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Abstract
In this paper, a new methodology is developed for urban runoff management based on 
global sensitivity analysis of the storm water management model (SWMM) considering 
uncertainties. The variogram analysis of response surface (VARS) model is utilized for 
sensitivity analysis of the SWMM parameters by combining the runoff simulation model of 
the SWMM with VARS. Three model efficiency metrics, namely Nash–Sutcliffe efficiency 
metric for the runoff, NSE metric for the logarithm of the runoff, and percent bias in simu-
lating runoff are used to evaluate SWMM outputs and rank its parameters. The reliability 
of the obtained rankings of parameters is evaluated by developing a bootstrapping-based 
strategy to estimate confidence intervals for the calculated sensitivity values. A multi-
objective optimization model is integrated with the calibrated SWMM, to select optimum 
scenarios of low impact development-best management practice (LID-BMP). To take into 
account the rainfall uncertainty, design storm hyetograph is stochastically derived using 
Monte Carlo analysis and Huff curves (Huff in Water Resour Res 3(4):1007–1019, 1967; 
Time distributions of heavy rainstorms in Illinois, State of Illinois Department of Energy 
and Natural Resources, Illinois, 1990). Finally, a socially acceptable LID-BMP scenario 
out of a set of non-dominated solutions is obtained using the Nash bargaining theory. The 
proposed method is applied to an urban watershed Iran. The resulted LID-BMPs could 
decrease runoff volume and pollution load by 24% and about 74%, respectively.

Keywords Global sensitivity analysis · LID-BMP · Urban runoff management · 
Uncertainty · SWMM · VARS

1 Introduction

Hydrological pattern of urban flows can drastically alter due to urbanization. These 
changes mostly include increased peak flows, reduced concentration time of the watershed, 
change in the intensity and frequency of floods, and ecological degradation resulted from 
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increased runoff rates (McGrane 2016; Duan et al. 2016; Chui et al. 2016; Li et al. 2017; 
Paule-Mercado et al. 2017). Low impact development (LID) practices as sustainable and 
environment-friendly techniques for management of urban stormwater are meant to reduce 
the impacts of urbanization (Jia et al. 2015a; Singh et al. 2020; Rezaei et al. 2021; Corrêa 
et al. 2021; Li et al. 2022). These practices are based on controlling runoff at the source 
and reducing the total pollutant load in a natural and aesthetic manner (Lee et al. 2012; Liu 
et  al. 2018). Bio-retention cells, detention/retention ponds, green roofs, permeable pave-
ments, infiltration trenches and rain barrels are among LID-BMPs. Over the last decades, 
several researches were conducted to investigate the efficiency of LID-BMPs for urban run-
off management. (Pyke et al. 2011; Karamouz and Nazif 2013; Qin et al. 2013; Gwenzi 
and Nyamadzawo 2014; Jia et al. 2015a, b; Zahmatkesh et al. 2015; Ghodsi et al. 2016a, b;  
Huang et al. 2018; Ghodsi et al. 2020; Yang et al. 2020, 2022; Li et al. 2021; Saniei et al. 
2021; Tansar et al. 2022). An efficient combination of LID management practices across 
all sub-catchments in an urban watershed can be obtained considering objectives of reduc-
ing runoff quantity, improving runoff quality and decreasing the execution costs of the 
LID management practices (Cano and Barkdoll 2017). Doing so usually entails urban run-
off discharge modelling based on several different scenarios of LID runoff management 
practices.

Among several urban runoff simulation models, the storm water management model 
(SWMM) of the U.S. Environmental Protection Agency (EPA) is one of the most widely 
used (Eckart et al. 2017). In the current paper, the SWMM is selected for simulating urban 
runoff due to its simple structure, low impact development (LID) module (Zhang and Chui 
2018), open source feature and ability to be directly linked with other softwares such as 
MATLAB.

The SWMM contains several site-specific parameters for adequately considering fea-
tures and characteristics of urban watershed and its drainage network as well as rainfall-
runoff relationship. Complete and detailed information on these properties are often una-
vailable. Thus, parameter calibration of the simulation model is necessary. The calibration 
process can be very time-consuming when having a large number of model parameters 
to be determined. Sensitivity analysis (SA) can decrease the number of parameters that 
should be calibrated. Changes in model outputs or values of model performance metrics 
(criteria) in response to the changes of model parameters are investigated in the sensitivity 
analysis (More studies on sensitivity analysis of model parameters are reviewed in Sect. S1 
of the Online Supplementary Material).

