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Abstract
Accurate and reliable monthly runoff forecasting plays an important role in making full use 
of water resources. In recent years, long short-term memory neural networks (LSTM), as 
a deep learning technology, has been successfully applied in forecasting monthly runoff. 
However, the hyperparameters of LSTM are predetermined, which has a significant influ-
ence on model performance. In this study, given that the decomposition of monthly run-
off series may provide a more accurate prediction, as revealed by many previous studies, 
a hybrid model, namely, VMD-GWO-LSTM, is proposed for monthly runoff forecasting. 
The proposed hybrid model comprises two main components, namely, variational mode 
decomposition (VMD) coupled with the gray wolf optimizer (GWO)-based LSTM. First, 
VMD is utilized to decompose raw monthly runoff series into several subsequences. Sec-
ond, GWO is implemented to optimize the hyperparameters of the LSTM for each subse-
quence on the condition that the inputs are determined. Finally, the total output of all sub-
sequences is aggregated as the final forecast result. Four quantitative indices are employed 
to evaluate the model performance. The proposed model is demonstrated using 73 and 
62 years of monthly runoff series data derived from the Xinfengjiang and Guangzhao Res-
ervoirs in China’s Pearl River system, respectively. To identify the feasibility and supe-
riority of the proposed model, backpropagation neural networks (BPNN), support vector 
machine (SVM), LSTM, EMD-LSTM, VMD-LSTM and GWO-LSTM are also utilized 
for comparison. The results indicate that the proposed hybrid model can yield best fore-
cast accuracy among these models, making it a promising new method for monthly runoff 
forecasting.
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1 Introduction

Accurate and reliable monthly runoff forecasting plays an important role in water resources 
management, such as water supply (Şen 2021), hydroelectric generation and ecological 
restoration. Generally, existing methods can be approximately partitioned into data-driven 
(Chu et al. 2021; Feng et al. 2021; Liao et al. 2020; Riahi-Madvar et al. 2021) and physical- 
based models (Abuzied and Mansour 2019; Abuzied and Pradhan 2020; Abuzied et  al. 
2016; Bournas and Baltas 2021; Budamala and Mahindrakar 2020; El Harraki et al. 2021; 
Liao et al. 2016). Data-based models can simulate the relationship between input and out-
put without regard to complex mechanisms of runoff generation (Niu et al. 2019). In con-
trast, physical-based models take into account specific physical process and demand mass 
data, such as underlying surface conditions, human activity influences and climate change, 
which are not easily collected (Feng and Niu 2021). Unlike the physical-based models, 
the data-based models demand less data and can offer satisfactory forecast results. As a 
typical representative of data-based models, artificial neural networks (ANN) have been 
widely and successfully utilized in hydrology-related areas, for instance, precipitation fore-
casting (Nourani et al. 2009), runoff forecasting (Shu et al. 2021; Noorbeh et al. 2020), and 
water level forecasting (Seo et al. 2015). In recent decades, numerous ANN architectures 
and algorithms have been investigated in hydrological time series forecasting (ASCE-Task-
Committee 2000).

Long short-term memory neural networks (LSTM) proposed by Hochreiter and 
Schmidhuber (1997) are a special kind of recurrent neural network (RNN) and have the 
merits of fast convergence and good nonlinear predictive capability. To avoid the prob-
lems of training long sequences and vanishing gradients faced by the traditional RNN, 
LSTM implement constant error flow via constant error carrousels within special memory 
cells. Referring to LSTM, many studies have been conducted on hydrological time series 
forecasting (Lv et al. 2020; Ni et al. 2020; Wang et al. 2021). Nevertheless, the hyperpa-
rameters of LSTM are predetermined, which has a certain impact on forecast accuracy. In 
general, there are two main methods to improve the forecast accuracy in previous stud-
ies. The first is to combine decomposition algorithms to decompose original time series 
data into several subcomponents, employ LSTM to simulate each subcomponent, and 
aggregate the results of each subcomponent as the final result (Lv et al. 2020). Zuo et al. 
(2020), for example, proposed single-model forecasting based on VMD and LSTM to pre-
dict daily streamflow 1–7  days ahead and investigated the robustness and efficiency of 
the proposed model for forecasting highly nonstationary and nonlinear streamflow. The 
second is to utilize optimization algorithms to optimize the hyperparameters of the LSTM 
(ElSaid et al. 2018). Yuan et al. (2018), for example, used the ant lion optimizer (ALO) 
to calibrate the parameters of the LSTM, and verified its effectiveness with the historical 
monthly runoff of the Astor River Basin. At present, there are several commonly used 
decomposition algorithms (Colominas et al. 2014; Roushangar et al. 2021; Shahid et al. 
2020); for instance, wavelet decomposition, empirical mode decomposition (EMD) and 
VMD. Optimization algorithms, such as particle swarm optimization and ant colony opti-
mization, can be seen in the literature as optimizing the parameters of neural networks 
(Wan et al. 2017; Yu et al. 2008). In this study, both methods are considered.

