2019). The second 
approach evaluates the simulation skills of the climate models for a historical period, and/
or additional criteria, to assign a weight to each model and produce a weighted projec-
tion (e.g., Christensen et  al. 2010; Evans et  al. 2013; Pennell and Reichler 2011; Wang 
et  al. 2019; Lehner et  al. 2019; Raju and Kumar 2020). The climate modelling commu-
nity mostly uses model democracy whereas assigning weights is mostly used by the impact 
community (Chen et  al. 2017). Alternatively, models with poor simulation skill can be 
removed from the ensemble.

Two main approaches deal with uncertainty. The goal of the first approach is to preserve 
the projection spread of the complete model ensemble while reducing the number of mod-
els included in the ensemble (e.g. Evans et al. 2013; Lee and Kim 2017; Seo et al. 2018; 
Pechlivanidis et al. 2018; Farjad et al. 2019). Models that resemble the projection of other 
models are removed resulting in a reduction of the, often heavy, computational burden 
when analysing a combination of several emission scenarios, climate model projections 
and impact models. The second approach intends to reduce the number of models used in 
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the ensemble by removing or weighting the models in the ensemble based on specific crite-
ria (Wang et al. 2019). This approach is based on the hypothesis that the uncertainty of the 
projection is often overestimated because of the variable performance of climate models, 
and that the robustness of the projection increases if only the better performing models 
are used. Few studies have analysed the latter approach for impact studies. For instance, 
Lehner et  al. (2019) reduced the initial runoff projection uncertainty by 57% in catch-
ments in the US when the models were observationally constrained. Similarly, Wang et al. 
(2019) used streamflow-based metrics to assign weights to climate models concluding that 
using bias-corrected models and equal weighting of the climate models seemed enough to 
decrease uncertainty in impact assessments.

Different methodologies have been used to estimate the uncertainty of a climate change 
impact projection. These vary from a simple evaluation of the range of the projections (Her 
et al. 2019) to more complex analysis, such as estimation of d-factors (Najafzadeh et al. 
2021) or Bayesian model averaging (Najafi and Moradkhani 2015). Nevertheless, the final 
objective of any of these approaches is to provide an estimation of the uncertainty of the 
projection.

The aims of this study are i) to introduce a new methodology for reducing the climate 
model ensemble based on simulation skills in the present climate, and ii) to evaluate how 
the integration of climate model simulation skills to climate model selection  affects the 
uncertainty of the future projections of river discharge and groundwater head. Our under-
lying assumption is that climate models with large biases in the present climate are likely 
to provide the least reliable projections of future climate (Knutti 2008). The results of this 
new approach are compared to results from other methods to demonstrate it’s potential. 
This approach has the potential of being an important contribution for the improvement of 
the decision-making process.

2 � Methodology

2.1 � Study Area

The study is carried out in the Ahlergaarde catchment (1,055 km2), located in western Den-
mark (Fig. 1). The land surface elevation ranges from 150 m above sea level in the east to 
25 m above sea level at the outlet of the catchment in the west (Sebok et al. 2016). The 
annual mean precipitation is 1,050 mm with an annual mean temperature of 8.2 degrees 
Celsius. The shallow aquifer mostly consists of sandy and silty deposits (Houmark-Nielsen 
1989). Intensive agriculture is the dominating land use (80%), followed by forests (10%), 
heath (6%) and urban areas (4%) (Ridler et al. 2014).

2.2 � Climate Models

16 GCM-RCM combinations (Table S1) from the EURO-CORDEX initiative (Jacob et al. 
2014) are used. Each GCM is driven by Representative Concentration Pathway (RCP) 8.5 
and downscaled to a spatial resolution of 0.11°.

The RCM outputs are remapped to match the observed temperature (20 km × 20 km) and 
precipitation (10 km × 10 km) grids produced by the Danish Meteorological Institute. Raw 
climate model outputs usually have systematic errors when compared to the observations 
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(Maraun 2016). Therefore, the RCM outputs are bias-corrected employing a Distribution 
Based Scaling method (Seaby et al. 2013) which uses a double Gamma distribution to cor-
rect precipitation and a normal distribution to correct temperature. For precipitation, the 
cut-off threshold between the two distributions is set at the observed 90th percentile. In an 
initial step, the number of observed and simulated days without precipitation are matched 
by setting a threshold below which the daily precipitation outputs are set to zero (Pastén-
Zapata et al. 2019).

