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Abstract
Groundwater resources play a crucial role in supplying water for domestic, industrial, and 
agricultural use. In this study ACCESS-CM2, HadGEM3-GC31-LL, and NESM3 were 
selected for validation from Coupled Model Intercomparison Project Phase 6 (CMIP6). In 
the following, the feedforward neural network was employed to predict monthly ground-
water level (GWL) based on the emission scenarios of the sixth IPCC report (SSP2-4.5 
and SSp5-8.5) for the next two decades (2021–2040) in the Sari-Neka coastal aquifer near 
the Caspian Sea, Iran. In this regard, the monthly maximum and minimum temperature, 
precipitation, and water table of previous month from four piezometers from 2000 to 2019 
were used as input variables to forecast GWL. The evaluation of the three GCM models 
demonstrated that the ACCESS-CM2 provided the best values of the R2 and RMSE with 
observation parameters. The results of r, R2, RMSE, and MAE were evaluated for the 
model and indicated good performance of the model. The results also illustrated that under 
such mentioned scenarios, the mean monthly temperature would rise approximately from 
0.1–1.2 °C. In addition, the mean monthly precipitation is likely to witness changes from 
-10% to 78% in the next two decades. As a result, this seems to lead to improvement and 
recharge of groundwater level for the near future. The results can help managers and poli-
cymakers to identify adaptation strategies more precisely for basins with similar climates.
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1  Introduction

According to studies by the Intergovernmental Panel on Climate Change (IPCC), the short-
age of water resources is expected to become a major challenge in many regions of Asia, 
as the demand for water is increasing due to the rise in population and standards of living 
(IPCC 2014). Given the strong dependence of the Asian economy on agriculture, about 80% 
of groundwater in Asia is used for this purpose. The groundwater level in coastal aquifers 
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can be influenced by population growth (Alimohammadi et al. 2020), High quality of life 
(Mirdashtvan et al. 2021), tides, rising sea level, increased salinity, uncontrolled withdrawal, 
and reduced recharge (Hamidi and Sabbagh-Yazdi 2008; Natarajan and Sudheer 2020; 
Nasiri et al. 2021). As an arid and semi-arid country in Western Asia, Iran has a shoreline of 
750 km on the Caspian Sea and about 2250 km on the Persian Gulf and the Gulf of Oman, 
and numerous islands and estuaries. As a result, it has earned the title of a coastal country. 
As of the latest census, about 22% of Iran’s population inhabit coastal lines. These regions 
play a significant role in the economic growth of a developing society, in terms of both agri-
culture and industry. Moreover, they can greatly contribute to the gross domestic product of 
a country. The critical role played by groundwater in this economic growth necessitates the 
awareness and management of changes in groundwater levels. Researchers have employed 
theoretical and observation models to investigate prospective climate conditions. Models of 
global climate change (GCMs) are primary tools for predicting the trend of changing climate 
change through different scenarios of greenhouse gas emissions (Ouhamdouch and Bahir 
2017). General circulation models (GCMs) are some of the most authoritative theoretical 
models that are based on physics (O’Neill et al. 2017). However, they have certain disadvan-
tages, such as their large scale. Nonetheless, they can be converted to small scales through 
techniques termed “downscaling methods”, (Hewitson and Crane 1996; Wilby and Wigley 
1997; Guo and Wang 2016; Theodossiou 2016). One of the most well-known and useful 
downscaling models is the Long Ashton Research Station-Weather Generator (LARS-WG) 
developed by Semenov and Barrow (Semenov et al. 1998). Its input data include minimum 
temperature, maximum temperature, precipitation, and sunshine hours or solar radiation on 
a daily scale. The model is capable of simulating climatic parameters for future decades 
based on various scenarios and GCMs. The models in Coupled Model Intercomparison Pro-
ject Phase 6 (CMIP6) have produced the latest simulations of the past, present, and future 
climates for a better understanding of climate change. These new models boast considerable 
improvements over those used in CMIP5, including a higher resolution and better physics 
(Priestley et al. 2020; Xin et al. 2020). Various researchers have simulated climatic param-
eters using the LARS-WG model and confirmed the results (Hassan et al. 2014; Sha et al. 
2019; Bayatvarkeshi et al. 2020). Most previous research has used CMIP3 or CMIP5 out-
puts for this purpose. In this regard, it is necessary to simulate and evaluate the impact of 
the latest versions of CMIPs on climatic parameters and natural resources. In this study, the 
impact of updating CMIPs was investigated on groundwater levels.