Variational mode decomposition (VMD) (Dragomiretskiy and Zosso 2014) is an 
entirely nonrecursive variational model that can extract modes concurrently. Via VMD, 
a signal can be decomposed into a sequence of subcomponents with different frequency 
bands and time resolutions (Fang et al. 2019). Compared to empirical mode decomposition 
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(EMD), VMD is capable of separating tones of similar frequencies. VMD has been widely 
applied in many research fields, such as fault diagnosis (Zhang et al. 2017), signal process-
ing (Wang et  al. 2017), wind speed monitoring (Liu et  al. 2018) and hydrological time 
series forecasting (Feng et al. 2020; Li et al. 2021; Sibtain et al. 2021). In this study, VMD 
was selected as a data preprocessing tool to decompose monthly runoff series. In recent 
years, an emerging swarm intelligence algorithm called the gray wolf optimizer (GWO) 
has been proposed, which imitates the social hierarchy and hunting behavior of gray wolves 
(Mirjalili et al. 2014). With its strong robustness and searching ability in solving optimiza-
tion problems, the GWO has been widely and successfully applied in many fields, such 
as model parameter calibration (Tikhamarine et al. 2020), reservoir operation (Niu et al. 
2021) and optimal power dispatch (Nuaekaew et  al. 2017). Hence, in view of its strong 
robustness and searching ability, the GWO can be adopted to optimize the hyperparameters 
of LSTM.

In this paper, a hybrid model, referred to as the VMD-GWO-LSTM, is proposed for 
monthly runoff forecasting. According to the monthly runoff series of two real-world 
hydropower reservoirs in China, the proposed method is certified to be feasible. The inno-
vation of this study can be stated as follows. (1) To decrease modeling difficulty, VMD is 
adopted to decompose monthly runoff series into several simple subcomponents. (2) For 
each subcomponent, the input–output relationships are identified by the LSTM, and the 
GWO method is employed to optimize the hyperparameters of the LSTM. (3) The results 
of the case study indicate that, compared to several traditional models, the proposed hybrid 
VMD-GWO-LSTM method can yield better forecast accuracy. To our knowledge, there 
have been few studies combining VMD, LSTM, and GWO to forecast monthly runoff, 
demonstrating that this study has the potential to fill this gap.

The rest of this work is organized as follows: Sect. 2 describes the details of the pro-
posed approach; in Sect. 3, the proposed method is utilized to forecast the monthly runoff 
of two reservoirs; and finally, the conclusions are summarized.

2  Methodology

2.1  Variational Mode Decomposition

VMD is a novel variational method that can nonrecursively decompose a nonstationary 
signal into a given number of mode functions, and each individual mode is compact around 
its center frequency (Dragomiretskiy and Zosso 2014). To obtain each mode and its center 
frequency, a constrained variational problem can be expressed as follows:

where t is the time step; uk(t) and �k(t) denote the k-th mode and its corresponding center 
frequency, respectively; �(t) is the Dirac distribution, * denotes the convolution calculation; 
and f (t) denotes the t-th data of the input signal.
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To facilitate the solution, the quadratic penalty factor � and the Lagrangian multiplier � 
are introduced to transform the constrained variational problem into an unconstrained vari-
ational problem. Hence, the augmented Lagrangian structure can be expressed as follows:

where ⟨⋅⟩ represents the inner product operation.
Equation  (2) can then be solved by the alternating direction method of multipliers 

(ADMM) to obtain the saddle point of the augmented Lagrangian function. In the ADMM, 
the variables ( ̂un+1

k
,�n+1

k
 and �̂�n+1 ) are continuously updated to optimize each modal 

component.

2.2  Long Short‑term Memory Neural Networks

As a type of deep learning neural networks, the LSTM was proposed to overcome the van-
ishing/exploding gradient problem faced by traditional RNN (Hochreiter and Schmidhuber 
1997). The LSTM takes the place of the conventional hidden unit with a memory cell and 
contains multiple memory blocks, each of which includes three gates: input gate, forget 
gate and output gate and at least one memory cell. By using the LSTM, information from 
the three gates can be added or deleted to the memory cell state. Based on the previous 
state, current memory and current input, the LSTM has the ability to decide which cells 
are restrained and promoted and on the basis of the three gates what information is saved 
and forgotten during the training process (Altan et al. 2021). The structure of the LSTM 
is shown in Fig. 1. For the three gates, the multiplicative input gate unit is employed to 
recognize new information that can be gathered in the cell; the multiplicative output gate 
unit is utilized to compute the information that can be propagated to the network; and the 
multiplicative forget gate unit is used to decide whether the last status of the cell can be 
forgotten (Li et al. 2018).

The calculation of the three gates and cell state can be generally expressed as follows:
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Fig. 1  Schematic diagram of 
long short-term memory neural 
networks
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where ft , it , ot denote the output of the forget gate, input gate and output gate, respectively; 
c̃t is the potential cell state; ct and ht denote the cell state and cell output at time t, respec-
tively; Wf  , Wi , Wc Wo and bf  , bi , bc , b0 denote weight matrices and the corresponding bias 
vectors, respectively; xt is the input at time t; � is the sigmoid function; and ⊙ denotes 
matrix multiplication.