Despite the widespread applications of the SWMM for urban runoff simulations, the sensi-
tivity analysis done in the previous works were either local or derivative-based and the impact 
of parameter perturbation scale to analyze global sensitivity over the entire space of model 
parameters were not considered. Thus, a comprehensive and robust global sensitivity analysis 
(GSA) on the SWMM parameters and their impact on model performance has not yet been 
done. In this paper, the sensitivity of the SWMM outputs to the values of model parameters 
is evaluated based on different goodness of fit metrics. Each of these metrics is responsible 
for measuring a distinct feature of the data. Three commonly used model efficiency metrics, 
namely Nash–Sutcliffe efficiency (NSE) metric for the runoff (NSE(Flow)), NSE metric for 
the logarithm of the runoff  (NSElog(Flow)), and percent bias (PBIAS) in simulating runoff 
(PBIAS(Flow)) are used. Moreover, the reliability of the obtained rankings of parameters is 
evaluated by developing a bootstrapping-based strategy to estimate confidence intervals for 
the values of calculated sensitivity metrics. The calibrated SWMM is integrated with an opti-
mization model for selecting optimum urban runoff management scenarios. The proposed 
method is applied to a case study of Velenjak urban watershed, located in the north of Tehran, 
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Iran. The proposed methodology includes the following components: 1) sensitivity analysis 
of surface runoff simulation model of the SWMM for understanding the importance of its 
parameters using the VARS framework, 2) general sensitivity analysis of the SWMM param-
eters using the VARS tool and selecting and ranking the most influential parameters, 3) esti-
mating confidence intervals for the values of calculated sensitivity metrics and evaluating the 
reliability of the obtained rankings of parameters 4) the automatic calibration of the selected 
parameters of the SWMM using the non-dominated sorting genetic algorithm (NSGA-II) 
multi-objective optimization model which is linked with the SWMM 5) stochastically deriv-
ing the design storm hyetograph using Huff curves and Monte Carlo analysis 6) developing a 
multi-objective simulation–optimization model for finding a set of non-dominated scenarios 
based on LID-BMPs considering rainfall uncertainty and 7) selecting a socially acceptable 
LID-BMP scenario out of the obtained set of non-dominated solutions using the Nash bar-
gaining theory. In the next sections, details of the proposed methodology and its implementa-
tion in the study area are described.

2  Methodology

A flowchart which presents the main steps of the proposed methodology is shown in Fig. 1. 
Details of the main steps of this flowchart will be discussed in the following sections.

2.1  Data Collection and Catchment Discretization

In this section, the data and information regarding the hydrologic, hydraulic, geomorphologic 
and socio-economic conditions, stakeholders and their interests, LID-BMPs as well as quan-
tity and quality of the pollution sources of the study area are collected and analyzed. More 
details on the required data and information can be found in the Sect. S2 of the Online Sup-
plementary Material.

2.2  Urban Runoff Simulation

The Storm Water Management Model (SWMM), developed by the US Environmental Protec-
tion Agency (USEPA), is used to simulate urban runoff quantity and quality. The SWMM was 
first developed in 1971 and has been widely used in design and analysis of storm water runoff 
drainage systems, sanitary sewer networks, and other drainage systems (Rossman 2010). The 
SWMM 5.1.013, the most recent version of the SWMM, simulates the hydrologic processes 
considering both single event and continuous simulations.

Pollutants reach conduits and sewers via surface runoff. The types of pollutants in urban 
runoff can vary with characteristics of the surfaces of a catchment. In the SWMM, the pollut-
ant transport model which is integrated with the runoff model considers two main stages: (1) 
formation of the pollutant on the catchment surfaces before a heavy rainfall, (2) washing off 
the pollutants during rainfall.

The amount of build-up is a function of elapsed time preceding a rainfall and critical condi-
tions such as traffic flow, dry fallout and street sweeping (Rossman 2010) and is calculated as 
follows:

(1)B = Min(C1,C2t
C3 )
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where, B is mass per unit length of pollutant build-up and C1 and C2 are respectively maxi-
mum possible mass per curb length and build-up rate constant. The term t denotes elapsed 
time from the end of the preceding rain and C3 is a constant time exponent.
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Fig. 1  The flowchart of the proposed methodology
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The rate at which pollutants are washed off into the drainage system is calculated using 
an exponential function (Rossman 2010):

where, W is mass of wash-off load per hour. The terms D1 and D2 respectively stand for 
wash-off coefficient and wash-off exponent. The term q is runoff discharge per unit area in 
mm/hour and B denoted the total mass of contaminants.

The runoff quantity and quality is simulated for all sub-catchments. These runoffs and 
wastewater loads (if any) are added when joined in receiving nodes. Then runoff discharge 
routing through pipes, channels, storage/treatment devices, pumps, and hydraulic regula-
tors such as weirs, orifices, and other outlet types can be carried out using kinematic or 
dynamic wave methods. Complicating hydraulic conditions such as backwater effects, flow 
reversal, and flows under pressure, can also be considered in runoff simulations. In addi-
tion, the commonly used LID-BMPs for controlling runoff quantity and quality, such as 
porous pavements, rain barrels, infiltration trenches, bio-retention cells, and vegetative 
swales are simulated using the SWMM 5. Each sub-catchment in the SWMM is repre-
sented by a number of parameters that should be estimated in the calibration phase. Initial 
values for model parameters in each sub-catchment are derived based on the information 
related to soil characteristics, imperviousness, land use and topography using a Geographic 
Information System (GIS) software. The parameters are considered as random variables 
with uniform distributions within a predefined range. The possible ranges for the values of 
parameters are selected based on sub-catchment characteristics and previous recommen-
dations along with engineering judgment. Calibrating the values of all of the parameters 
related to all sub-catchments is not feasible. Therefore, sensitivity analysis is carried out to 
choose the most important parameters for runoff calculations.