2.3 � Hydrological Model Setup, Calibration and Validation

The MIKE SHE code, a physically-based, integrated and fully distributed model (Abbott 
et al. 1986; Graham and Butts 2005) is setup for the catchment with a spatial resolution 
of 500 m × 500 m. The MIKE SHE code is the basis of the national hydrological model 
of Denmark (Henriksen et  al. 2003; Højberg et  al. 2013; Stisen et  al. 2019) where the 
saturated zone, the unsaturated zone, river flow, evapotranspiration and overland flow are 
included. The dynamics of the unsaturated zone are of critical importance for the hydro-
logical response of climate change.

The robustness of the results is assessed using three different model conceptualizations 
to simulate flow and evapotranspiration in the unsaturated zone: Richards’ equation, grav-
ity flow and two-layer water balance. The models are described in supplementary Sect. S3 
and their calibration and validation procedure and results are shown in Sect. S3.1.

Each bias-corrected GCM-RCM combination (16 in total) is used as the driving climate 
for each of the calibrated hydrological models (3 in total), producing 48 simulations in 
total. The average results of each climate model, across the three hydrological models, are 
used to estimate the projected absolute changes in discharge and groundwater head.

Fig. 1   Location of the Ahlergaarde catchment along with the observation stations used for evaluation of the 
model
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2.4 � Climate Model Evaluation Metrics and Ranking

The simulation skill of the climate models is determined by comparing observations to 
simulations of precipitation from 1991 to 2010 following two different pathways (Fig. 2). 
The primary difference between pathways A and B is that in A, ranking is based on the 
match of the raw CMs to observed precipitation while in B, ranking is determined by the 
match of the bias-corrected CM output to observed precipitation following a five-fold 
cross-validation approach.

The cross-validation scheme evaluates whether the bias-correction method pro-
vides accurate results outside its training period (Gutiérrez et  al. 2019). The five-
fold cross validation method divides the observation period into five equal-length 
and non-overlapping blocks, where four of the blocks are used to train the parameters 
which are then used to correct the remaining block. This is repeated for all blocks 
until a cross-validated time series of the same length of the period with observations 
is produced.

It has been suggested that evaluating cross-validated outputs from free-running bias-
corrected models (as pathway B) could give misleading results (Maraun and Widmann 
2018). Nevertheless, these outputs are typically used to assess the impacts of climate 
change and cross-validation is employed to evaluate the reliability of the bias-correction 
method (Maraun 2016).

A set of nine metrics (9 m) is defined to evaluate the climate models with respect to pre-
cipitation (see Table S2). The metrics assess the simulation skills for the mean, ‘moderate’ 
extremes, ‘highly’ extremes and variability of precipitation. The extreme metrics are taken 
from the daily extreme climate change indices (Zhang et al. 2011). To explore the impor-
tance of the selection of the metrics, subsets of six (6 m), and three metrics (3 m) are also 
included in the analysis. In 3 m, the mean behaviour and one ‘moderate’ extreme metrics 
are evaluated, whereas 6 m includes more metrics on ‘moderate’ extremes and 9 m adds 
three ‘highly’ extreme event metrics.

For each metric, the climate models are assigned a score between 1 (smallest bias) and 
16 (largest bias). For the purpose of ranking, the scores of all metrics for each model are 
summed up. Based on the final sum, models are ranked to differentiate their overall relative 

Fig. 2   Diagram of the process 
used to evaluate the change in 
uncertainty of the hydrological 
projections, CM: Climate Model
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simulation skills. A low relative value of the final sum represents a model with good simu-
lation skill whereas a high relative value indicates poor simulation skill.

2.5 � Analysis of the Uncertainty in the Projection

The uncertainty of the hydrological projections is evaluated by analysing the projected ensem-
ble mean river discharge and mean groundwater head of the 16 ensemble members by the end 
of the century (2071–2100). The analysis focuses on the 5th, 50th and 95th percentiles of each 
variable from the best performing RCMs still remaining at a given step in the analysis.