In recent years, international climatologists and economists have created a wide range 
of new pathway scenarios. They have described changes in climates and international com-
munities in terms of population, economy, and greenhouse gas (GHG) emissions. The lat-
est is named Shared Socio-economic Pathways (SSP), divided into five categories, from 
SSP1 to SSP5. These scenarios are displayed in the form of SSPx-y, where x represents 
SSP, and y denotes the radiative forcing (w/m2) in 2100 (O’Neill et al. 2017; Gupta et al. 
2020).

The artificial neural network (ANN) is known as an estimator whose effectiveness has 
been verified in previous research, being utilized in numerous scientific fields in recent 
years (Yoon et  al. 2011; Shen  2018; Rajaee et  al. 2019). The applications of ANN in 
hydrology include the prediction of nonlinear phenomena, such as rainfall-runoff, evapo-
transpiration, dam volume evaluation, streamlines, and water and rain quality modeling 
(Taormina et  al. 2012; Zhao et  al. 2020; Roy et  al. 2020; Di Nunno and Granata 2020; 
Chen et al. 2020; Derbela and Nouiri 2020). One of the most important challenges in fore-
casting groundwater levels using ANN has been the selection of input data. Daily, weekly, 
or monthly temperature and precipitation have been the major driving factors in the impact 
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of climate change on water resources in the literature. (Yoon et al. 2011; Maharjan et al. 
2021). Moghaddam et al. (2019) used monthly evaporation, average temperature, aquifer 
discharge and recharge, and aquifer level to evaluate the performance of ANN, Bayes-
ian network (BN), and MODFLOW in the simulation of a 12-year period work. Hasda 
et al. (2020) employed the neural network (NN) to forecast weekly levels of groundwater, 
52 weeks in advance. The studies by Chang et al. 2015; Ghazi et al. 2021; and Sharma et al. 
2021 investigated the impact of climate change using the output of CMIP3 and CMIP5 cli-
mate models and various scenarios on variations in groundwater levels.

Various organizations have cooperated to use groups of climate model outputs to stand-
ardize the design of GCMs and the distribution of simulated models. These models have 
recently become a crucial element in guiding global research on climates (Thorne et  al. 
2017). The rapid growth in population and industry has had diverse effects on the manner 
of GHG emissions. Since new emission scenarios are introduced every couple of years, it 
seems necessary to be up-to-date on the latest trends in climate change. The most common 
aim of climate studies is to determine the changes in the weather of the region under study. 
To this end, the present study attempted to evaluate the best available models (CMIP6) 
for the specified basin. The main objective of the CMIP6 is to determine how the struc-
ture of the earth responds to different forces in relation to the origins and consequences of 
organized models, climate change quantification, and scenario uncertainty. The number of 
vertical layers in all CMIP6 models has increased compared to those in CMIP5 models. 
An advantage of this increase is a more accurate simulation in the stratosphere, in addition 
to a significant increase in the number of investigated prospective scenarios. The new sce-
narios added to CMIP6 are SSP1-1.9, SSP4-3.4, and SSP3-7.0. In addition, the 4 scenarios 
SSP1-2.6, SSP2-4.5, SSP4-6.0, and SSP5-8.5 have updated RCP2.6, RCP4.5, RCP6.0, and 
RCP8.5 scenarios in CMIP5, respectively (Eyring et al. 2016; Li et al. 2020; Gupta et al. 
2020).

