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Abstract
Irregular rainfall patterns and limited freshwater availability have driven humans to 
increase their dependence on groundwater resources. An essential aspect of effective water 
resources management is forecasting groundwater levels to ensure that sufficient quantities 
are available for future generations. Prediction models have been widely used to forecast 
groundwater levels at the regional scale. This study compares the accuracy of five com-
monly used data-driven models–Holt–Winters’ Exponential Smoothing, Seasonal Autore-
gressive Integrated Moving Average, Multi-Layer Perceptron, Extreme Learning Machine, 
and Neural Network Autoregression for simulating the declining groundwater levels of 
three monitoring wells in the National Capital Territory of Delhi in India. The performance 
of the selected models was compared using coefficient of determination  (R2), Root Mean 
Squared Error (RMSE) and Mean Absolute Error (MAE). Results indicate that Multi-
Layer Perceptron had high  R2 while fitting the training data and least RMSE and MAE dur-
ing testing, thus proving to be more accurate in forecasting than the other models. Multi-
Layer Perceptron was used to forecast the groundwater level in the study wells for 2025. 
The results showed that the groundwater level will decline further if the current situation 
continues. Such studies help determine the appropriate model to be used for regions with 
limited available data. Additionally, predictions made for the future will help policymakers 
understand which areas need immediate attention in terms of groundwater management.

Keywords Groundwater level forecasting · Holt-winters’ exponential smoothing · 
Seasonal ARIMA · Multi-layer perceptron · Extreme learning machine · Neural network 
autoregression

Highlights
• A number of different data-driven models exist for forecasting groundwater levels.
• In the present study, Multi-Layer Perceptron was the most accurate model for groundwater level 

forecasting.
• Accuracy measures - coefficient of determination, Root Mean Squared Error and Mean Absolute 

Error were compared to determine the most precise model.
• Multi-Layer Perceptron forecasts for 2025 showed a decline of 2-21 mbgl in the study wells.
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1 Introduction

With rising dependence on groundwater to meet domestic, irrigation and industrial 
demands, trend analysis and simulation of water table behaviour have become impor-
tant fields of study (Noori and Singh 2021). Researchers worldwide have developed and 
applied a number of different models to forecast groundwater levels, particularly for 
areas where recharge is low and extraction is high. Although models available for fore-
casting are abundant, selecting a suitable model that accurately simulates groundwa-
ter behaviour is complex (Takafuji et  al. 2019). Several factors have to be taken into 
account for model choice and performance–objective of the study and data availability 
being primary (Salvadore et al. 2015; Barzegar et al. 2017).

Numerical modeling techniques have gained immense popularity in recent years, 
mainly due to their ability to forecast the likely impacts of water management solutions 
(Singh 2014; Sarma and Singh 2021a). Although largely popular, numerical models may 
be limited by large data requirements and complex computations (Aguilera et al. 2019). 
Univariate forecasting can be beneficial for data-scarce study areas. Zhang et al. (2018) 
present a comprehensive review of commonly used data-driven models for hydrologi-
cal processes. They classified data-driven models as conventional, AI-based and hybrid 
models for streamflow prediction.

Conventional time series models such as Autoregressive Integrated Moving Average 
(ARIMA) and Seasonal Autoregressive Integrated Moving Average (SARIMA) are easy 
to use and widely popular (Mirzavand and Ghazavi 2015; Choubin and Malekian 2017; 
Rahaman et al. 2019;). The ARIMA model assumes that data at time t will directly cor-
relate with previous data at t-1, t-2, …. and associated errors (Narayanan et al. 2013). 
Many studies around the world have compared the performance of ARIMA or SARIMA 
with other models such as Holt-Winters’ Exponential Smoothing (HWES), Integrated 
Time Series model (ITS) and Artificial Neural Networks (ANN) (Shirmohammadi 
et  al. 2013; Aguilera et  al. 2019; Sakizadeh et  al. 2019). The HWES model forecast-
ing is based on Holt and Winters’ basic structures (Holt 1957; Winters 1960) and can 
be applied on data with non-constant trends and seasonal variations (Yang et al. 2017). 
In the study by Yang et al. (2017) for a coastal aquifer in South China, HWES outper-
formed ITS and SARIMA.