The change in the uncertainty is analysed in a series of steps (see Fig. 2). For each step, 
a set of phases are followed, as described next for step ‘n’:

Phase 1. Estimate the standard deviation of the variable of interest (river discharge or 
groundwater head) considering the RCMs in the ensemble at the beginning of step ‘n’.
Phase 2. For all the RCMs in the current ensemble, evaluate their ability to simulate the 
historical precipitation using the different subsets of metrics (Table S2) and rank them, 
as described in Sect. 2.4.
Phase 3. Remove the worst-ranked RCMs from the ensemble.
After reaching Phase 3, all three phases are repeated for the following step ‘n + 1’. This 
approach is used for nine steps, leaving seven models in the final ensemble. Previous 
analyses (e.g., Evans et al. 2013; Pennell and Reichler 2011) indicate that the order of 
seven models is considered as an appropriate ensemble size.

2.6 � Comparison with Other Weighting Methods

The results of this approach are compared to other weighting methods. The reliability 
ensemble averaging (REA) and the upgraded reliability ensemble averaging (UREA) 
methods are selected for comparison because these methods can assign weights with 
larger differences to the climate models (Wang et al. 2019; Chen et al. 2017). Both are 
multiple criteria methods and can reduce the discharge uncertainty in the historical 
period to a larger extent than other weighting methods (Wang et al. 2019). In the present 
study, only the projections of precipitation are evaluated to define the climate model 
weights of these methods. REA assigns the weight of a model by assessing its reliabil-
ity, which consists of the product of two components: its biases in the historical period 
and the convergence of its projection with the projection of the whole model ensemble 
(Giorgi and Mearns 2002). UREA removes the criteria of convergence and replaces it 
with the skill of each individual model to simulate the observed interannual precipita-
tion variability (equations used are shown in the supplementary Sects. S4 and S5).

2.6.1 � Uncertainty Assessment for the Different Methods

The uncertainty of the methods is assessed initially using the standard deviation of the 
projection by the end of the century and subsequently the signal to noise ratio (SNR) 
of the projected change. The standard deviation of the ensemble is estimated using the 
square root of the sum of the squared differences between the projection of model i (Xi) 
and the projected mean of the ensemble (µ), multiplied by the weight (W) of model i:
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The SNR estimates the uncertainty of the projected change from the reference period 
(1981 to 2010), to the future period (2071 to 2100). Thus, the SNR is estimated by divid-
ing the projected mean change of the model ensemble (µ) by its standard deviation (σ):

A larger SNR indicates that the uncertainty is relatively small, compared to the larger 
uncertainty of smaller SNR values.

3 � Results

3.1 � Calibration and Validation of the Hydrological Model

The skill of all models to simulate discharge is good with the gravity flow model slightly 
underperforming (Table S3). Simulation of groundwater head using Richards’ equation is 
worse compared to the other models, but it is the best model to match observed soil water 
content. In summary, there is a significant variability in the simulation skill of the differ-
ent hydrological models for the different variables and evaluated statistics. However, for 
most metrics the two-layer model provides the best match to the observed values, given 
the variability in performance for the different variables, it can be inferred that the models 
included in the ensemble complement each other. A complete assessment of the results 
and decription of the calibration and validation procedure is available in the supplementary 
material (Sect. S3).

3.2 � Change in the Uncertainty of the Projection

Both the raw and bias-corrected GCM/RCM combinations are ranked based on their simu-
lation skill for each of the evaluation metrics (Table S2). The ranking is used to discard the 
model with the poorest performance during each step. The resulting change in the uncer-
tainty of the hydrological ensemble after each step is shown in the following sections. The 
results represent the mean of the results of the three hydrological model configurations. 
Note that the bias-corrected precipitation projections are used as input to the hydrological 
models for both pathways A and B because this is a standard practice in impact assess-
ments. The final ensemble of climate models, after the ninth step, for both pathways is 
shown in Table  S1. Note that for pathway A there are six models in the final ensemble 
because two models had the same score at the ninth step. For pathway B, seven models are 
left in the final climate model ensemble.

3.2.1 � Groundwater Head

The projected mean groundwater head under pathway A changes only slightly after each 
step for the evaluated percentiles and all the subsets of metrics (Fig. 3, first column). The 
standard deviation increases (negative decrease in standard deviation) for all steps when 
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using the full set of metrics (9 m), showing no clear relation between the historical perfor-
mance of climate models and hydrological projections. When the most extreme metrics are 
removed and only the moderate extreme and the mean metrics remain (6 m), a decrease 
in uncertainty is found after deletion step 5. If only the metrics for the mean response and 
one extreme metric are left (3 m), a decrease in uncertainty is observed in earlier steps. 