2.3  Global Sensitivity Analysis

To reduce the computational burden of calibrating the runoff simulation model, global sen-
sitivity analysis (GSA) is done to identify, prioritize, and screen the dominant parameters 
of the SWMM. These parameters highly affect the simulated runoff in response to a given 
rainfall. The spatial dependence structure and variability of the simulated runoff, within 
the domain of n parameters of the SWMM ( x =

{

x1, x2, … , x
n

}

) is identified using vari-
ogram analysis. Thus, for any two points on the response surface of the simulated runoffs 
within the domain of parameters, the multidimensional variogram can be written as �(h) 
(Cressie 1993; more details can be found in Online Supplementary Material (Sect. S3). If 
the variogram is calculated along one of the n dimensions (corresponding to i th parameter 
of the SWMM), the calculated variogram is one-dimensional. The sensitivity of the simu-
lated runoff to any parameter i of the SWMM, across a wide range of perturbation scales 
( hi ), is denoted by �

(

hi
)

 . To combine the mentioned one-dimensional variograms and form 
a global sensitivity measure, these variograms are integrated across their range of scale 
(between o and Hi ) and Γ

(

H
i

)

 is derived (Razavi and Gupta 2016):

(2)W = D1 × qD2 × B

(3)Γ
(

H
i

)

= ∫
Hi

0

�

(

h
i

)

dh
i
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More details of the global sensitivity analysis (GSA) used in this paper is given in 
the Online Supplementary Material (Sect.  S3). In this paper, based on the bootstrap-
ping technique, the degrees of uncertainty in the results of the sensitivity analysis is 
evaluated based on 90% confidence intervals (CIs) of the sensitivity indices. To com-
prehensively analyze the sensitivity of the runoff simulation results to the SWMM 
parameters, multiple sensitivity analysis using VARS and considering different metrics 
(criteria) is done. These criteria are approximately uncorrelated metrics, each responsi-
ble for measuring a distinct feature of the data. These metrics are based on commonly 
used model efficiency criterion of Nash–Sutcliffe, namely Nash–Sutcliffe efficiency 
(NSE) criterion for the runoff (NSE(Flow)), NSE criterion for the logarithm of the 
runoff  (NSElog(Flow)), and percent bias (PBIAS) in simulating runoff (PBIAS(Flow)) 
(Table 1).

Using these metrics, one can assess model performance in reproducing hydrograph char-
acteristics, (i.e. high flows (runoff peak), low flows, and total volume of runoff (Table S1). 
Generally, the NSE metric shows more sensitivity to high flows, which can be attributed 
to squaring. On the other hand,  NSElog(Flow), which considers logarithmic transforma-
tion of the runoff discharge, accentuates the effect of low flows and decreases the effect 
of high flows (Krause et al. 2005). PBIAS is a measure of deviations of runoff data over 
the simulation period collectively. Therefore, this metric can represent model performance 
in predicting the total volume of the observed runoff (Moriasi et al. 2007). In this paper, 
 IVARS50, which represents an integrated variogram over 50% of the parameter range, is 
used for parameter ranking.

2.4  Calibration of the Runoff Simulation Model

After determining the most effective parameters of the runoff simulation model using the 
sensitivity analysis, the optimum values of these parameters are determined. The aim of 
calibration is to determine the values of the effective parameters so that simulated hydro-
graph is fitted to the observed hydrograph as possibly as it can be. More details can be 
found in Online Supplementary Material (Sect. S4).

Table 1  Definition of the used 
metrics for evaluating model 
 performance*

* Qobs : Observed flow, Qsim : Simulated flow, Qobs : Mean of observed 
flows

Nash–Sutcliffe coefficient of efficiency:

NSE = 1 −
∑

(Qobs−Qsim)
2

∑

�

Qobs−Qobs

�2

(4)

Nash–Sutcliffe for the logarithm of flows:

NSElog = 1 −
∑

(log(Qobs)−log(Qsim))
2

∑

�

log(Qobs)−log
�

Qobs

��2

(5)

Percent Bias:

PBIAS =
∑

(Qobs−Qsim)
∑

(Qobs)
× 100

(6)
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2.5  Determination of the Design Storm

To determine the design storm, duration, depth and spatial and temporal patterns of rainfall 
are needed. Details of this section have been provided in the Online Supplementary Mate-
rial (Sect. S5).

2.6  Defining and Initial Selection of the LID–BMP Scenarios by Developing 
a Multi‑Objective Optimization Model

Different scenarios of LID-BMPs are defined for urban runoff quantity and qual-
ity management in the study area, considering technical and socio-economic factors. 
These factors include landuse, natural hydrology and soil hydrologic group, groundwa-
ter level, the required space for executing the LID-BMPs, the slope of the region under 
devepoment, and the desired effects of development. Public acceptability is also an 
important consideration. These factors can be obtained based on field observations and 
the physcial and hydrological characteristics of the urban watershed.

The SWMM.5 is used to simulate the impacts of LID-BMPs on the quantity and 
quality of runoff. In addition, hydrologic impacts of implementing different types of 
LID-BMPs such as bio-retention cells, rain gardens, green roofs, infiltration trenches, 
permeable pavements, rain barrels and vegetative swales are modelled using SWMM.5. 
In this paper, the proposed initial LID-BMPs, consist of bio-retention cells, vegetative 
swales, permeable pavements and infiltration trenches.