In recent years, ANNs have seen widespread applications in forecasting hydrological 
parameters (Chen et  al. 2020; Mozaffari et  al. 2022). ANN replicates biological neuron 
processing and consists of an input layer, one or more hidden layers and an output layer. 
Lallahem et al. (2005) evaluated the feasibility of using ANNs for groundwater level pre-
dictions and concluded that ANNs, particularly MLPs with minimal lags and hidden nodes, 
gave the best simulation results. Yang et al. (2009) reported that Back-Propagation Artifi-
cial Neural Network outperformed ITS in simulating groundwater levels in China. Aguilera 
et al. (2019) compared the performance of the Prophet model with other forecasting tech-
niques–seasonal naïve, linear model, exponential smoothing, ARIMA and neural network 
autoregression (NNAR) for groundwater level data in Spain. Recent years have seen the 
growing use of a novel method called Extreme Learning Machine (ELM) in hydrology 
(Kalteh 2019; Parisouj et al. 2020). In a study by Natarajan and Sudheer (2020), ELM had 
the best performance compared to ANN, GP and SVM for groundwater level prediction at 
six locations in Andhra Pradesh, India. Poursaeid et al. (2022) compared the performance 
of some mathematical and Artificial Intelligence (AI) models and concluded that the ELM 
method showed the best performance for groundwater level simulation.
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In this study, two conventional models – Holt-Winters’ Exponential Smoothing (HWES), 
Seasonal ARIMA and three AI-based models – Multi-Layer Perceptron (MLP), Extreme 
Learning Machine (ELM) and Neural Network Autoregression (NNAR) were applied on 
historical groundwater records of three monitoring wells in National Capital Territory of 
Delhi, India. The models were trained and tested as per standard procedure. The forecasting 
performance of each model was compared using accuracy measures–coefficient of determi-
nation  (R2), Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE). Finally, 
the best model was used to predict groundwater depth in 2025. To the best of our knowl-
edge, this comparative analysis has been done for the first time in the study area.

2  Materials and Methods

2.1  Data Driven Models

2.1.1  Holt‑winters’ Exponential Smoothing

The simple smoothing methodology given by Brown (1959) was limited by its inability to 
support a time series with trend components (Sakizadeh et al. 2019). Holt (1957) proposed 
the exponential smoothing method which incorporated a trend component given by the fol-
lowing equations:

Level

Trend

Forecast

where, lt : level of time series at t time step, bt:slope of the series, yt+h|t : forecast for next h 
time steps, � , �∗ : smoothing parameters (between 0 and 1). For a time series with variable 
seasonal fluctuations, simulations are made using the multiplicative form:

Level

Trend

Seasonal

(1)lt = �yt + (1 − �)(lt−1 + bt−1)

(2)bt = �∗
(
lt − lt−1

)
+ (1 − �∗)bt−1

(3)yt+h|t = lt + bth

(4)lt = �
yt

St−m
+ (1 − �)(lt−1 + bt−1)

(5)bt = �∗
(
lt − lt−1

)
+ (1 − �∗)bt−1

(6)st =
�yt(

lt−1 + bt−1
) + (1 − �)st−m
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Forecast

where, m: length of time series, h+
m
 : (h-1)mod m + 1,  St: seasonal component at time t, � : a 

smoothing coefficient (between 0 and 1).

2.1.2  Seasonal ARIMA Model

An ARIMA model contains autoregressive (AR), integrated (I) and moving average (MA) 
parts which are expressed as ARIMA (p, d, q); where p is autoregressive part, d is inte-
grated part and q is moving average part (Box and Jenkins 1976). AR describes the relation-
ship between present and previous variables in the time series. If p = 1, then each variable  
is a function of only one last variable, i.e.

where,  Yt: observed value at time t,  Yt-1: previous observed value at time t-1,  et: random 
error, c and φ1: constants. For p > 1, other observed values of the series can be included as:.