The new CMIP6 models are enhanced in terms of horizontal resolution and better rep-
resentation of synoptic processes (Di Luca et  al. 2020; Nie et  al. 2020; Srivastava et  al. 
2020), which will lead to more reasonable results in climate studies. As a result, CMIP6 
simulations of climates are more reliable than before, and this makes investigation to better 
understand future climates necessary. In this regard, the main aim of this study was to: (1) 
determine the performance of three CMIP6 GCMs and select the best ones; (2) assess the 
impact of climate change and forecast monthly groundwater depths of the coastal Sari-Neka 
aquifer in Iran by FNN under the latest scenarios codified by the Intergovernmental Panel on 
Climate Change (IPCC) (SSP2-4.5, SSP5-8.5) for near future (2021–2040) decades.

2 � Materials and Methods

For the purpose of assessing the potential impact of climate change on groundwater lev-
els in the Sari-Neka aquifer, GCM models were used. Firstly, three CMIP6 GCM models 
(ACCESS-CM2, HadGEM3-GC31-LL, and NESM3) were selected and compared with 
observation data. In the following, temperature and precipitation were simulated under 
two scenarios (SSP2-4.5 and SSP5-8.5) for the near future (2021 to 2040) by LARS-WG. 
Monthly datasets, maximum and minimum temperature, precipitation, and groundwater 
level in the previous month were used for the input of the ANN model, with the groundwa-
ter level being simulated for two next decades (2021–2040). How the research was carried 
out is shown in Fig. 1.
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2.1 � Study Area

Sari-Neka region, a basin which is located by the Caspian Sea between 35° 56′ 36° 52’ N 
and 52° 43′ 54° 44’ E, was selected as a case study in Mazandaran province (Fig. 2). It is 
divided into mountainous parts, hills, and flat plains, mainly covered by alluvial sediments 
from a geomorphological view. The climate there is regarded as generally Mediterranean 
and semi-humid by the DeMartonne’s Method. This region covers an area of about 6938.5 
km2, of which an area of 977.87 km2 is devoted to plains, while the rest is highland (5877.8 
km2). The highest elevation in the area is 3836 m, with the lowest point being -27 m (Nasiri 
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Fig. 1   flowchart of the current study
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et al. 2021). Annual average rainfall fluctuated between 400–1000 mm from 2000 to 2019. 
The most humid months there are October and November, and the annual mean maximum 
and minimum temperatures are 23 and 13 Celsius, with January and August being the cold-
est and the warmest months respectively. On plains, the groundwater flows from the south 
to the north. Most of the study area consists of limestone structures, which are the princi-
pal sources of groundwater supply through groundwater fronts. East and south portions of 
the basin predominantly contain geological Jurassic formations that provide surface and 
groundwater recharge, as well as snow accumulation in the basin (Nasiri et al. 2021). Land 
types are diverse in the study region, including farmland (rice fields and citrus gardens), 
residential areas, rangeland, forests, and water bodies. Piezometric wells, which are 0 to 
31.1 m deep, are situated within this aquifer (Sahour et al. 2020).

Fig. 2   Location of the study area in the map of Iran and the location of piezometer wells in the aquifer
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2.2 � Date Collection

Different datasets were prepared for this study, identified as:

1-	 Maximum temperature, minimum temperature, and precipitation data of historical and 
future period for three models ACCESS-CM2, HadGEM3-GC31-LL, and NESM3 under 
CMIP6 report from IPCC based on SSP2-4.5 and also SSP5-8.5 scenarios were received 
for downscaling from https://​clima​te4im​pact.​eu.

2-	 Maximum and minimum temperatures, and precipitation for the observation period 
(2000–2019) were provided from the meteorological organization of Mazandaran prov-
ince on a daily scale.

3-	 Data on groundwater level fluctuations in 68 piezometers (2000–2019) were provided 
from the regional water organization of Mazandaran province on a monthly scale.

2.3 � Climate Models and Emissions Scenarios

In this study, the outputs of the three climate models from CMIP6 were received from the 
mentioned databases, and the data of the region were extracted using ArcGis10.8. To this 
end, the ACCESS-CM2, HadGEM3-GC31-LL, and NESM3 models were used. The pre-
cipitation, maximum temperature, and minimum temperature of these models are shown 
in Table 1. The SSP2-4.5 and SSP5-8.5 scenarios used in this study were called the mid-
dle of the road and fossil-fueled development—taking the highway, respectively. Their 
specifications are summarized in Table 2. These scenarios were used due to the following 
reasons: (1) the SSP2-4.5 and SSP-5–8.5 were utilized for the vulnerabilities to climate 
change and its consequences (Warnatzsch and Reay 2019); (2) since SSP1-2.6, which is an 
update of RCP2.6, is absent in some models, a comparison between the models becomes 
problematic.