It is worth noting that the LSTM relies heavily on a set of hyperparameters to achieve 
good performance, which usually requires a certain amount of practical experience to 
manually select and optimize the hyperparameters. Therefore, for convenience, automatic 
algorithmic approaches with the ability to converge faster and gain an optimal/near optimal 
solution within an acceptable time can be employed to enhance the performance of the 
LSTM (Nakisa et al. 2018).

2.3  Gray Wolf Optimizer

The GWO algorithm is a novel swarm intelligent optimization algorithm that simulates 
the leadership hierarchy and predation strategy of gray wolves (Mirjalili et al. 2014). Gray 
wolves possess a very strict social dominant hierarchy, which can be divided into four cat-
egories: alpha wolf (α), beta wolf (β), delta wolf (δ) and omega wolf (ω). The alpha domi-
nates the whole wolf pack and is responsible for making decisions. Beta wolves are sub-
ordinate to the alpha in the hierarchy but command delta and omega wolves as well. The 
hunting process of gray wolves can be divided into three stages: (i) tracking, chasing and 
approaching prey; (ii) hunting, surrounding and cornering the prey until it stops moving; 
and (iii) attacking the prey (Mirjalili et  al. 2014). The GWO algorithm can be generally 
described as follows.

First, encircling prey is carried out by the gray wolves before the hunting process, which 
can be defined as follows:

where t is the current iteration; D⃗ is the distance between the gray wolf and the prey; X⃗P(t) 
is the position vector of the t-th prey; X⃗(t) is the position vector of the t-th gray wolf; A⃗ and 

(3)
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(
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(4)D⃗ =
|||C⃗ ⋅ X⃗p(t) − X⃗(t)

|||

(5)X⃗(t + 1) = X⃗(t) − A⃗ ⋅ D⃗

(6)A⃗ = 2a⃗ ⋅ r⃗1 − a⃗

(7)C⃗ = 2 ⋅ r⃗2
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C⃗ are coefficient vectors; r⃗1 and r⃗2 are random numbers in [0,1]; and a⃗ is a transition param-
eter that is linearly reduced from 2 to 0 during the iterative computation.

Then, the hunting process is implemented. After recognizing the position of the 
prey and encircling it, the wolves will hunt the prey, which is guided by the alpha and 
the beta and delta will occasionally participate. The formulas are given as follows, in 
which other wolves should be obeyed to update their positions:

Finally, attacking prey is executed. To simulate being close to the prey, the value 
of a⃗ is decreased linearly, and correspondingly, the fluctuation range of A⃗ is also 
decreased within the interval of [-2a, 2a]. When A⃗ ranges in [-1, 1], the next position 
of a gray wolf in any position is between its current position and the position of the 
prey (Mirjalili et al. 2014). Thus, the attack on the prey can be realized.

2.4  Hybrid Model for Monthly Runoff Forecasting

To improve the forecast accuracy of monthly runoff forecasting, a hybrid model short-
ened to the VMD-GWO-LSTM is proposed and illustrated in Fig. 2. The main proce-
dure can be described as follows:

Step 1: Data preprocessing. VMD is utilized to decompose the original runoff 
sequence to obtain K subsequences with different frequencies. All subsequences 
that are divided into calibration and validation data are normalized to [-1, 1].
Step 2: Input determination. The partial autocorrelation function (PACF) is utilized 
to determine the input variables of each subsequence for the LSTM model.
Step 3: Hyperparameter optimization. For each LSTM model, the optimal param-
eters of the number of hidden layer neurons, the number of epochs and the learning 
rate are searched by the GWO, and root-mean-squared error (RMSE) is selected as 
the optimization criterion.
Step 4: Aggregation. The forecast results of all subsequences are arithmetically 
aggregated as the final forecast results.

(8)

⎧⎪⎪⎨⎪⎪⎩
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2.5  Evaluation Index

In this section, four evaluation indices namely, RMSE, mean absolute percentage error 
(MAPE), coefficient of correlation (R) and Nash–Sutcliffe efficiency coefficient (CE), are 
employed. Generally, the smaller RMSE and MAPE are and the higher R and CE are, the bet-
ter the model performance. These indices are listed below:

(11)RMSE =

√√√√1

n

n∑
i=1

(Qi − Q̂i)
2

(12)MAPE =
1

n

n∑
i=1

|||||
Qi − Q̂i

Qi

|||||
× 100

(13)R =

n∑
i=1

(Qi − Qi)(Q̂i − Q̂i)

�
n∑
i=1

(Qi − Qi)
2

n∑
i=1

(Q̂i − Q̂)2

Fig. 2  The flowchart of VMD-GWO-LSTM for monthly runoff forecasting
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where n is the number of observed data; Qi and Q̂i are the observed and forecasted val-
ues, respectively; and Qi and Q̂i are the averages of all observed and forecasted values, 
respectively.