Fig. 3   Change in the projected mean (dashed lines) and standard deviation (solid lines) of the 5th, 50th 
and 95th percentiles of the groundwater head (in meters). The decrease in uncertainty is shown as change 
in the standard deviation of the ensemble after each step, compared to the standard deviation of the initial 
ensemble. Results are shown for pathway A (left column) and pathway B (right column) and for the subsets 
of metrics (different symbols) analysed. The grey area represents the spread (maximum – minimum) of the 
projection for each step. The spread is shown for the set of metrics that reduced the initial uncertainty the 
most: 6 m for pathway A and 9 m for pathway B
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The standard deviation is reduced the most for 6 m: 32% for the 95th percentile, 31% for 
50th percentile, and 36% for the 5th percentile.

The mean of the projections of pathway B does not vary much after each step, indepen-
dently of the subset of metrics and the percentiles that are analysed (Fig. 3, second col-
umn). The uncertainty is reduced after each step for all the subsets of metrics. The subset 
that includes all the metrics (9 m) produces the largest decrease in the initial standard devi-
ation., A significant decrease in uncertainty is observed at the last step. The initial standard 
deviation is reduced by 52% for the 95th percentile, 60% for the 50th percentile and 56% 
for the 5th percentile. This is in clear contrast to pathway A, where the evaluation is based 
on the raw precipitation data.

3.2.2 � River Discharge

The mean river discharge simulated under pathway A varies slightly after each deletion 
step (Fig. S1, first column). Similar to the groundwater head, when using the full set of 
metrics (9 m), the initial standard deviation increases for all of the steps. Again, the stand-
ard deviation of the ensemble decreases per step when using the other subsets of metrics 
(6 m and 3 m). For the 95th and 5th percentiles, using the 3 m subset results in the largest 
decrease in the initial standard deviation: 17% and 37%, respectively. For the 50th percen-
tile, the standard deviation decreases the most when using 6 m, 36%.

In pathway B, the mean river discharge of the ensemble does not vary much after 
each step, for all subsets of metrics and percentiles analysed (Fig.  S1, second col-
umn). For all subsets of metrics the standard deviation decreases after each step. For 
the 95th and 50th percentiles, the initial standard deviation is decreased the most when 
using all metrics (9 m), by 37% and 42%, respectively. The initial standard deviation of 
the 5th percentile is decreased the most when using six metrics (6 m), 55%.

3.3 � Monthly Uncertainty Compared to other Weighting Approaches

3.3.1 � Standard Deviation of the Monthly Projection

In Pathway A, the largests reduction in the standard deviation of the projection is obtained 
when the REA and UREA methods (Fig. 4a) are used. The methodology proposed here, 
evaluated by the 3 m subset, results in a larger standard deviation for most of the months, 
and from March to June its standard deviation is the same as that of the ensemble using 
all climate models (initial standard deviation). No clear difference in model performance 
is found for the REA and UREA methods. When assessing Pathway B, the methodol-
ogy proposed here reduces the initial standard deviation the most for the majority of the 
months (Fig. 4b). Only from February to May, the REA method results in a smaller stand-
ard deviation.

3.3.2 � Signal to Noise Ratio (SNR) of the Projected Monthly Change

In Pathway A, the method with the strongest SNR for each month varies (Fig. 4c). The 
3  m subset has a stronger SNR for February, June, September and November. Overall, 
there is no method that consistently outperforms the others. When evaluating Pathway B, 
the 9 m subset of metrics consistently outperforms REA and UREA, providing a stronger 



3554	 E. Pastén‑Zapata et al.

1 3

SNR for 10 months (Fig. 4d). Only for September, UREA and REA had stronger SNR. 
For this month, the change in monthly mean river discharge is projected to be slightly 
negative.

4 � Discussion

4.1 � Methodology for a More ‘Realistic’ Uncertainty Assessment of the Hydrological 
Projections

The aim of the study is to obtain a more realistic uncertainty assessment of the projection 
of future hydrological variables by discarding climate models that do a relatively poor job 
in simulating the historical precipitation accurately. It is argued that for certain applica-
tions, a ‘behavioural uncertainty’ is useful to ease decision making and to decrease the 
computational burden that an impact assessment with a large climate model ensemble rep-
resents (Farjad et al. 2019). The idea behind evaluating the climate models in the historical 
period is that if a model has a low skill in the present, then it can be argued that its perfor-
mance will be low in the future as well (Knutti 2008). However, we acknowledge that even 
if a good simulation skill is obtained in the present, it does not guarantee a good skill in the 
future (Knutti 2008; Reifen and Toumi 2009).