2.4 � Downscaling

Presently, GCM outputs are not directly employed in hydrological models due to their reso-
lution inability and lack of sufficient spatial and temporal certainty (Semenov and Barrow 
1997). The model employed in this research was LARS-WG6, the initial version of which 
was introduced by Racsko et  al. (1991), to address the issues of the Markov chain, which 
was frequently used to model precipitation, and was later upgraded by Semenov and Barrow. 
As a generator, LARS-WG produces climatic parameters, such as maximum temperature, 
minimum temperature, precipitation, and solar radiation on a daily basis for any period of 
time according to a set of semi-empirical distributions (Roshan et al. 2013). Even though this 
model is not a weather forecast tool, it is a means to generate an artificial weather time series 
that statistically resembles observation data.

The delta change factor (DCF) technique was utilized to generate the Atmosphere–Ocean 
General Circulation Model (AOGCM) climate change scenario. This method calculates 
the maximum and minimum temperature difference and the precipitation ratio of the pro-
spective and base periods in the studied region’s model according to Eqs. 1, 2, and 3. The 
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base and prospective periods were assumed to be 2000–2019 and 2021–2040, respectively 
(Semenov and Barrow 1997).

In the above equations, ΔP
i
 , ΔT

i,Min
 , and ΔT

i,Max
 represent the monthly climate change sce-

narios of precipitation, minimum temperature, and maximum temperature, respectively. 
P
GCM,FUT ,i denotes the 20-year precipitation average simulated by the AOGCM models for 

the prospective period, and P
GCM,Base,i represents the same for the base period (2000–2019 

in this study). the explanations provided for the minimum and maximum temperature are 
correct. Two files were created to generate climatic data in the LARS-WG model and to 
downscale the GCM data for future periods. The first file describes past climatic behavior, 
while the other contains climate change scenarios. The model was calibrated in the first 
step and then verified using statistical tests and a comparison of the graphs.

2.5 � Clustering of Observation Well

Clustering is an unsupervised learning technique in which samples are categorized into 
similar groups with identical features. A common clustering method is the K-means, intro-
duced by MacQueen in 1967 (MacQueen 1967), in which the number of clusters is pre-
determined. The number of clusters was validated using the common Elbow index, deter-
mined by Eq.  (4) (Brusco and Steinley 2007). Since there were 68 piezometers in this 
basin, clustering was performed to avoid over-complication of the model. The geographical 
coordinates and groundwater levels of the piezometers were used for clustering.

where Ck is the set of observations in the Kth and x
vk

 is the mean of variable v in cluster 
k . In this technique, the number of clusters is directly related to the Within-Cluster Sum 
of Square (WCSS), which is the sum of the squared distance between each point and the 
centroid in a cluster. The vertical axis represents WCSS, with the horizontal axis showing 
the number of clusters. In this index, the number of clusters, K, begins from 1 and grows 
to where the value of WCSS remains almost constant, being the largest in the first cluster.

2.6 � Artificial Neural Network (ANN)

Artificial neural networks (ANN) are typically based on human nervous systems. In hydro-
logical contexts, these heuristics are particularly appropriate for predicting and forecasting 
variables because they are capable of modeling nonlinear, nonstationary, and nongaussian 
processes. NNs are trained to recognize data patterns until a minimum acceptable error is 
found between the ANN predicted data and the observation data. NNs are mostly divided 

(1)ΔP
i
= P

GCM,FUT ,i∕PGCM,Base,i

(2)ΔT
i,Min

= T
Min(GCM,FUT ,i)−TMin(GCM,Base,i)

(3)ΔT
i,Max

= T
Max(GCM,FUT ,i)−TMax(GCM,Base,i)

(4)WCSS =

K∑

k=1

∑

i∈Ck

V∑

v=1

(
x
iv
− x

vk

)2
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into three general layers. The input layer is responsible for receiving data, the output layer 
contains forecast information, and the middle layer performs the necessary calculations 
(Maier and Dandy 1997; Daliakopoulos et al. 2005; Moghaddam et al. 2019). The inputs are 
multiplied by synaptic weights and delivered to the first hidden layer. In the hidden units, the 
weighted sum of inputs is transformed by a nonlinear activation function (Taormina et al. 
2012).