3  Case Studies

3.1  Study Area and Data

Two multipurpose reservoirs, the Xinfengjiang and Guangzhao Reservoirs located in 
China, were selected as case studies. The Xinfengjiang Reservoir is located on the Xin-
feng River, which is the largest tributary of the Dongjiang River and a second-level 
tributary of the Pearl River. Located in Heyuan city, Guangdong Province, the Xinfeng 
River Basin has a subtropical monsoon climate. With obvious interannual and seasonal 
variations, the annual average precipitation is 1742.0 mm, of which approximately 76% 
is accounted for from April to September. The total drainage area of the Xinfeng River 
Basin is 5813  km2 and the upstream area of the Xinfengjiang Reservoir is 5740  km2. 
With an average gradient of 1.29%, the length of the river is 163  km. Mainly consti-
tuted of hills and mountains, the terrain of the Xinfeng River Basin is low in the west 
and high in the east. For the Xinfeng River Baisn, the mountainous area accounts for 
33.6%, and the hilly area accounts for 63.5%. With 336.1 MW of installed capacity and 
13.896 billion  m3 of storage volume, the Xinfengjiang Reservoir is the largest reservoir 
in southern China. For the Xinfengjiang Reservoir, the primary goal is power genera-
tion. The Guangzhao Reservoir is located on the middle reaches of the Beipan River, 
which is a tributary of the Xijiang River and a second-level tributary of the Pearl River. 
Located on the slope of the Yunnan-Guizhou Plateau, the Beipan River Basin is con-
nected to the hilly basin of central Guizhou Province in the east and has a subtropi-
cal plateau monsoon climate. With an obvious seasonal variation, the annual average 
precipitation is 1178.0  mm, of which approximately 80% is accounted for from May 
to September. The total drainage area of the Beipan River Basin is 26557  km2 and the 
upstream area of the Guangzhao Reservoir is 13548  km2. With an average gradient of 
0.437%, the length of the river is 441.9 km. The terrain of the Beipan River Basin is 
high in the northwest and low in the southeast. For the Beipan River basin, the moun-
tainous area accounts for 85%, and the hilly area accounts for 10%. With 1040  MW 
of installed capacity and 3.245 billion  m3 of storage volume, the primary goal of the 
Guangzhao Reservoir is power generation. Hence, accurate monthly runoff forecasting 
is vital for these two reservoirs.

Monthly runoff series data from the Xinfengjiang and Guangzhao Reservoirs were 
retrieved to validate the proposed method. The monthly runoff data for the Xinfengjiang 
Reservoir cover 1943 to 2015 and the data for the Guangzhao Reservoir cover 1956 to 
2017. For these two reservoirs, approximately 70% of the data were used for calibration, 
and the remaining data were used for validation.

(14)CE = 1 −

n∑
i=1

(Qi − Qi)
2

n∑
i=1

(Qi − Q)2
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3.2  Decomposition Results

According to VMD, the key parameter of the number of modes should be predefined, 
which affects the decomposed results (Wen et  al. 2019). To obtain satisfactory perfor-
mance, the traditional EMD method was employed to ascertain the number of subse-
quences. The decomposed results for the Xinfengjiang Reservoir utilizing VMD and EMD 
are shown in Fig. 3. There were significant differences in the acquired subcomponents for 
the two reservoirs, which indicate the variability of VMD and EMD in extracting intrinsic 
information from the original monthly runoff series.

3.3  Input Determination

The selection of input variables that directly affect the forecast results, should be prede-
termined. As a statistical method, the partial autocorrelation function (PACF) can be 
employed to analyze and determine the input variables (Feng et al. 2020; He et al. 2019). 
In practice, the input variables are often determined by means of the PACF values in which 
the previous values are selected as inputs when all PACF values fall into the confidence 
interval. It is worth mentioning that if the number of input variables is too small, the fore-
cast accuracy of the model will be low. Hence, the determination of the input variables is 
also needed based on experience or other methods. In this study, the input variables were 
determined by the fact that if the number of input variables was equal to or less than 2 for 
the first time, PACF values falling back into the confidence interval in the second time 
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Fig. 3  Decomposed results of monthly runoff data in Xinfengjiang Reservoirs
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could be considered. The PACF values for the original and decomposed subsequences of 
the Xinfengjiang Reservoir data are shown in Fig. 4. On the basis of Fig. 4, the input varia-
bles for each sequence of Xinfengjiang Reservoir data could be determined. From Table 1, 
it can be easily seen that the numbers of input variables for the original and decomposed 
data are similar but not always the same, indicating the complex and variable features of 
the data from the two reservoirs.

3.4  Model Development

To confirm the feasibility of the proposed method, five models were employed for compar-
ison, namely, backpropagation neural networks (BPNN), support vector machine (SVM), 
LSTM, VMD-LSTM and EMD-LSTM models. The details of the models are stated as 
follows.