Fig. 4   Uncertainty measures of the monthly mean river discharge considering the initial uncertainty com-
pared to the uncertainty derived from the approach presented in this analysis (3 m for pathway A and 9 m 
for pathway B), REA and UREA: standard deviation of the projected monthly mean river discharge for a) 
pathway A, b) pathway B, and signal to noise ratio for the projected change in the monthly mean river dis-
charge for c) pathway A and d) pathway B
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Previous studies have evaluated the simulation skill of climate models in the present to 
select or assign weights to an ensemble in hydrological impact studies (e.g., Wang et al. 
2019; Chen et al. 2017; Seo et al. 2018). However, these studies evaluated the simulation 
skill of the mean or extremes independently, not in combination. This study goes beyond 
and combines metrics that assess the climate model skill to simulate mean, ‘moderate’ 
extreme and ‘highly’ extreme precipitation. Furthermore, the study compares the change 
in the uncertainty of the projections when using different subsets of metrics to determine 
whether there is a benefit from evaluating ‘moderate’ and ‘highly’ extreme metrics.

The methodology presented in this study appears to be a robust way of evaluating climate 
model projection uncertainties, providing results similar to approaches using weights and in 
some cases outperforming them (e.g. SNR for pathway B). By discarding non-behavioural 
climate models, the ensemble size is reduced, which is an advantage in cases with compu-
tationally demanding impact models. Furthermore, the method is applicable to different 
hydrological processes, such as river discharge and groundwater levels. The uncertainties of 
the low, mid and high percentiles of the analysed hydrological variables are reduced by the 
method at a similar extent. In principle, the method is easily reproducible because it is based 
on historical precipitation data that normally would be available. Nevertheless, the results 
might depend on the skill of the bias-correction method and on the metrics that are employed.

4.2 � Selection of Metrics for Climate Model Evaluations

There is always a degree of subjectivity involved whenever assigning weights to climate 
models (Chen et al. 2017). This comprises selecting the evaluation metrics and choosing 
the weighting method (Christensen et al. 2010). Here, a set of metrics is used, involving the 
analysis of the annual mean and extreme precipitation. We acknowledge that the different 
extreme precipitation metrics might be correlated (Seo et al. 2018). However, we use dif-
ferent subsets of metrics that include means, variability, ‘moderate’ extremes and ‘highly’ 
extremes to evaluate the importance of each for the uncertainty of the projection.

No metrics considering the length of dry and wet spells are included. Such metrics 
could provide further understanding about the climate model capabilities, as observed 
by Seo et al. (2018). We argue that the set of metrics used is sufficient for a fair evalua-
tion of the skills of the different climate models in a catchment which is driven mainly by 
precipitation.

In our case, the 3 m and 6 m subsets reduce the initial standard deviation the most fol-
lowing pathway A. Therefore, using basic metrics (means and ‘moderate’ extremes) for this 
pathway reduces uncertainty the most. In contrast, all metrics produce a higher reduction 
in the standard deviation when pathway B is evaluated. Thus, the metrics that are related to 
the ‘highly’ extreme events are relevant for reducing the uncertainty when bias-corrected 
climate models are evaluated. When compared, the final uncertainty is reduced more in 
pathway B than in pathway A. Thus, the evaluation based on the skill of the raw models is 
not valid after bias-correction and it can be argued that the bias-corrected projections are 
more robust than the raw outputs.

4.3 � Evaluation Based on Raw or Bias‑corrected RCM Data

Maraun and Widmann (2018) investigated the possible limitations of cross-validated bias-
corrected free-running climate simulations against observations, which is the approach fol-
lowed in pathway B. The main concern regarding this method is that the internal variability 
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of the observations and simulations is not synchronized, possibly resulting in misleading 
results. Therefore, as a method for differentiating between the different climate models, 
they suggested to evaluate the skill of the uncorrected climate models considering tempo-
ral, spatial and process-based aspects.

Overall, the reduction in the hydrological uncertainty is larger for pathway B, which 
evaluates the bias-corrected models. This is likely to happen because the projections of 
hydrological variables used in the analysis are also based on bias-corrected outputs. In con-
trast, for Pathway A the evaluation and ranking is based on raw climate models, whose 
skill do not remain the same after they are bias-corrected. One could argue that the RCMs 
of Pathway A are not constrained by observed data (bias correction) and therefore can be 
expected to show a larger spread and a larger potential for reducing the spread by the rank-
ing process. However, this is not the case and could be because the evaluation of the raw 
climate models does not succeed to identify the models that introduce a larger uncertainty 
to the hydrological projection after bias-correction.