ANNs are either feedforward or recurrent. The present research utilized feedforward 
NNs and the sigmoid activation function. The Levenberg–Marquardt algorithm was 
employed to train the NN (Daliakopoulos et al. 2005; Derbela and Nouiri 2020). In feed-
forward networks, the input enters from the left, and the output exits from the right. The 
number of input and output neurons are determined by the number of parameters in the 
network and is typically determined by the nature of the problem (Emamgholizadeh et al. 
2014). and those of the hidden layer are determined via trial and error. The hidden layer is 
tasked with linking the input and output layers. Using this layer, the NN can extract nonlin-
ear relationships from the data input to the model.

Training is aimed at reaching a state where the network is capable of correctly respond-
ing to training data in addition to similar non-training data. NN learning is either super-
vised or unsupervised, with the former being used in the present study. In this approach, 
training is mostly performed using sample vectors of pairs, such that a specific output 
vector is assigned to each input vector. As these vectors are presented to the network, the 
weights are corrected according to the learning algorithm. The present research minimum 
and maximum temperature, precipitation in the current month, and groundwater level in 
the previous month were used as the input data. In addition, groundwater level in the cur-
rent month was employed as the output data (Coppola et al. 2005; Chitsazan et al. 2015; 
Moghaddam et al. 2019).

2.7 � Performance Criteria

Statistical methods for assessing the error between observated and predicted data were 
used in terms of correlation coefficients (r), coefficients of determination (R2), Mean Abso-
lute Error (MAE), and Root Mean Squared Error (RMSE).

(5)
r =

n
�∑n
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O

i
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−
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i

2 −
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where n is the total number of measured data, P
i
 & O

i
 are the predicted and observed value, 

respectively, and O
i
 & P

i
 are the average value of the measured data (Natarajan and Sudheer  

2020).

3 � Result and Discussion

3.1 � CMIP6 Models Validation

In the first step, the performances of the NESM3, HadGEM3-GC31-LL, and ACCESS-
CM2 of the CMIP6 models with respect to the observation data were evaluated in order to 
determine the best model for studying climate change in the area. To this end, the R2 coef-
ficient of determination and the root-mean-square error (RSME) were used for the min-
imum and maximum temperature and precipitation parameters. According to the results 
presented in Table 3, the ACCESS-CM2 model showed the smallest RMSE at the mini-
mum and maximum temperatures and the best precipitation performance in both statistical 
tests. This indicated the superiority of this model over the other two in simulating the area 
under study. Therefore, it was selected for investigating climate change in the research step.

This step involved a forecast of the meteorological data by the ACCESS-CM2 model 
under the climate change scenarios SSP2-4.5 and SSP5-8.5. Additionally, the 2000–2019 
climatic data were utilized for the LARS-WG model’s base period, and forecast was made 
for the subsequent two decades (2021–2040). Using the Site Analysis functionality of the 
LARS-WG model, calibration and verification were performed simultaneously using two 
datasets including daily observation data and the geographic information of the research 
station. The performance of LARS-WG was evaluated by the K-S, t, and F statistical tests. 
The K-S test was conducted to test the equality of the seasonal distributions of the wet and 
dry series, the daily distribution of precipitation, and the daily distribution of minimum and 
maximum temperature. The F-test was performed to test the equality in the standard devia-
tion of monthly precipitation. The t-test was aimed at testing the equality of the monthly 
average of precipitation and the monthly average of the maximum and minimum daily 