The I part of the model denotes the stationarity of the series. For a non-stationary series, 
differencing has to be done. For linear trend in the time series, first-order differencing is 
done (d = 1), for a quadratic trend, d = 2 and so on. The MA part of the model identifies the 
relationship between the variable and previous q errors. If q = 1, each observation is a func-
tion of only one previous error i.e.

where, c: constant,  et: random error at time t,  et-1: previous random error at time t–1. For 
q > 1, other errors can be included as:

The combined equation for non-seasonal ARIMA model of order (p, d, q) for a standard 
normal variable  (Yt) is:

where, B: backshift operator. To account for seasonality, the ARIMA model is represented 
by ARIMA (p,d,q) × (P,D,Q)s with P, D and Q denoting the seasonal autoregression, inte-
gration (differencing), and moving average, respectively.

where,  Yt: original time series,  et: normal independently distributed white noise residual 
series with mean zero and variance σ2, Φ and Θ: ARIMA structures between the seasonal 
observations, φ and θ: non-seasonal ARIMA structure, ϕp(B) and ΦP(Bs): non-seasonal 
and seasonal autoregressive operators of order p and P, respectively, θq(B) and ΘQ(Bs): 
non-seasonal and seasonal moving average operators of order q and Q, respectively, ∇d 

(7)yt+h|t = (lt + bth)st−m+h+
m

(8)Yt = c + ∅1Yt−1 + et

(9)Yt = c + ∅1Yt−1 + ∅2Yt−2 +⋯ + ∅pYt−p + et

(10)Yt = c + �1et−1 + et

(11)Yt = c + �1et−1 + �2et−2 +⋯ + �qet−q + et

(12)∅(B)(1 − B)dYt = �(B)et

(13)∅p(B)ΦP(B
s)∇d∇D

s
Yt = �q(B)ΘQ(B

s)et
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and ∇s
D: non-seasonal and seasonal differencing operators of orders d and D. The Seasonal 

ARIMA procedure involves three major steps –

(a) Model identification: the time series is first analysed for stationarity and normality and 
accordingly differenced and/or log-transformed. Autocorrelation (ACF) and partial 
autocorrelation (PACF) functions of the original and differenced series are exam-
ined. The best model is identified based on least Akaike Information Criterion (AIC) 
and Bayesian Information Criterion (BIC). The AIC or BIC is written in the form 
[-2logL + kp], where L: likelihood function, p: number of parameters in the model, 
and k: 2 for AIC and log(n) for BIC (Akaike 1974; Schwarz 2007).

(b) Parameter estimation and diagnostic checking: autoregressive and moving average 
parameters of the identified model are estimated. Diagnostic checking is carried out 
from the residuals and accuracy measures to examine the suitability and assumptions 
of the model.

(c) Forecasting: the selected model is used to forecast the variables for future time periods.

2.1.3  Multi‑layer Perceptron

Several AI-based deep learning frameworks are available that can simulate time series 
data. Of these, MLP is a simple feed-forward layered technique that works on the principle 
of the backpropagation algorithm (Hecht-Nielsen 1989; Aslam et al. 2020). The data are 
processed in the forward direction by feeding into input nodes. These are then multiplied 
by a given weight and passed onto one or more hidden layer nodes. The hidden layer nodes 
add the weighted inputs, calculate loss or bias and then pass it on through a transfer func-
tion to give the result. The output nodes perform the same operations. During the training 
phase, the weights and biases are adjusted to minimise the errors via the backpropagation 
algorithm and a comparison is made between target outputs at each output node and output 
network (Lallahem et al. 2005). The backpropagation algorithm keeps repeating this itera-
tion till the maximum improvement is achieved. Fig. S1 demonstrates a three-layer feed-
forward MLP structure. The equation for MLP is given by:

where, yk are outputs from the network, xi are inputs, wi are weights connecting input and 
hidden layer nodes, wj are weights connecting hidden and output layer nodes, I are input 
nodes, J are hidden nodes, K are output nodes, Wj is bias for jth hidden neuron and Wk is 
bias for kth output neuron.  S1 and  S2 are activation functions. Commonly, the logistic sig-
moid function is used for activation:

2.1.4  Extreme Learning Machine

ELM was developed to overcome traditional neural networks’ high computational cost and 
time (Huang et al. 2006). In the three-layered structure (single hidden layer feed-forward 
network) of ELM, weights between inputs and hidden nodes and bias values in the hid-
den layer are generated at random which are frozen during model training. The weights 

