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Abstract
Forecasting the groundwater level is crucial to managing water resources supply sustain-
ably. In this study, a simulation–optimization hybrid model was developed to forecast 
groundwater levels in aquifers. The model uses the PSO (Particle Swarm Optimization) 
algorithm to optimize SVR (Support Vector Regression) parameters to predict groundwater 
levels. The groundwater level of the Zanjan aquifer in Iran was forecasted and compared 
to the results of Bayesian and SVR models. In the first approach, the aquifers hydrograph 
was extracted using the Thiessen method, and then the time series of the hydrograph was 
used in training and testing the model. In the second approach, the time series data from 
each well was trained and tested separately. In other words, for 35 observation wells, 35 
predictions were made. Aquifer’s hydrograph was evaluated using the forecasted ground-
water level in the wells. The results showed that the SVR-PSO hybrid model performed 
better than other models in terms of Root Mean Square Error (RMSE) and coefficient of 
determination ( R2 ) in both approaches. In the first approach, the SVR-PSO hybrid model 
forecasted the groundwater level in the next month with a training RMSE of 0.118 m and 
testing RMSE of 0.221 m. In the second approach, using the SVR-PSO hybrid model, the 
RMSE error was reduced in 88.57% of the wells compared to other models, and more reli-
able results were achieved. Based on the performance, the SVR-PSO hybrid model can be 
used as a tool for decision support and management of similar aquifers.
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1  Introduction

The assessment of groundwater levels in aquifers plays an essential role in groundwater 
resource management, and changes in their levels could inform determination of ground-
water volume in aquifers. In arid regions, where the surface water resources are limited 
(Akbarzadeh et  al. 2016; Bajany et  al. 2021), groundwater resources are seen as a reli-
able supply for various water demands (Ghafari et al. 2020). Forecasting groundwater level 
allows water managers to assess groundwater resources to balance supply and demand in 
water resources management (El Bilali et al. 2021; Sattari et al. 2018; Sheikhipour et al. 
2018).

A time series of groundwater levels provides information for the sustainable manage-
ment of groundwater. Groundwater levels could be forecasted by usingdata-driven meth-
ods or a conceptual approach. Recently, data-driven methods have been demonstrated to  
perform well in modeling groundwater levels (Adiat et  al. 2020; Kouziokas et  al. 2018; 
Mirzavand and Ghazavi 2015. Physical and numerical models, stochastic, analytical, and 
soft computational techniques are used to forecast groundwater levels. Numerical and  
Artificial Intelligence (AI) methods have also been widely used to simulate groundwater 
levels over time (Chitsazan et al. 2013; Jalalkamali et al. 2010; Sreenivasulu et al. 2012). 
Some studies have compared the performance of various groundwater forecasting models 
(Ankita et al. 2021; Mirarabi et al. 2019; Malekzadeh et al. 2019).

Support Vector Machines (SVM) was suggested to forecast groundwater levels as it has 
the advantage in reducing computational complexity, susceptibility to overfitting, and the 
experimental nature of other artificial intelligence methods (Sujay Raghavendra and Deka 
2015). In optimizing the parameters for SVM, most of the studies use the trial and error 
approach. Behzad et al. (2009) observe that Support Vector Machines (SVM) show better 
performance and consistency in training than the Artificial Neural Networks (ANN) in pre-
dicting groundwater levels. However, they apply a time-consuming trial and error method 
to optimize SVM parameters. Mukherjee and Ramachandran (2018) forecasted groundwa-
ter levels using SVR, ANN, and linear regression models with satellite parameters for Ter-
restrial Water Storage (TWS) and meteorological variables based on the GRACE satellite 
data. A trial-and-error approach was also used in this study to optimize parameters in the 
SVR method. These studies show that the Support Vector Regression (SVR) enjoys supe-
riority over other intelligent black-box models in groundwater forecasting (Guzman et al. 
2019). Liu et  al. (2021) studied using the SVM model, data absorption (DA), and trial 
and error method to optimize SVM parameters predicted groundwater level changes. The 
results show that adding Gravity Recovery and Climate Experiment GRACE data as a vari-
able can improve the performance of SVM. The SVM-DA model performed relatively bet-
ter than SVM on most stations.