Using bio-retention cells, urban runoff water is stored through vegetative surfaces, 
or soil mixture and a gravel beds, and then infiltrates into the soil or evaporates. By the 
use of vegetative swales, which are vegetated channels with steep sides, transportation 
of urban runoff is slowed down and as a result, more infiltration to the soil can occur. 
Permeable pavements are pavements with high porosity that enable stormwater runoff 
to infiltrate into the ground through their porous media. Their surfaces can consist of 
pervious concrete, plastic grids, recycled glass, porous asphalt, resin-bound paving, 
paving stones, porous turf and interlocking concrete pavers. Infiltration trenches known 
also as percolation trenches are ditches or shallow excavations filled with gravel, rub-
ble or stone. They provide temporary subsurface storage of runoff, and enhance the 
ground capacity for storing and draining water and increase the time needed for col-
lected water to infiltrate into the soil through the trenches’ bottom and sides.

In this step, an optimization model is developed to obtain a set of non-dominated 
scenarios to determine the best LID-BMPs in each sub-catchment of the study area. 
First, different scenarios each containing a set of LID-BMPs are considered. These sce- 
narios are defined based on physical and hydrological characteristics of sub-catchments  
including catchment area, slope imperviousness and land use. The type of LID-BMPs 
and the area of every sub-catchment, where the LID-BMPs are undertaken, are consid-
ered as the decision variables of a multi-objective optimization model. In this paper, 
LID-BMPs are implemented in sub-catchments with high runoff volume and pollution 
loads.

The objectives of the optimization model are minimizing the runoff volume, total 
pollution load and the total cost of LID-BMPs. The decision variables include char-
acteristics, locations and areas under implementation of LID-BMPs. The minimum 
and maximum values of the areas under each scenario of LID-BMPs constitute the 
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constraints of the optimization model. In this paper, the multi-objective optimization 
algorithm of the NSGA-II (Deb et al. 2002), is used to find the non-dominated Pareto 
optimal scenarios for the urban runoff management problem. These scenarios are used 
in the next step for selecting the final urban runoff management scenarios. More details 
on the NSGA-II section have been provided in the Online Supplementary Material 
(Sect. S6).

2.7  Selecting the Best Management Scenario(s)

In this paper, to select a final solution out of a set of non-dominated solutions, the 
negotiation process among stakeholders is simulated using the Nash bargaining the-
ory (Nash 1950). This theory considers the stakeholders’ preferences through using 
their utility functions, dissatisfaction points and relative powers in the negotiation. 
In this paper, the utility functions are obtained based on consulting the experts and 
engineering judgment. In the Nash bargaining function, the disagreement point for a 
stakeholder equals the value of their utility function when no LID-BMPs have been 
implemented. The values of relative weights are assigned to the stakeholders by 
the analyst according to the stakeholders’ relative importance or power. The Nash 
bargaining theory as follows. Suppose fi() is the utility function of the stakeholder 
i and d = (d1,… , dn) is the vector of disagreement points. The unique solution to 
this conflict-resolution problem is determined by solving the following optimization 
problem:

where, Z is called the Nash product, fi stands for the utility function of the i th stakeholder, 
di represents the disagreement point for the i th stakeholder, n denotes the total number of 
stakeholders and wi stands for the relative weight of the i th stakeholder which shows this 
stakeholder’s relative power.

3  Case Study

The study area is the Velenjak urban watershed located between the suburban and 
mountainous areas in the north of Tehran and the suburban and agricultural regions 
in the northeast of Tehran which suffers from the aforementioned environmental prob-
lems. The drainage system of the Velenjak watershed includes one major conduit, 
called Velenjak Channel. The service area of Velenjak Channel in runoff drainage is 
22.13  km2, 7.35  km2 and 14.78  km2 of which are respectively, undeveloped mountain-
ous area and urban area. The catchment is divided into 27 sub-catchments based on the 
method described in Sect. 2.2. Figure S1 (Online Supplementary Material) shows the 
location of the study area as well as the sub-catchments and the layout of the drain-
age system. More details on the study area can be found in the Online Supplementary 
Material (Sect. S7).

(7)Maximize Z = (d1 − f1)
w1 (d2 − f

2
)w2 …(dn − fn)

wn

(8)Subject to ∶ fi ≤ di i = 1, 2,… , n
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4  Results and discussion

In this section, we present the results of applying the proposed methodology to the case 
study. The global sensitivity analysis of the SWMM is conducted based on the observed 
runoff and rainfall data related to storm events occurred in 2017. The computational 
time of the sensitivity analysis using a 2.50 GHz Intel(R) Core(TM) i5-3210 M proces-
sor is 46 min. In this model, a perturbation resolution (Δh) of 0.1, number of star centers 
(Razavi and Gupta 2016) of 100 and bootstrap size (number of sampling iterations with 
replacement) of 1000 results in a total of 13,600 executions of the SWMM.