(14)yk = S1(
∑J

j=1
wjS2(

∑I

i=1
wixi +Wj) +Wk)

(15)S(x) =
1

1 + e−x
S ∶ R →] − 1, 1[
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between hidden nodes and outputs are calculated using Moore–Penrose generalized inverse 
of the hidden-output matrix. This process makes ELM much faster than traditional ANNs 
because there is no iteration in learning. For a training set, ELM is expressed as:

where, xi: input, N̂ : hidden nodes, wi: weight vector from input to  ith hidden node, bi: bias 
of  ith hidden node, βi: weight vector from  ith hidden node to output, oj: output and g(x): 
non-linear activation function in hidden layer (Parisouj et al. 2020).

2.1.5  Neural Network Auto‑regression

In an NNAR model, lagged values are used as inputs to a neural network. NNAR(p,k) 
indicates that there are p lagged inputs and k nodes in hidden layer. For seasonal data, 
last observed values from same season are used as inputs. It is denoted by NNAR(p, P, 
k)m which has (yt-1, yt-2, …, yt-p, yt-m, yt-2  m, …, yt-Pm) as inputs and k neurons in hidden 
layer. Unlike SARIMA, NNAR does not require stationarity of time series. Mathematically 
NNAR is:

where, f: neural network, yt−1 : vector containing lagged values of series and �t : error series 
(assumed to be homoscedastic) (Hyndman and Athanasopoulos 2018).

2.2  Study Area and Data Used

The five forecasting models were applied on groundwater records of monitoring wells in the 
National Capital Territory (NCT) of Delhi. The NCT of Delhi in North India lies between 
28° 24′ 15″ N to 28° 53′ 00″ N and 76° 50′24″ E to 77° 20′ 30″ E. It covers an area of 
1483  km2, 75% of which is urbanized (Central Ground Water Board 2016). It is divided into 
11 districts. Much of Delhi’s rain occurs during the monsoon months – July to September, 
bringing high humidity levels. Delhi’s geological formations vary from Quartzite to Older 
and Younger Alluvium making the aquifer geology complex (CGWB 2021a).

The Central Ground Water Board (CGWB) has over a 100 monitoring stations spread over 
Delhi’s alluvial and quartzitic area. Historical records of groundwater levels for monitor-
ing stations in NCT of Delhi were obtained from CGWB for winter (January), pre-monsoon 
(May), monsoon (August) and post-monsoon (November) seasons. Mann–Kendall test on 
pre-monsoon and post-monsoon groundwater levels (in mbgl) for Delhi at the district level 
showed an increasing trend indicating that there has been a decline in the groundwater depth 
in the last two decades (Sarma and Singh 2021b).

2.3  Data Pre‑processing and Methodology of Study

To demonstrate the comparison between the time series models, data from three wells 
were chosen because of their declining groundwater level – Haiderpur (GW1), Bhatti 
(GW2) and Kitchner Road (GW3). Locations of these wells are presented in Fig. 1. The 
time period for study was selected depending on data availability – GW1 (1999–2019), 
GW2 (1996–2019) and GW3 (1983–2017). The datasets were analysed for completeness 

(16)
∑N̂

i=1
�ig

(
wixj + bi

)
= oj, j = 1,… ,N

(17)yt = f
(
yt−1

)
+ �t
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and a small number of missing values were imputed using the Multivariate Imputation by 
Chained Equations (MICE) package in R software (van Buuren and Groothuis-Oudshoorn 
2011). Multiple imputation has an advantage over single imputation methods in that cor-
relations error obtained from the imputations are not overestimated due to the inclusion of 
uncertainty because of missing data (Lee and Carlin 2010; Gao et al. 2018). The dataset 
was divided into two subsets for applying the time series models–80% for training and 20% 
for testing. To avoid larger values from overriding smaller ones and prevent saturation of 
hidden nodes, the dataset was normalized between 0 and 1 for MLP and ELM (Eq. (18)).

where,  xn: normalized data,  xi: actual value,  xmin: minimum value and  xmax: maximum 
value in each dataset (Shirmohammadi et al. 2013). The HWES, NNAR, SARIMA, MLP 
and ELM algorithms were run on the training data using their respective packages in R 
software – forecast (Hyndman et  al. 2008, 2019; Hyndman and Athanasopoulos 2018), 
astsa (Shumway and Stoffer 2016) and nnfor (Crone and Kourentzes 2010; Kourentzes 
et al. 2014). The complete methodology of the study is depicted in Fig. 2.