4.4 � Projection Uncertainties

Considering pathway B, by selecting the climate model ensemble based on an evaluation of 
different precipitation characteristics in the historical period, the uncertainty in the future 
hydrological projections is reduced. This is true for three different (high, median and low) 
percentiles of river discharge and groundwater head. The results of this analysis indicate 
that the uncertainty is reduced for each of the evaluated percentiles of the future period 
(2071–2100) as well as on a monthly basis. In contrast, for pathway A, the results do not 
show a clear change in the initial uncertainty when using each subset of metrics.

Additionally, the robustness of the results is confirmed by using three hydrological mod-
els with different conceptualizations of the unsaturated zone. This confirms that the above 
finding is not just an artefact of a single model but robust to different hydrological models 
that, as shown in Table S3, have different performance.

The projection uncertainty of the behavioural models in the ensemble depends on the 
metrics used to evaluate the simulation skill of the climate model. Here, the variation 
in uncertainty is larger for the last steps of the methodology. This might be because the 
models which projections differ the most from the projections of the remaining models 
in the ensemble are not discarded until the last steps, as shown by the spread depicted in 
Figs.  3 and S1. For both discharge and groundwater level, the projected mean does not 
change much after each step. Therefore, the method can be used to assess the change in 
projection uncertainty, while the projected mean is unaffected. It has been argued that the 
uncertainty in the projection can mainly be reduced by using bias-corrected models with 
equal-weighting (Wang et al. 2019). However, in our case, the uncertainty can be further 
reduced by removing the bias-corrected models that are poor at reproducing the historical 
precipitation.

Overall, this study indicates that the uncertainty of future conditions can be reduced 
following the methodology presented here, especially for pathway B and when using the 
9 m subset of metrics as evaluation. Furthermore, the SNR results of the monthly mean 
change indicate stronger change signals from the approach presented here, compared to 
other methods (REA and UREA). These results should be tested for other contexts to eval-
uate their transferability.
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5 � Conclusions

Traditionally, impact assessments are based on the assumption that climate models have 
the same probability of occurrence. However, discarding poor-performing models from the 
ensemble can reduce the computational burden and affect the uncertainty of the projection. 
Previous research acknowledged that the large projection uncertainties negatively affect 
decision-making (e.g., Wilby and Harris 2006). In cases where the uncertainty is too large, 
the impact information is often disregarded for making any decision (Soares et al. 2018).

This study analyses the change in uncertainty of hydrological projections when the cli-
mate model ensemble is based on evaluating the simulation skill of the historical precipi-
tation for a set of different evaluation metrics. The metrics used here evaluate the mean, 
variability, ‘moderate’ and ‘high’ extreme precipitation. The results indicate that when 
evaluating the raw climate models, there is not a clear link between the climate model 
ensemble selection and the uncertainty of the hydrological projection. When evaluating 
the bias-corrected climate models, the selected ensemble always reduced the hydrological 
uncertainty for different subsets of metrics, with a larger decrease when using all metrics.

It is relevant to assess whether the methodology is replicable elsewhere. Additionally, 
alternative evaluation approaches could be developed to rank the climate models and decrease 
the size of the ensemble. Such approaches could, for instance, assess the interdependence of 
the models (e.g. Evans et al. 2013; Pennell and Reichler 2011), the accurate simulation of 
precipitation trends or the accuracy of the simulation of global scale climate processes. Fur-
thermore, other metrics could be used for evaluation, such as spatial–temporal metrics, which 
were not included in this analysis due to the relatively small size of the catchment. Similarly, 
it would be relevant to assess the potential of the method for other processes that could be 
driven by other climate factors than precipitation or more influenced by the structure of the 
impact model (e.g., soil moisture) (Her et al. 2019).

The results suggest that the uncertainty of future projections can potentially be reduced 
following the proposed methodology. Even though uncertainty reduction is encouraging 
seen from a decision-making point of view, it is acknowledged that the approach has the 
risk of hiding the uncertainty rather than reducing it (Chen et al. 2017). For instance, it is 
possible that a climate model with low historical simulation skill or with a significantly dif-
ferent climate change signal compared to the others, might project the changes in climate 
more realistically.
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