The derived variograms of VARS for the SWMM parameters are demonstrated in Fig. 2 
(as well as Figs. S2 and S3 in the Online Supplementary Material). In these figures, plots 
(a) and (c) illustrate the directional ( �(h) ) and integrated ( Γ(H) ) variograms, respectively. 
Plots (b) and (d) display zoom-in images of plots (a) and (c), respectively. As shown in 
Fig.  2 (as well as Figs.  S2 and S3 in the Online Supplementary Material), for most of 
the parameters, the response surfaces of the SWMM considering small perturbation scales 
( h ), exhibit linear and monotonic behavior, while it exhibits non-linear and monotonic 
behavior considering larger perturbation scales. As an exception, based on  NSElog(Flow), 
the response surfaces of the SWMM exhibits non-linear and non-monotonic behavior for 
parameter U-Width (see Fig. S2 in the Online Supplementary Material). Meanwhile, based 
on NSE(Flow) and  NSElog(Flow) criteria, the response surfaces of the SWMM correspond-
ing to changes in parameter U-% Imperv (as the most influential parameter) show linear 
and monotonic behavior over all perturbation scales (see Figs. S2a and S3a in the Online 
Supplementary Material). Also, based on NSE(Flow),  NSElog(Flow) and PBIAS(Flow) 
metrics, for less important parameters such as Decay and MaxRate, the response surfaces 
of the SWMM show linear and monotonic behavior over all perturbation scales. Not only 
do these directional variograms demonstrate how the model response changes with the per-
turbation scale of a certain parameter in the multi-dimensional space, but also they show 
the relative importance and ranking of all parameters at any particular perturbation scale.

According to Fig.  2, and Figs.  S2 and S3 in the Online Supplementary Material, in 
some cases, the values of �(h) and Γ(H) for two or more parameters are similar consider-
ing low perturbation scales. However, considering larger perturbation scales, the value of 
�(h) and Γ(H) for some of the parameters are different and even in some cases the values 
of �(h) and Γ(H) related to some of these parameters increase significantly. For instance, 
based on NSE(Flow), the values of �(h) and Γ(H) for parameters of N-Conduit, U-Slope 
and S-Imperv, considering h (and H) ~< 0.2, are similar (Figs. 3b, d). However, consider-
ing h (and H) ~> 0.2, the values of �(h) and Γ(H) are different for these parameters and the 
values of �(h) and Γ(H) for S-Imperv is significantly larger than those of the parameters 
N-Conduit and U-Slope. The same behavior can be seen for N-Imperv and U-%Imperv, 
based on  NSElog(Flow) (see Fig.  S2a in the Online Supplementary Material), S-Imperv, 
U-Width and PctZero, based on PBIAS(Flow) (see Fig. S3b, d in the Online Supplemen-
tary Material). Based on these figures, the relative rankings of parameters are also derived. 
For example, as seen in Fig. S1a, based on  NSElog(Flow), the values of �(h) for U-%Imperv 
considering h~< 0.35 is larger than those of the parameter S-Imperv, while the values of 
�(h) for U-%Imperv considering h~> 0.35 is smaller than those of S-Imperv.

Similar behavior can be seen between parameters N-Imperv and U-%Imperv and also 
parameters PctZero and U-%Imperv, based on  NSElog(Flow). These results confirm that 
unlike most traditional methods for sensitivity analysis of the model response surface, 
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d)
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VARS is able to characterize dependency to perturbation scale by giving different sensitiv-
ity rankings at different perturbation scales.

In order to further investigate the sensitivity of the SWMM to perturbation scale, 
IVARS indices of 10%, 30% and 50% are calculated based on metrics of NSE,  NSElog, and 
PBIAS; and their corresponding parameter rankings are shown in Fig. 3a–c. In these fig-
ures, a ranking of 1 represents the least influential and a ranking of 15 represents the most 
influential parameter. To better interpret the resulted values of IVARS in term of parameter 
importance and enable a more consistent comparison, the calculated values of IVARS are 
normalized such that the resulted ratios of sensitivity for all parameters add up to 100%.

IVARS50 is the most comprehensive global sensitivity index in VARS, which encap-
sulates the SA information of all the perturbation scales (Razavi and Gupta 2016). On the 
other hand,  IVARS10 and  IVARS30 provide assessments considering smaller perturba-
tion scales. Based on Fig. 3a–c, usually the ratio of sensitivity and rankings of parameters 
change with perturbation scale of the parameters. For example, based on  NSElog(Flow) 
metric, parameter S-Imperv is ranked respectively as “4”, “3” and “1” using  IVARS10, 
 IVARS30 and  IVARS50 (Fig.  3b). Also, the rank of U-%Imperv based on the same met-
ric using  IVARS10,  IVARS30 and  IVARS50, is estimated as 1, 2 and 3, respectively. Simi-
lar behavior is also seen for parameter U-Slope (Fig. 3a) and parameters U-%Imperv and 
PctZero (Fig. 3c). Therefore, it is clear that perturbation scale of parameters has a signifi-
cant impact on determining the degree of importance of the parameters and their impacts 
on the SWMM performance.