1. BPNN, SVM and LSTM models.
  The original monthly runoff data were used to calibrate the parameters of the BPNN, 

SVM and LSTM models. In this study, the input variables for the three models were set 
based on PACF values of the original series. For the BPNN model, three layers were 
employed, the output nodes were set as 1, and the hidden nodes were set by a trial-
and-error procedure. For the SVM model, the radial basis function was chosen as the 
kernel function, and the genetic algorithm was used to optimize the parameters. For the 
LSTM model, the number of hidden layers was 2, the output nodes were set as 1 and the 

Fig. 4  PACF values of each series from the Xinfengjiang Reservoir
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hidden units for each hidden layer were set by a trial-and-error procedure. In addition, 
the hyperparameters, i.e., epoch and learning rate, were also set by a trial-and-error 
procedure.

2. VMD-LSTM and EMD-LSTM models.
  For the VMD-LSTM and EMD-LSTM models, there were there three main steps to 

be implemented. First, the original monthly runoff data were decomposed into several 
subsequences using VMD or EMD. Second, the standard LSTM model was employed 
to simulate each subsequence, and the input variables for each subsequence are listed in 
Table 1. Finally, the results for each subsequence were aggregated as the final results.

3.5  Forecast Results

3.5.1  Results for the Xinfengjiang Reservoir

According to the aforementioned methods, the original monthly runoff series and extracted 
subsequences were simulated. The detailed evaluation indices of different models over the 
calibration and validation periods for the Xinfengjiang Reservoir are presented in Table 2. 
It can be intuitively found that compared with the BPNN, SVM, LSTM, EMD-LSTM and 
VMD-LSTM models, VMD-GWO-LSTM could yield the best results in terms of all four 
evaluation indices in both the calibration and validation periods. For instance, compared 
with the standalone BPNN model, the proposed hybrid VMD-GWO-LSTM model could 
provide better forecast accuracy with decreases of 77.95% and 75.57% in terms of RMSE 

Table 1  The selected input values of each series for the Xinfengjiang and Guangzhao Reservoirs

Reservoir No Series Input variables Numbers 
of input

Xinfengjiang 1 Original xt-1,  xt-2,  xt-3,  xt-4,  xt-5,  xt-6,  xt-7,  xt-8 8
2 IMF1 xt-1,  xt-2,  xt-3 3
3 IMF2 xt-1,  xt-2,  xt-3,  xt-4 4
4 IMF3 xt-1,  xt-2,  xt-3,  xt-4 4
5 IMF4 xt-1,  xt-2,  xt-3,  xt-4 4
6 IMF5 xt-1,  xt-2,  xt-3,  xt-4 4
7 IMF6 xt-1,  xt-2,  xt-3,  xt-4,  xt-5,  xt-6,  xt-7 7
8 IMF7 xt-1,  xt-2,  xt-3,  xt-4,  xt-5,  xt-6,  xt-7 7
9 IMF8 xt-1,  xt-2,  xt-3,  xt-4,  xt-5,  xt-6,  xt-7,  xt-8 8
10 IMF9 xt-1,  xt-2,  xt-3,  xt-4 4

Guangzhao 1 Original xt-1,  xt-2,  xt-3,  xt-4,  xt-5,  xt-6,  xt-7 7
2 IMF1 xt-1,  xt-2,  xt-3 3
3 IMF2 xt-1,  xt-2,  xt-3,  xt-4 4
4 IMF3 xt-1,  xt-2,  xt-3,  xt-4 4
5 IMF4 xt-1,  xt-2,  xt-3,  xt-4,  xt-5 5
6 IMF5 xt-1,  xt-2,  xt-3,  xt-4,  xt-5,  xt-6,  xt-7,  xt-8 8
7 IMF6 xt-1,  xt-2,  xt-3,  xt-4,  xt-5 5
8 IMF7 xt-1,  xt-2,  xt-3,  xt-4,  xt-5 5
9 IMF8 xt-1,  xt-2,  xt-3,  xt-4 4
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and MAPE and increases of 81.67% and 397.93% in terms of R and CE during the vali-
dation period, respectively. As seen in Table 3, the hybrid models, such as EMD-LSTM 
and VMD-LSTM, consisting of LSTM and decomposed methods outperformed the stan-
dalone LSTM model in terms of all four evaluation indices during the calibration and vali-
dation periods. For example, compared with the LSTM method, the VMD-LSTM model 
performed better with decreases of 72.06% and 57.51% in terms of RMSE and MAPE and 
increases of 52.66% and 154.96% in terms of R and CE during the validation period. In 
addition, Table  2 also reveals that the proposed hybrid model VMD-GWO-LSTM per-
formed slightly better than the VMD-LSTM model in terms of the four measures both in 
the calibration and validation periods.

To detect the performance of tracing dynamic changes in the monthly runoff, a compari-
son of forecasted versus observed runoff data using BPNN, SVM, LSTM, EMD-LSTM, 
VMD-LSTM and VMD-GWO-LSTM for the Xinfengjiang Reservoir is depicted in Fig. 5. 
On the whole, all models could simulate monthly runoff to some extent except for sig-
nificant differences in peak flow prediction, indicating that different models have different 
abilities to simulate peak runoff. To comprehend the performance of the models, the scatter 
diagrams for the Xinfengjiang Reservoir show fewer scatters with the VMD-GWO-LSTM 
than the other five models and are consistent with the results in Table 2.