Table 3   Statistical comparison of AOGCM models to select the best model

Statistical test Models AOGCM

Maximum temperature
ACCESS-CM2 HadGEM3-GC31-LL NESM3

R
2 0.97 0.96 0.98

RMSE (°C) 4.09 6.32 5.19
Minimum temperature
ACCESS-CM2 HadGEM3-GC31-LL NESM3

R
2 0.98 0.95 0.98

RMSE (°C) 5.55 8.38 5.75
Precipitation
ACCESS-CM2 HadGEM3-GC31-LL NESM3

R
2 0.95 0.94 0.94

RMSE (mm) 2.29 2.51 2.70
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temperature. Based on the P-value calculated in all tests, there was no significant difference 
between the simulated and observation values at a significance level of 5%. According to 
Table 4, the LARS-WG model exhibited acceptable consistency between the simulated and 
observation series of monthly climate data (Nover et al. 2016; Adnan et al. 2019). How-
ever, the same results were erroneous and unreliable on a daily scale. In addition, the larg-
est error corresponded to the simulated precipitation in January. The largest precipitation 
error might be due to the large variation in precipitation (Hassan et al. 2014) and compared 
to changes in temperature, changes in precipitation are more uncertain (Msowoya et  al. 
2016). Given the results of the model, the maximum temperature was simulated better than 
the other two parameters, providing higher accuracy (Bayatvarkeshi et al. 2020). Although 
there has been no complete correlation between the models and observations to date, the 
lack of such correlation is not a barrier to using climate models. Climate models are not 
used to predict specific weather events, but to predict a trend in climate change over time 
(Warnatzsch and Reay 2019). Based on simulated and observational values of climatic 
parameters, Table 4 presents a statistical comparison. As can be seen, the overall statistical 
evaluation of the ACCESS-CM2 model provided an acceptable result.

3.2 � Future Climate Modeling

Figure 3 displays a comparison of the average minimum and maximum temperatures of 
the base period and the average monthly temperature for both SSP2-4.5 and SSP5-8.5 sce-
narios during the 2021–2040 period. As shown, the minimum and maximum temperatures 
increased over the months due to climate change. Therefore, minimum and maximum tem-
peratures are expected to rise by 0.20 °C to 1.3 °C over the next two decades. The largest 
increase in minimum temperature corresponded to SSP5-8.5 with a 1.3 °C in November, 
and the smallest increase was in February (0.2  °C), corresponding to SSP5-8.5. For the 
maximum temperature, a similar method was followed, and the results indicated that the 

Table 4   K-S test daily distribution of observation and simulated data

Month Minimum temperature Maximum temperature Precipitation

Evaluation K-S P-value Evaluation K-S P-value Evaluation K-S P-value

January * 0.105 0.999 * 0.053 1.000 * 0.138 0.971
February * 0.053 1.000 * 0.106 0.999 * 0.060 1.000
march * 0.053 1.000 * 0.053 1.000 * 0.048 1.000
April * 0.053 1.000 * 0.010 1.000 * 0.054 1.000
May * 0.053 1.000 * 0.053 1.000 * 0.105 0.999
June * 0.053 1.000 * 0.106 0.999 * 0.078 1.000
July * 0.053 1.000 * 0.053 1.000 * 0.062 1.000
August * 0.106 0.999 * 0.053 1.000 * 0.107 0.999
September * 0.053 1.000 * 0.053 1.000 * 0.089 1.000
October * 0.053 1.000 * 0.053 1.000 * 0.081 1.000
November * 0.053 1.000 * 0.053 1.000 * 0.067 1.000
December * 0.053 1.000 * 0.053 1.000 * 0.067 1.000
*not statistically significant
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most significant changes in the base period would occur in April under SSP5-8.5, while the 
smallest changes would occur in October under SSP2-4.5. The results of the present study 
are in good agreement with previous research by (Al-Maktoumi et al. 2018; Shahvari et al. 
2019; Maghsood et al. 2019). In general, it can be said that the average air temperature in 
this basin is on the rise. The rise in temperature could be caused by the unstable and rapid 
industrial development that is taking place in this area.