In general, there is more similarity between the results of SA in identifying the most 
influential parameters using NSE (used mainly for high flow predictions) and PBIAS (used 
mainly for prediction of total flow volume). The parameter U-%Imperv, which represents 
the percentage of impervious urban area of the catchment, such as roofs and roadways, 
is by far the most important parameter. This parameter contributes to 80% to 95% of the 
sensitivity, considering all sensitivity indices, based on NSE and PBIAS metrics. These 
high values can be partly caused by a relatively large range considered for this parameter. 
The next important parameter based on NSE(Flow) and PBIAS(Flow) considering dif-
ferent perturbation scales is N-Imperv, which represents Manning’s roughness coefficient 
for impervious areas. This parameter is related to the amount of resistance that overland 
flow encounters as it runs off the sub-catchment surface. The next important parameter is 
U-width, which is defined as the sub-catchment’s area divided by the length of the longest 
overland flow path. Parameter S-Imperv, which is depression storage in impervious sur-
faces, is the next suggested important parameter. This depression storage is filled prior to 
the occurrence of any runoff and represents initial abstractions such as surface ponding, 
interception by flat roofs and vegetation, and surface wetting.

Based on metrics of NSE(Flow) and PBIAS(Flow) and considering the three indices, 
the mentioned four parameters contribute to nearly 96 to 99 percent of sensitivity of over-
land runoff to the simulation model parameters. It is interesting that based on PBIAS(Flow) 
metric, U-width is identified as an important parameter when considering small perturba-
tion scales. This can be due to small-scale roughness (non-smoothness) in the response 
surface of the model that may not be easily identified at larger scales (Razavi and Gupta 

Fig. 2  Resulted variograms based on the sensitivity analysis on the SWMM parameters considering 
NSE(Flow) criterion (Plots (a) and (b) are directional variograms; plots (c) and (d) are integrated vario-
grams (IVARS). Plots (b) and (d) are respectively zoom-in plots of plots (a) and (c), to illustrate very small 
values on the vertical axis. Note that for variograms to remain meaningful, the distance between any two 
points within a given parameter range should not exceed half of its range, i.e., H ≤ 50%)

▸
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Fig. 3  IVARS indices of 10%, 30% and 50% (bar charts), and corresponding rankings (dotted lines) of 
parameters of the SWMM based on performance metrics of a) NSE, b)  NSElog, and c) PBIAS. The values 
of IVARS are normalized such that the resulted ratios of sensitivity for all parameters add up to 100%. 
Parameters are sorted based on  IVARS50. Rankings are shown in reverse order on a secondary axis on the 
right

2016). On the other hand, based on NSE(Flow), the importance of this parameter increases 
considering larger perturbation scales. This happens as a result of relative smoothness and 
existence of local extreme point(s) in the response surface of the model that may not be 
easily identified when considering small scales.
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As seen in Fig. 3, when using  NSElog(Flow), which is mostly used for low flow pre-
diction, the order of importance of parameters differs with the one obtained based on 
NSE(Flow) and PBIAS(Flow). When using this metric, the most influential parame-
ters for runoff simulation are respectively, N-Imperv, U-%Imperv, S-Imperv, PctZero, 
N-Conduit, U-width, U-Slope and Decay. These four parameters contribute to nearly 
90%-94% of sensitivity based on  NSElog(Flow). Parameter PctZero, which is the per-
centage of impervious area with no depression storage, accounts for runoff that imme-
diately occurs at the beginning of rainfall before depression storage happens. It can rep-
resent pavement close to the gutters that has no surface storage, pitched rooftops that 
drain directly to street gutters and new pavement that may not have surface ponding, etc. 
This parameter accounts for approximately 17% of sensitivity based on  NSElog(Flow). 
This is perhaps, due to the role it plays in producing immediate low runoff. Parameter 
N-Conduit, manning’s roughness coefficient, as expected, is the next important param-
eter (~3% of sensitivity), which controls routing (timing) of the low flow in the chan-
nel. In low flow prediction, U-width is more important in small perturbation scales and 
its ratio of sensitivity changes from ~1%, considering  IVARS50 to ~3%, considering 
 IVARS10. Also, based on  NSElog(Flow), U-Slope, which is the average surface slope of 
urban sub-catchments and "Decay", which is the decay constant in the Horton infiltra-
tion, becomes more important in small perturbation scales.

Based on the results, the sensitivity of runoff to parameter U-Slope (the average sur-
face slope of urban sub-catchment) is not high expect for  NSElog(Flow) when consider-
ing small perturbation scales. This can be attributed to the narrow variation bond of 
this parameter in the study area, since limiting the range of variation of a parameter 
decreases its impact on the variability of model response. Similarly, the sensitivity of 
model to parameter “Decay” rate of Horton infiltration is high only when  NSElog(Flow) 
metric and small perturbation scales are considered.

In this paper, the parameters are arranged according to  IVARS50 index, which is 
the most comprehensive global sensitivity index in VARS, since it encapsulates the 
information of SA related to all perturbation scales (Razavi and Gupta 2016). All the 
important parameters for runoff simulation using the SWMM are listed in Table  S4. 
A parameter is considered to be “important” when its  IVARS50 ratio of sensitivity is 
greater than 1% and is marked as “very important” if its  IVARS50 ratio of sensitivity is 
larger than 10% (Rosolem et al. 2012). In this paper, parameters that are identified as 
important with respect to any of the metrics are generally considered to be important. 
When selecting a subset of important parameters for calibration of the SWMM, it is also 
important to ensure enough parameters are included. This way, a large range of variabil-
ity of model response with respect to parameter variations can be taken into considera-
tion. Uncertainty analysis and estimating the confidence intervals (CIs) of the sensitiv-
ity indices have been estimated using Bootstrap method. The results of this section are 
provided in the Online Supplementary Material (Sect. S8).