2.4  Evaluation of Model Performance

After fitting the training data, each model was used to forecast the groundwater level for 
the testing period. To assess model performance, accuracy measures–root mean square 

(18)xn =
(xi − xmin)

(xmax − xmin)

Fig. 1  Locations of selected monitoring wells for the study – Haiderpur (GW1), Bhatti (GW2) and Kitchner 
Road (GW3)
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error (RMSE), mean absolute error (MAE) and coefficient of determination  (R2) were 
compared. The model with the least RMSE and MAE and maximum  R2 during the training 
and testing phases was determined as the best model for forecasting groundwater levels in 
the study area.

where, n: number of data points, Oi : observed variables with mean O and Pi : predicted 
variables with mean P (Choubin and Malekian 2017; Yan and Ma 2016).

(19)RMSE =

√
1

n

∑n

i=1
(Oi − Pi)

2

(20)MAE =
1

n

∑n

i=1
|
(
Oi − Pi

)
|

(21)R
2 = [

∑n

i=1

�
O

i
− O

��
P
i
− P

�

�∑n

i=1

�
O

i
− O

�2∑n

i=1

�
P
i
− P

�2
]2

Fig. 2  Methodology of study
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3  Results and Discussion

3.1  Time Series Decomposition

The time series of the three wells were first decomposed into its trend, seasonal and resid-
ual components in R software (Fig. 3). Since the data are in metres below ground level 
(mbgl), all 3 wells showed increasing trend, implying continuous groundwater depletion 
during the time period of study. The trend ranged over 7 mbgl for GW1, 30 mbgl for GW2 
and 15 mbgl for GW3. The seasonal component has an oscillatory amplitude of 0.3 mbgl 
for GW1, 3 mbgl for GW2 and 2 mbgl for GW3. The seasonal component has a peak in 
November and trough in May, according to the rainfall patterns in Delhi. Much of the rain-
fall is received during the monsoon season (July – September) which recharges the ground-
water during the post-monsoon months (October – November). During January to June, 
scanty rainfall is unable to compensate for the groundwater abstraction, thus leading to a 
lower recharge in May. The residual component fluctuates between ± 1 mbgl for GW1, ± 5 
mbgl for GW2 and ± 3 mbgl for GW3. This decomposition showed that for all 3 study 
wells, the trend has the largest component, followed by the residual and seasonal parts.

3.2  Holt‑winters’ Exponential Smoothing

The Holt-Winters’ model predicts a future value by combining the influences from the 
level, trend and seasonality. Each component has an associated smoothing parameter that 
provides information about its influence on the model’s predictions (Table 1). The value 

GW1 GW2 GW3

Fig. 3  Seasonal decomposition of groundwater level time series of GW1, GW2 and GW3 into trend, sea-
sonal and random components

Table 1  Smoothing parameters 
from HWES with trend and 
additive seasonal component

Smoothing parameters

α β* γ

GW1 0.8191 0.0321 0.2680
GW2 0.7383 0.0000 0.6628
GW3 0.4267 0.0897 0.2982
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of α is close to 1 for GW1 and GW2, indicating that prediction of a current observation 
is mostly based on the immediate past observations. For GW3, lower value of α implies 
that older observations are weighted more than the most recent ones. All three study wells 
had β* close to or equal to 0 indicating that the trend does not change much over time and 
remains fairly constant during each prediction. GW1 and GW3 have γ values close to 0 
indicating that like trend, seasonality also does not change. However, for GW2, a larger 
γ value implies a strong seasonal component. Thus, for GW2, seasonal component of the 
current observation is based on the seasonality of the most recent observations.