In addition, to assess the performance of the proposed hybrid mode in peak flow fore-
casting, peak flow estimates of different models over the validation period for the Xin-
fengjiang Reservoir can be processed by statistical analysis. As shown in Table 3, the abso-
lute average of the relative error of the BPNN, SVM, LSTM, EMD-LSTM, VMD-LSTM 
and VMD-GWO-LSTM for forecasting the 21 peak flows were 38.9%, 46.0%, 43.7%, 
23.2%, 10.8% and 9.4%, respectively. It can be easily concluded that in the aspect of peak 
flow forecasting, the VMD-GWO-LSTM model can yield much better forecast accuracy 
than BPNN, SVM, LSTM and EMD-LSTM models and outperform slightly better fore-
casts than the VMD-LSTM model.

3.5.2  Results for the Guangzhao Reservoir

The statistics of different models over the calibration and validation periods for the 
Guangzhao Reservoir are shown in Table 4. It can be easily seen that the hybrid meth-
ods, namely, EMD-LSTM, VMD-LSTM and VMD-GWO-LSTM, display better per-
formance than the standalone BPNN, SVM and LSTM methods. Furthermore, Table 4 
also reveals that the forecast accuracy of the LSTM model can be enhanced under the 

Table 2  Comparison of evaluation indexes of different models for the Xinfengjiang Reservoir

Models Calibration Validation

RMSE MAPE R CE RMSE MAPE R CE

BPNN 176.912 116.940 0.558 0.245 175.616 124.456 0.540 0.193
SVM 162.401 92.020 0.604 0.364 159.082 95.410 0.587 0.338
LSTM 143.215 73.108 0.713 0.505 154.706 76.900 0.640 0.373
EMD-LSTM 76.179 52.945 0.931 0.861 130.014 81.677 0.802 0.557
VMD-LSTM 39.524 30.710 0.984 0.962 43.224 32.676 0.977 0.951
VMD-GWO-LSTM 36.950 29.348 0.985 0.967 38.720 30.395 0.981 0.961
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condition of optimized hyperparameters. For instance, compared to the SVM model, 
the VMD-LSTM model can provide better forecast accuracy with decreases of 59.06% 
and 65.66% in terms of RMSE and MAPE and increases of 31.73% and 80.51% in 
terms of R and CE during the validation period, respectively. Compared to the VMD-
LSTM model, the VMD-GWO-LSTM model can provide better forecast accuracy with 

Fig. 5  Comparison of the forecast results for the Xinfengjiang Reservoir during the validation period

Table 4  Comparison of evaluation indexes of different models for the Guangzhao Reservoir

Models Calibration Validation

RMSE MAPE R CE RMSE MAPE R CE

BPNN 162.371 73.088 0.762 0.570 148.575 67.225 0.689 0.373
SVM 157.653 69.643 0.771 0.595 131.621 66.394 0.728 0.508
LSTM 134.204 32.806 0.845 0.706 128.575 50.008 0.759 0.530
EMD-LSTM 105.202 55.066 0.941 0.884 87.303 36.484 0.897 0.783
VMD-LSTM 39.146 19.660 0.989 0.975 53.880 22.798 0.959 0.917
VMD-GWO-LSTM 37.987 17.572 0.990 0.976 34.415 17.921 0.984 0.966
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decreases of 36.13% and 21.39% in terms of RMSE and MAPE and increases of 2.61% 
and 5.34% in terms of R and CE during the validation period, respectively. Hence, this 
reconfirms that the proposed hybrid model is superior to the other models utilized in 
this study.

The forecast results of different models for the Guangzhao Reservoir during the vali-
dation phase are shown in Fig. 6. It is clear from the hydrographs that the BPNN model 
had the worst performance in tracing dynamic changes in the monthly runoff, and the 
remaining models had satisfactory forecast results. It can be intuitively found that the 
VMD-GWO-LSTM model could offer the least forecast results among the six models 
and had the best performance with a trendline very near the observed data line.

Table  5 lists the statistics of the peak flow estimates of different models for the 
Guangzhao Reservoir during the validation period. From Table 5, the absolute average 
of the relative error of the BPNN, SVM, LSTM, EMD-LSTM, VMD-LSTM and VMD-
GWO-LSTM models for forecasting the 18 peak flows were 31.4%, 33.2%, 31.7%, 
15.8%, 7.6% and 6.2%, respectively. Thus, in terms of peak flow forecasting, the VMD-
GWO-LSTM model can perform much better than the BPNN, SVM, LSTM and EMD-
LSTM models, and slightly better than the VMD-LSTM model. As a consequence, the 
VMD-GWO-LSTM model is an efficient method for monthly runoff forecasting due to 
its superior performance over comparable models during the validation period.

Fig. 6  Comparison of the forecast results for the Guangzhao Reservoir during the validation period

2109



 B.-J. Li et al.