In this paper, hydrographs resulted from different rainfall events are measured and 
used to calibrate the parameters of the rainfall-runoff simulation model based on the 
SWMM. The SWMM simulation model is calibrated using several independent rain-
fall events occurred in 2017. Some simulated and observed hydrographs used in the 
calibration phase are presented in Fig. S4 of the Online Supplementary Material. Then, 
the model is validated using two independent rainfall events occurred on February  13th, 
2017 and March  11th, 2017. The simulated and observed hydrographs in the validation 
phase are presented in Fig.  4. Rainfall data related to these events were recorded in 
the Shomal-e-Tehran synoptic station (34 ͦ48΄N and 51 ͦ29΄E and elevation of 1548.2 m 
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Fig. 4  The simulated and observed hydrographs in the validation phase

from the sea level) of Iran Meteorological Organization (IRIMO). The location of the 
Shomal-e-Tehran synoptic station is shown in Fig. S1.

In this paper, six parameters of U-%Imperv, N-Imperv, S-Imperv, PctZero, U-Width 
and N-conduit which their related sensitivity indices were high have been selected for 
calibrating the SWMM. The identified important parameters are only related to the 
urban sub-catchments (not sub-urban or undeveloped sub-catchments) and their con-
nected conduits (see Fig.  S1). Since, there is 16 urban sub-catchments with 16 con-
nected conduits, each having a different value for each of the six parameters, the number 
of model parameters for calibration is 96 (16 × 6).

Three performance metrics of (NSE)modified,  (NSElog)modified and (PBIAS)modified are 
used as the objective functions for calibrating rainfall-runoff simulation model of the 
SWMM. A three-objective optimization model with mentioned objective functions and 
96 decision variables is solved. The NSGA-II-based optimization model is linked with 
the SWMM rainfall-runoff simulation model. The developed simulation–optimization 
model is executed for each of the calibration events, and the corresponding Pareto front 
of non-dominated solutions is shown in Fig. 5.

The solutions corresponding to the largest values of metrics NSE(Flow) and 
NSE(logFlow) (close to 1), and the smallest value of the metric PBIAS(Flow) (close 
to zero), which represent a good accordance between the predicted and observed 
time series, are selected. Considering some thresholds for each of the three objective 
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Fig. 5  Pareto fronts of non- 
dominated solutions obtained using 
the multi-objective simulation–
optimization model for calibrating 
the important parameters of the 
SWMM

Table 2  Selected rainfall events and the values of model performance metrics in the validation phase of the 
SWMM

Event Rainfall  
Duration (min)

Rainfall Depth 
(mm)

Variable NSE NSElog PBIAS

13 Feb 2017 315 11.6 Flow discharge 0.86 0.95 8.2
11 Mar 2017 105 4.6 Flow discharge 0.90 0.87 1

functions in the Pareto front of non-dominated solutions, values for the parameter sets 
corresponding to the region of acceptable solutions are obtained based on the engineer-
ing judgment.

The values of NSE(Flow), NSE(logFlow) and PBIAS(Flow) performance metrics are 
also calculated to assess the validity of the calibrated SWMM. The values of model per-
formance metrics for the validation phase along with the rainfall characteristics of each 
event are also summarized in Table 2. The runoff hydrograph at the outlet of the Velen-
jak urban watershed based on different observed events is simulated using the selected 
values for parameter sets.

Since the optimal values of parameter sets obtained in the calibration process are almost 
similar, in order to validate the calibrated simulation model, arithmetic mean of the optimal 
values of the three parameter sets obtained in the validation phase is used. The observed 
and simulated hydrographs in the validation phase are shown and compared in Fig. 6a, b. 
As seen in these figures, the simulated hydrographs are in accordance with the observed 
ones. Based on the results of validating the SWMM, the best values for the three metrics 
are 0.98, 0.97, and 1.

The design rainfall duration is considered equal to the concentration time of the catch-
ment. Since, the Velenjak catchment consists of two urban and non-urban (undeveloped) 
regions, the time of concentration of these two regions are separately calculated and then, 
the summation is considered as the overall time of concentration of the catchment. More 
details on the selected design rainfall have been provided in Sect. S8 of the Online Supple-
mentary Material.
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Fig. 6  The Pareto front of non-dominated solutions obtained using the NSGA-II in 3-D and 2-D displays 
 (Z1,  Z2 and  Z3 are defined in Eqs. S10, S11, and S12)

Table 3  The proposed areas  (m2) for implementing each type of the candidate LID-BMPs (scenario 361)

Sub-catchment

LID type 12 13 14 15 17 18 20 22 25 27

Bioretention cell 570 478 750 509 382 455 421 827 845 425
Infiltration trench 1224 1208 2347 1692 1216 1138 1550 2994 1936 1689
Grassed swale 630 2262 1583 2120 1542 976 1935 4633 5297 4826
Porous pavement 1168 2060 1010 3450 1208 910 1646 1510 5473 2775

Details on the structure of the developed optimization model used for runoff quantity 
and quality management have been provided in the Sect. S8 of the Online Supplementary 
Material. The optimization model provides 678 non-dominated solutions that represent the 
area of each LID-BMP in each sub-catchment (Fig. 6). These solutions are considered as 
the final candidate runoff management practices and will be further used in the conflict 
resolution model to select a set of LID-BMPs that the stakeholders mostly agree upon.