3.3  Seasonal ARIMA

The autocorrelation (ACF) and partial autocorrelation (PACF) plots for the time series of 
GW1, GW2 and GW3 were inspected to check the stationarity. The plots did not tail off to 
zero indicating that the series were not stationary and required appropriate differencing. 
First order non-seasonal differencing was applied on GW1 and GW3 while GW2 required 
first order seasonal. This corroborated the results from HWES as GW2 showed a strong 
seasonal component while GW1 and GW3 did not have much influence from seasonal-
ity. The Augmented Dickey-Fuller (ADF) test was applied before and after differencing 
and the p-value was compared. The p-value before differencing was computed as 0.4451, 
0.1118 and 0.0419 for GW1, GW2 and GW3 respectively. After the appropriate differenc-
ing, the p-value as determined from the ADF test was 0.01, rejecting the null hypothesis 
that the series has a unit root and is thus stationary.

With the appropriate differencing, the value of d or D of the SARIMA model was deter-
mined. Different combinations of p, P, q and Q were tested on trial-and-error method. The 
ACF and PACF plots of each of these models were inspected and model selection criteria 
AIC and BIC were compared (Table S1). The best model was selected based on the mini-
mum AIC and BIC values. The final models selected were (1,1,1)(1,0,0)4, (1,0,0)(0,1,1)4 
and (1,1,1)(1,0,1)4 for GW1, GW2 and GW3 respectively.

3.4  MLP, ELM and NNAR

The MLP networks were trained in R using a validation argument and specified num-
ber of lags to prevent overfitting the training data (Fig.  4). The grey inputs represent 

GW1 GW2 GW3

(a) (b) (c)

Fig. 4  MLP network for a  GW1 (5 inputs, 1 hidden layer, 4 nodes) b  GW2 (7 inputs, 1 hidden layer, 2 
nodes) and c GW3 (6 inputs, 1 hidden layer, 1 node)
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autoregressive lags and pink inputs represent seasonality. The mean square error (MSE) 
for the trained MLP networks were 0.0022, 0.0036 and 0.0127 for GW1, GW2 and GW3 
respectively. The ELM networks were trained in R using the lasso regression method. The 
time taken for training was significantly lesser than the MLP networks. The mean square 
error (MSE) for the trained ELM networks were 0.0072, 0.0062 and 0.0156 for GW1, 
GW2 and GW3 respectively. The NNAR models were applied on the training data with 
Box-Cox transformation (lambda = 0). This transformation ensured that the residuals were 
homoscedastic. The descriptions of the resultant ELM and NNAR networks are presented 
in Table 2.

3.5  Comparison of Model Performance

The accuracy measures were compared for the models for each study well (Table 3). For 
GW1 and GW2, MLP performed the best for both the training and testing phases with 
highest  R2 and lowest RMSE and MAE. MLP best fitted the observed values with the pre-
dicted values during training and testing (Fig. 5). For GW3, HWES had the highest RMSE 
and MAE among all models. NNAR performed very well during training but gave unre-
alistic forecasts during testing. There may have been overfitting of data, indicated by the 
large parameters in the network, i.e. 9–5-1 network with 56 weights. The MLP network 
yielded low  R2 values for both training and testing. MLP network for GW3 had only 1 
hidden node (Fig. 4) and compared to GW1 and GW2, MSE for GW3 was higher. ELM 
presented very high RMSE and MAE for both training and testing. SARIMA had slightly 
better  R2 but MLP had the lowest errors. Thus, MLP was considered the best performing 
model for GW3 as well.

The best model MLP was used to forecast the groundwater level for the year 2025. 
MLP forecasts for May 2025 showed that groundwater level will fall by 2 mbgl and 21 
mbgl below the 2019 level for GW1 and GW2 respectively and 3 mbgl below the 2017 
level for GW3.

3.6  Discussion

The results from applying the five models suggest that with validation in the training set, 
MLP can train the model with  R2 as high as 0.914. For GW1 and GW2, SARIMA and 

Table 2  ELM and NNAR model 
descriptions for the study wells

ELM network Univariate lags

GW1 Fit with 62 hidden nodes 1,3
GW2 Fit with 69 hidden nodes 1,2,3,4
GW3 Fit with 100 nodes 1,2,3