The average monthly precipitation during the base period and the forecast period 
(2021–2040) for both scenarios is displayed in Fig.  3. Except for February, May, June, 

Fig. 3   Comparison of Minimum and maximum temperature average and precipitation of base (2000–2019) 
and future (2021–2040) under 2 scenarios SSP2-4.5 and SSP5-8.5: (a) minimum temperature, (b) maxi-
mum temperature, (c) precipitation
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and September, the results show an increase in precipitation for the rest of the months. As 
compared to the base period, the highest increase corresponded to the SSP5-8.5 scenario 
at 41 mm in October. On the other hand, the smallest increase corresponded to Septem-
ber at 6.3  mm under SSP2-4.5. In this regard, as predicted, the precipitation in the two 
upcoming decades will vary between -12% and 78%, with an overall increase from 2000 
to 2040, (Abiodun et al. 2017; Konapala et al. 2020; Tabari 2020). In addition, the results 
of Zhang et al. (2016) who studied three different GCMs under the RCP2.6, RCP4.5 and 
RCP8.5 scenarios indicated that precipitation in the RCP2.6 and RCP4.5 scenarios would 
increase gradually and continuously, but the increase in precipitation in future decades 
under RCP8.5 is likely to be remarkable.

The highest-precipitation month during the observation period was November, but it 
changed to October due to climate change in both scenarios. On the other hand, August 
tends to remain the warmest month in the two coming decades. The results also indicated 
the highest rise in precipitation in the winter and fall, while the largest absolute increase 
corresponded to July and August during the summer, which agreed with the results of 
Sha et al. (2019). Based on the findings, precipitation is also expected to increase in both 
scenarios. According to IPCC, a rise in temperature intensifies the groundwater cycle and 
increases evaporation. In turn, an increase in evaporation leads to frequent and strong 
storms and may further humidify humid regions and dry out dryer regions. In this regard, 
Boudiaf et al. (2020) reported a rise in temperature and precipitation in the coastal Medi-
terranean regions. Climate change has contributed to atmospheric warming and resulted in 
stronger precipitation. Research carried out by Araya-Osses et al. (2020) indicated that an 
increase in precipitation could lead to a higher snow potential in the heights, but a change 
in the form of precipitation, for example stronger precipitation was encountered during the 
same period due to higher temperatures.

3.3 � Clustering

The Elbow index was used in this work to determine the optimal number of clusters. The 
outcome of the clustering is displayed in Fig. 4. The results indicated a significant differ-
ence in WCSS in the first four clusters. However, this difference became negligible from 
K = 4 onward and hence four clusters were considered for the region under study. The loca-
tions of the four clusters and the four piezometers are shown in Fig. 5.

Fig. 4   Clustering by Elbow method

3994 A. Roshani, M. Hamidi



1 3

3.4 � Groundwater Modeling

The groundwater level of the Sari-Neka basin under climate change during the 2021–2040 
period was predicted in MATLAB using ANN. For this purpose, the data were divided 
into training, validation, and testing data, with 75% of them being assigned to training, 
and 15% to each of validation and testing. Since an important point in ANN is the num-
ber of neurons in the hidden layer, the trial and error resulted in an optimal number of 
eight neurons in the present work. In the first step, the model was trained to simulate the 
groundwater level during the observation period. It was then used to predict the prospec-
tive groundwater level. To develop the ANN model, maximum and minimum temperature 
and precipitation in the current month and groundwater levels in the previous months were 
used. Furthermore, the groundwater level in the current month was used for the output of 
the ANN model. The performance assessment of the constructed model was conducted 
for each cluster of piezometers over the 2000–2019 period, and the results are shown in 
Table 5. In all four piezometers, the results indicated that network performance was accept-
able (Chitsazan et al. 2015; Sun et al. 2016; Derbela and Nouiri 2020).

On the other hand, previous research results demonstrated that the three available obser-
vation data inputs (groundwater level, temperature, and precipitation or evaporation) were 
sufficient to construct a high-performance ANN (Daliakopoulos et al. 2005; Szidarovszky 
et al. 2007; Mohanty et al. 2010; Chang et al. 2015; Ghazi et al. 2021).