1 3

Ta
bl

e 
5 

 P
ea

k 
flo

w
 e

sti
m

at
es

 o
f d

iff
er

en
t m

od
el

s f
or

 th
e 

G
ua

ng
zh

ao
 R

es
er

vo
ir 

du
rin

g 
th

e 
va

lid
at

io
n 

pe
rio

d

Pe
ak

 N
O

O
bs

er
ve

d 
pe

ak
s 

 (m
3 /s

)

B
PN

N
 

 (m
3 /s

)
SV

M
  (m

3 /s
)

LS
TM

 
 (m

3 /s
)

EM
D

-
LS

TM
 

 (m
3 /s

)

V
M

D
-

LS
TM

 
 (m

3 /s
)

V
M

D
-

G
W

O
-

LS
TM

 
 (m

3 /s
)

Re
la

tiv
e 

er
ro

r(
%

)

B
P

SV
M

LS
TM

EM
D

-
LS

TM
V

M
D

-
LS

TM
V

M
D

-G
W

O
-

LS
TM

1
72

3.
5

29
3.

8
30

8.
1

45
4.

3
59

7.
1

84
8.

7
73

8.
2

-5
9.

4
-5

7.
4

-3
7.

2
-1

7.
5

17
.3

2.
0

2
98

3.
3

64
4.

1
53

9.
3

54
8.

6
95

3.
6

10
01

.5
93

1.
1

-3
4.

5
-4

5.
2

-4
4.

2
-3

.0
1.

9
-5

.3
3

78
2.

6
48

4.
0

40
7.

5
47

7.
1

60
3.

5
71

7.
1

73
6.

4
-3

8.
1

-4
7.

9
-3

9.
0

-2
2.

9
-8

.4
-5

.9
4

54
4.

8
38

2.
6

37
3.

4
49

0.
3

46
0.

7
48

3.
8

51
5.

7
-2

9.
8

-3
1.

5
-1

0.
0

-1
5.

4
-1

1.
2

-5
.3

5
54

6.
4

55
2.

6
39

9.
6

52
3.

2
46

5.
2

52
5.

7
54

4.
5

1.
1

-2
6.

9
-4

.3
-1

4.
9

-3
.8

-0
.4

6
58

0.
2

35
7.

1
33

9.
5

48
7.

2
39

3.
0

55
1.

0
54

6.
7

-3
8.

5
-4

1.
5

-1
6.

0
-3

2.
3

-5
.0

-5
.8

7
58

0.
5

29
5.

9
28

2.
2

43
7.

2
29

1.
8

54
7.

9
54

1.
0

-4
9.

0
-5

1.
4

-2
4.

7
-4

9.
7

-5
.6

-6
.8

8
65

6.
2

54
2.

0
50

8.
2

57
6.

5
63

5.
7

65
3.

0
64

9.
6

-1
7.

4
-2

2.
6

-1
2.

2
-3

.1
-0

.5
-1

.0
9

52
6.

0
49

2.
7

45
4.

3
49

7.
9

66
1.

7
51

0.
0

50
8.

3
-6

.3
-1

3.
6

-5
.4

25
.8

-3
.1

-3
.4

10
50

0.
2

39
9.

0
35

2.
0

58
5.

4
49

8.
6

48
9.

4
49

5.
6

-2
0.

2
-2

9.
6

17
.0

-0
.3

-2
.1

-0
.9

11
55

2.
7

62
4.

3
47

4.
3

48
3.

4
58

4.
9

52
3.

9
52

3.
3

13
.0

-1
4.

2
-1

2.
5

5.
8

-5
.2

-5
.3

12
32

0.
4

34
7.

6
32

7.
5

52
1.

3
31

1.
4

33
2.

4
33

6.
4

8.
5

2.
2

62
.7

-2
.8

3.
7

5.
0

13
53

5.
0

67
9.

8
49

5.
1

44
5.

0
47

1.
0

48
4.

7
48

3.
7

27
.1

-7
.5

-1
6.

8
-1

2.
0

-9
.4

-9
.6

14
21

9.
9

35
7.

1
32

1.
9

52
4.

8
22

4.
6

26
7.

4
26

6.
9

62
.4

46
.4

13
8.

6
2.

1
21

.6
21

.4
15

61
4.

1
58

8.
4

43
4.

5
46

4.
8

56
3.

2
55

6.
8

56
4.

1
-4

.2
-2

9.
2

-2
4.

3
-8

.3
-9

.3
-8

.1
16

54
8.

0
33

8.
2

39
7.

4
33

3.
6

44
4.

7
49

3.
3

50
8.

5
-3

8.
3

-2
7.

5
-3

9.
1

-1
8.

8
-1

0.
0

-7
.2

17
42

3.
9

19
1.

3
26

3.
8

47
1.

5
27

5.
8

46
5.

2
46

1.
9

-5
4.

9
-3

7.
8

11
.2

-3
4.

9
9.

7
9.

0
18

11
99

.6
45

4.
5

40
5.

7
53

1.
1

10
21

.1
10

87
.9

10
81

.4
-6

2.
1

-6
6.

2
-5

5.
7

-1
4.