NNAR model Description
GW1 NNAR(1,1,2)4 2–2-1 network with 9 weights
GW2 NNAR(1,1,2)4 2–2-1 network with 9 weights
GW3 NNAR(9,1,5)4 9–5-1 network with 56 weights
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HWES also gave high  R2 values during training. For the testing period, the  R2 tends to 
decrease slightly for MLP and HWES and dramatically for SARIMA. Thus, fitting preci-
sion of a model may not necessarily imply accurate forecasting which makes evaluating the 
model forecasts against a testing subset a crucial step in the modeling process. ELM gave 
the lowest  R2 for GW1 and GW2 during training. NNAR had overall low efficiency which 
was also observed in the study by Aguilera et al. (2019). These models may perform better 
by selecting the appropriate activation functions, lagged variables as inputs or numerical 
procedure (Faraway and Chatfield 1998). MLP, ELM, HWES and SARIMA did not per-
form well on the GW3 dataset. Even though the dataset for GW3 was large with 139 obser-
vations over 1983–2017, there was overall low performance of the models. Groundwater 
levels are influenced by factors like rainfall, soil properties, surface water and abstraction 
(Lee et al. 2019) and during interpretation of model results, it may be pertinent to analyse 
these influencing factors as well.

MLP forecast for 2025 presents an alarming result for GW2, a monitoring well located 
in the southern part of the study area (Fig.  1). Declining trends in the South district of 
Delhi have been reported by the CGWB, particularly due to over-exploitation (CGWB 
2016,  2021b). Results of aquifer response modeling for Delhi using MODFLOW also 
showed a similar decline for GW2 (Bhatti) (CGWB 2016), necessitating an urgent and 
effective groundwater management plan in that region.

Table 3  Comparison of accuracy 
measures for selected models

Training Testing

R2 RMSE MAE R2 RMSE MAE

GW1
HWES 0.746 0.638 0.455 0.729 0.597 0.469
SARIMA 0.800 0.617 0.479 0.379 1.813 1.616
MLP 0.914 0.047 0.035 0.733 0.069 0.052
ELM 0.731 0.085 0.062 0.721 0.112 0.093
NNAR 0.793 0.561 0.431 0.516 2.266 2.111
GW2
HWES 0.882 2.557 1.822 0.708 5.377 5.041
SARIMA 0.912 2.448 1.676 0.671 5.033 4.612
MLP 0.910 0.060 0.041 0.710 0.139 0.128
ELM 0.852 0.079 0.058 0.705 0.112 0.095
NNAR 0.873 2.541 1.924 0.633 5.166 4.595
GW3
HWES 0.271 3.060 2.323 0.284 3.071 2.803
SARIMA 0.558 2.645 1.989 0.246 1.839 1.351
MLP 0.436 0.113 0.088 0.195 0.104 0.086
ELM 0.354 2.793 2.021 0.266 2.282 1.902
NNAR 0.931 0.904 0.659 0.017 2.263 1.475
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4  Conclusion

This study used univariate time series forecasting methods HWES, Seasonal ARIMA, 
MLP, ELM and NNAR for prediction of groundwater levels in Delhi, India. Decomposi-
tion of the time series of three monitoring wells showed increasing trend, indicating that 
the groundwater level has continuously declined over the study period. The parameters of 
HWES and SARIMA were calculated and MLP, ELM and NNAR models were trained and 
validated. The accuracy of the models was assessed based on the  R2, RMSE and MAE. 
MLP had the least values of RMSE and MAE and highest  R2 for two wells during training 
and testing, indicating that the MLP approach was most accurate in forecasting the ground-
water levels. For the third well, MLP had a slightly lower  R2 but least RMSE and MAE 
and was also concluded to be better than HWES, SARIMA, ELM and NNAR for making 
predictions.

Such univariate forecasting studies are particularly suitable for regions where large 
hydro-climatological data are unavailable. MLP was used to make further predictions for 
May 2025 for all three wells. Results indicate that groundwater level in the three wells will 
decline by 2–21 mbgl. This study has helped identify the areas that require urgent ground-
water management decisions. Further research may be done on adding more arguments in 
the model algorithm to give the lowest errors. It is recommended that more comparison 
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Fig. 5  Fitting the observed and simulated values for a training and b testing
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studies should be made for other regions in India so that the most accurate models help in 
identifying the areas where groundwater is declining rapidly.
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