 In order to better comprehend the results predicted by the ANN, the Taylor diagram 
was used, (Fig.  6). The horizontal and vertical axes represent the observation data and 
the standard deviation, respectively. The points approach the hypotenuse which indicates 
that the standard deviation of the predicted data was close to that of the observation data, 

Table 5   Performance of the 
artificial neural network based 
on Correlation coefficient (r), 
coefficient of determination 
(R.2), root mean square error 
(RMSE) and Mean absolute error 
(MAE)

Representative 
cluster well

UTMX UTMY r R2 RMSE(m) MAE

P1 692,838 4,058,999 0.835 0.697 0.324 0.233
P2 697,350 4,075,550 0.929 0.864 0.360 0.253
P3 686,501 4,048,865 0.860 0.739 0.878 0.639
P4 688,031 4,074,145 0.895 0.802 0.339 0.237

Fig. 5   Clustering and positioning of groundwater observation wells (P1-P4) on the Sari-Neka region
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confirming that the model was performing properly. In addition, the correlation coefficient 
was on the main hypotenuse and measured the performance of the model on a 0–1 basis, 
where a value close to 1 indicated the good performance of the model. 

The observation groundwater level in all of the piezometers, except for the 4th one, 
increased, illustrating an improvement in the groundwater depth. Also, the groundwater 
depth at all of the piezometers showed a gradual decrease in the coming two decades 
due to climate change (Chang et  al. 2015). As seen from the observation trend of the 
four piezometers in Fig. 7, the depth of groundwater in the basin under study exhibited 
an increasing trend from about 2012 onward. However, a decreasing trend in depth due 
to climate change was observed for the coming two decades, except in the fourth pie-
zometer under SSP2-4.5. As discussed, due to the higher precipitation in SSP5-8.5 than 
SSP2-4.5, the groundwater level was expected to be higher in SSP5-8.5. Additionally, 
the largest change observed in the depth of groundwater was associated with piezometer 
P2 in SSP5-8.5. The results of previous research demonstrated an increase in groundwa-
ter levels under climate change (Ligotin et al. 2010; Chang et al. 2015). Therefore, from 
the results, it can be concluded that the groundwater level will improve in the future due 

Fig. 6   Performance of the artificial neural network based on Taylor diagram
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to the influence of climatic parameters, such as temperature and precipitation. Neverthe-
less, other factors, such as industrial and economic developments, population growth, 
and migration, may adversely affect the availability of water resources.

4 � Conclusions

Awareness of the changes in the groundwater level can make a remarkable contribution to 
water resource management. In the present research, three models of the CMIP6 GCMs 
were selected, and based on the model with the most adaptation to observation data, the 
groundwater level under two scenarios was simulated for the coastal Sari-Neka aquifer. 
In the first step, a comparison of the CMIP6 GCMs with observed data was performed in 
order to determine how well they would reproduce weather parameters over the basin and 

Fig. 7   Groundwater level predicted under climate scenarios (SSP2-4.5 & SSP5-8.5) for 2021–2040
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as a result the best model was selected for the area. Subsequently, the ACCESS-CM2 model 
was selected, and the weather parameters (temperature and precipitation) under scenarios 
(SSP2-4.5 and SSP5-8.5) were simulated by LARS-WG for the coming two decades. The 
results have indicated that the selected model is an improvement over the previous ones, 
i.e., ACCESS 1.0 and ACCESS 1.3 (Williams et al. 2018; Bodman et al. 2020). The results 
indicated that the precipitation fluctuated between -10% and 78% and average temperature 
(0.1–1.2  °C) would increase, which agrees with other research results in this field (Tan 
et al. 2017; Anjum et al. 2019; Yan et al. 2019). Variations in precipitation throughout the 
months of the year can make events such as floods and droughts more frequent. Therefore, 
efficient strategies should be undertaken to address these issues. In the second step, the 68 
piezometers were clustered based on geographical coordinates and groundwater level and 
evaluated using the Elbow method. This resulted in four piezometer clusters. The Sigmoid 
activation function and the Levenberg–Marquardt algorithm were employed to construct 
the ANN model. The number of neurons in the hidden layer was determined using trial 
and error that resulted in eight neurons. The groundwater depth was predicted under the 
two mentioned scenarios (SSP2-4.5 & SSP5-8.5) for future, 2021–2040 period. The results 
indicated that the groundwater depth of the Sari-Neka basin is likely to decrease with a 
gentle slope.
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