9
-9

.3
-9

.9
A

ve
ra

ge
 (a

bs
ol

ut
e)

31
.4

33
.2

31
.7

15
.8

7.
6

6.
2

2110



Monthly Runoff Forecasting Using Variational Mode Decomposition…

1 3

3.6  Discussion

The statistics of the forecast results yielded by the models clearly indicate that the pro-
posed model can offer the best performance among these models. In reality, once built, 
the proposed model can be used for one-step monthly runoff forecasting on the condi-
tion that the decomposition of the observed runoff data is executed and the forecast 
results of each subseries are aggregated. Generally, multistep monthly runoff forecasting 
can also be carried out iteratively. That is, the results of the current one-step monthly 
runoff forecasting are decomposed and selected as inputs to forecast the next one-step 
monthly runoff.

According to the forecast results provided by BPNN, SVM and LSTM, it can be directly 
found that there are significant differences in terms of the four evaluation indices, demon-
strating the importance of model selection and model parameter calibration. For the BPNN 
model, the gradient-based training algorithms have some drawbacks, such as overfitting 
and local optima. The ordinary SVM employing the structural risk-minimization princi-
ple can obtain good generalization performance. Nonetheless, the performance of SVM 
usually relies on the optimization algorithm to optimize the parameters, and many stud-
ies can be found in the literature (Feng et  al. 2020). As a deep learning algorithm, the 
LSTM can overcome the vanishing/exploding gradient problem faced by traditional RNN 
and can exhibit good generalization performance in hydrological time series prediction 
(Kratzert et  al. 2018). Influenced by many factors such as human activities and climate 
change, runoff usually contains multifrequency components (Niu et  al. 2019). Hence, it 
is difficult to use a standalone prediction model to completely simulate runoff precisely 
because only one resolution component is used and the underlying multiscale phenomena 
cannot be unraveled. According to the literature (Lv et al. 2020; Zuo et al. 2020), adopt-
ing decomposition methods can effectively forecast the accuracy of the LSTM model. As 
decomposition methods, EMD and VMD are utilized to identify the multifrequency com-
ponents to decrease the modeling difficulty. Therefore, the EMD-LSTM and VMD-LSTM 
models performed better than the standalone LSTM. Although many successful applica-
tions of the LSTM have not involved how to optimize the hyperparameters, it is still worth 
considering hyperparameter optimization to enhance model performance, and swarm intel-
ligent algorithms (i.e., GWO) can be selected as possible solutions. As revealed by Yuan 
et al. (2018), the hyperparameter optimization of LSTM models can enhance model perfor-
mance. Consequently, the proposed VMD-GWO-LSTM model outperformed the VMD-
LSTM model. Hence, the framework of the “decomposition-optimization-model” in using 
the LSTM, such as VMD-PSO-LSTM, was verified effectively for hydrological forecasting 
(Wang et al. 2021).

The probable causes of the VMD-GWO-LSTM model being superior to the compara-
ble models can be generally attributed to the contribution of VMD and hyperparameter 
optimization based on the GWO in the LSTM. VMD can decompose the monthly runoff 
time series into several subsequences and can reveal the underlying multiscale phenom-
ena implied in the monthly runoff time series. Each subsequence was simulated by the 
LSTM with hyperparameter optimization conducted by the GWO, which can identify 
the dynamic changes and decrease the modeling difficulty. Meanwhile, automatic opti-
mization of hyperparameters of the LSTM conquers the drawbacks of presetting param-
eters, easily causing lower forecast accuracy.

Although the feasibility of the VMD-GWO-LSTM model was verified with monthly 
runoff data derived from two reservoirs, further research should be conducted in the 
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future. Although the GWO has stronger robustness and searching ability than the PSO 
in solving optimization problems, the comparison of VMD-GWO-LSTM and VMD-
PSO-LSTM models was not made in this study and can be carried out in the future. It is 
necessary to involve new and excellent decomposition algorithms to enhance the quality 
of subsequences. Of course, more machine learning techniques should be investigated 
and verified to improve the single model forecast accuracy. Furthermore, the standard 
swarm optimization algorithms, for example the GWO used in this study, should be 
modified to improve the quality of parametric optimization for the models.

4  Conclusion

In this study, a hybrid model, VMD-GWO-LSTM, is proposed for forecasting monthly 
runoff. This innovation was implemented in three steps. First the original monthly run-
off data were decomposed into several subsequences. Second, each subsequence was 
simulated by a standalone LSTM model, of which the hyperparameters, including learn-
ing rate, epochs and hidden layer neurons, were optimized by GWO. Finally, all out-
puts of the standalone LSTM for each subsequence were aggregated as the final forecast 
results. Monthly runoff data derived from two reservoirs (Xinfengjiang and Guangzhao 
Reservoirs) located in China were employed to investigate the proposed hybrid model. 
To evaluate the model performance, four commonly used statistical evaluation indices 
were utilized, and five models, namely, BPNN, SVM, LSTM, EMD-LSTM and VMD-
LSTM, were used for comparison. The results indicated that the proposed model out-
performed the five models in terms of all four evaluation indices. The proposed method 
is easy to understand and implement. Hence, it is feasible and promising for improving 
the forecasting accuracy of monthly runoff prediction. Furthermore, it also provides a 
useful tool for solving other hydrological time series forecasting, such as water level 
forecasting.
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