In order to propose a final scenario of LID-BMP, firstly, the goodness of each of the 
non-dominated solutions obtained in the previous section with respect to the stakehold-
ers’ utilities is determined. The utility functions are defined based on the stakeholders’ 
priorities and preferences. These functions are standardized into the scale of zero to 
one. The main stakeholders in the study area which are mostly affected by the urban 
runoff management along with their utility functions are described in Sect.  S8 of the 
Online Supplementary Material.
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Based on the results of the Nash bargaining model, the stakeholders can reach an 
agreement on scenario 361. The values of utility functions for TM, TRWC, TPWWC, 
AS equal 0.45, 0.60, 0.76, 0.24, respectively. Implementing the management scenario 
361 with the cost of 26.10 billion Rials, leads to more than 24% decrease in runoff vol-
ume and about 74% decrease in runoff TSS load in the Velenjak urban watershed outlet. 
The characteristics of the candidate management scenarios are given in Table 3.

5  Summary and Conclusion

In this paper, a new methodology was developed for finding best urban runoff manage-
ment scenarios under uncertainty. Using IVARS indices based on directional variograms, 
a comprehensive assessment of sensitivity of the SWMM to its parameters across a full 
spectrum of perturbation scales was made. The uncertainty related to the ranking of the 
parameters was incorporated based on a bootstrapping technique. A comprehensive evalu-
ation of the effectiveness and reliability of the variogram-based global sensitivity analysis 
of VARS on the SWMM parameters was conducted. In the GSA, important parameters 
of the SWMM were identified with respect to three metrics of NSE,  NSElog, and PBIAS. 
These metrics were used to measure the SWMM performance in reproducing high flows, 
low flows and total flow volumes, respectively. An NSGAII-based optimization model with 
three objectives was developed for automatic calibration of the SWMM. The model was 
calibrated and validated using different rainfall events. Also, the uncertainty regarding the 
design rainfall hyetograph was taken into account by developing the Huff curves and using 
Mont Carlo analysis. Different scenarios of LID-BMPs regarding combinations of the type, 
area and location of runoff management practices in the sub-catchments were proposed to 
improve surface runoff quantity and quality. A Pareto front of solutions were obtained by 
developing an NSGA-II-based optimization model which was coupled with the calibrated 
SWMM. The objectives of the optimization model were minimizing the runoff volume, 
total pollution load and the total cost of the LID-BMPs. Based on the obtained results, the 
following remarks have been concluded:

1. Directional variograms and integrated variograms of the response surface of the SWMM 
were mostly non-linear and monotonic. The linear and monotonic variograms were 
observed only in few cases.

2. The choice of perturbation scale of the SWMM parameters has a significant impact 
on the performance of the SWMM in sensitivity analysis, particularly on the values of 
sensitivity indices and the SWMM parameter rankings.

3. The metric used for model performance significantly influences the assessment of the 
SWMM sensitivity to its parameters. Therefore, the use of multiple metrics that capture 
various distinct characteristics of the SWMM can be considered as a more comprehen-
sive sensitivity analysis approach. Generally, for the results of SA to be more effective, 
the type of the selected criteria or their relative weights in sensitivity analysis are better 
to be in line with the purpose of the modeling.

4. The use of the sensitivity analysis for finding the most influential parameters of the 
SWMM, resulted in reducing the number of calibration parameters and prediction uncer-
tainty and consequently decreasing the computational cost. In this paper, six parameters 
of the SWMM were identified based on the chosen metrics and IVARS index. These 
parameters included urban percent imperviousness, Manning’s roughness coefficient, 
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depression storage of impervious surfaces, percentage of impervious areas with no 
depression storage, width of urban sub-catchments and Manning’s roughness coefficient 
of conduits which were used in the calibration phase.

5. The uncertainty analysis on the results of ranking the SWMM parameters using the 
bootstrapping procedure showed high reliability of VARS in sensitivity analysis of the 
SWMM parameters.

6. The results of validating the SWMM using different criteria such as Nash–Sutcliffe 
efficiency showed the good performance of the calibrated SWMM in runoff simulation.

7. Deriving the design rainfall hyetograph by developing Huff curves and using Monte 
Carlo uncertainty analysis, wide ranges of variation in rainfall depth, duration and pat-
tern were taken into account.

8. The results of the NSGA-II-based optimization model, developed for obtaining optimum 
scenarios of LID-BMPs, showed that the Pareto optimal solutions could significantly 
reduce the runoff volume and improve runoff quality at the Velenjak watershed outlet.

9. Using the Nash bargaining function, the utility functions of the four major stakeholders 
in the study area (TM, TRWC, TPWWC and AS) were considered and the most desirable 
scenario of LID-BMP was selected.

In future studies, it is suggested to perform the sensitivity analysis on the parameters 
related to runoff quality such as built-up and wash-off parameters in the SWMM. In addi-
tion, built-up and wash-off parameters can be used as decision variables of the optimiza-
tion model developed for calibrating the SWMM. In future works, for deriving the design 
rainfall, time series of rainfall can be used instead of individual rainfall events.
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