El Bilali et  al. (2021) compared four models of machine learning: Support Vector 
Regression, k- Nearest Neighbor (k-NN), Random Forest (RF), and Artificial Neural Net-
work (ANN) in predicting the groundwater level of the Tanubart aquifer in Morocco. The 
SVR model showed the best forecast accuracy with the smallest forecast error in one of 
the piezometers. Rahbar et al. (2022) compared SVR, ANFIS, and ANN models for Daily 
Karst Spring Discharge Prediction in Chaharmahal and Bakhtiari province. The results 
showed that the SVR performed better than other models in all stages. However, all the 
studies have used the trial-and-error method for optimizing SVR parameters. In contrast, 
the generalized capability of SVR relies heavily upon the optimal values of three learning 
parameters including the penalty factor (C), the kernel parameter (γ), and the permissible 
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error (ε). These parameters are interdependent and a change in one parameter affects the 
other linked parameters (Deka 2014). The optimization of SVR parameters through trial 
and error is challenging and is limited in effectively decreasing errors in groundwater fore-
casts. Thus, a more robust optimization that considers the interdependence of parameters 
of SVR is required for better forecasting of groundwater levels.

One of the most powerful tools for representing a complex system is Bayesian Net-
works (BN). Since the BN can address uncertainty in the relationship between forecast-
ing variables, its application in forecasting hydrologic processes has been growing recently 
(Aguilera et al. 2011). Yang et al. (2015) successfully implementated a Bayesian approach 
in water resources and environmental research. Farmani et  al. (2009) used an integrated 
approach based on a Bayesian networks model and an Evolutionary Multi-Objective Opti-
mization (EMO) to manage groundwater pollution in Copenhagen, Denmark. They observe 
that the method assists water managers in assessing the cost and benefit consequences 
of alternative measures and determining the best decisions under uncertain conditions. 
Moghaddam et  al. (2019) forecasted groundwater level in the Birjand plain using BN, 
groundwater simulation model (MODFLOW), and ANN using 13 piezometer observations 
over 12 years. The results show that BN models produce better results compared to ANN 
and simulation models (MODFLOW). The BN model was also used to qualitatively predict 
an aquifer’s parameters (Ammar et al. 2009; Hantush and Chaudhary 2013). These studies 
show a growing number of applications of BN in forecasting groundwater.

Aquifers are important in supplying water for multiple needs, and the assessment of 
groundwater levels is critical to using and adequately managing water resources. The Sup-
port Vector Machine (SVM), Bayesian Networks (BN), and Support Vector Regression 
(SVR) have been identified as appropriate and efficient tools for forecasting groundwater 
levels, according to recent studies. The penalty factor (C), the kernel parameter (γ), and 
the permissible error (ε) are three learning parameters on which the critical capability of 
SVR firmly depends on these interdependently-allied parameters (Deka 2014). Therefore, 
the PSO algorithm was used to optimize SVR parameters for the first time in groundwa-
ter level prediction in this study. Moreover, RBF was used as a kernel performance due  
to its accuracy, efficiency, and excellent performance compared to the other kernel func-
tions. The main objective of this study is to develop the SVR-PSO hybrid model and com-
pare it with recent data-driven models (SVR and BN Models). Furthermore, the developed 
models for groundwater level forecast were examined through well-oriented and aquifer-
oriented approaches.

2 � Material and Methods

2.1 � Method

In this study, all scenarios of modeling were performed under two approaches (aquifer-
oriented and well-oriented). In the first approach (aquifer-oriented), the total volume 
of the aquifer is assessed by applying the Thiessen method (using a weighted aver-
age of the water level at 35 observation wells). Then, the total volume of the aquifer 
was forecasted in various modeling scenarios in this approach. In the second approach 
(well-oriented), these 35 observation wells were separately modeled (trained and 
tested). Then the aquifer hydrograph was derived using trained and tested values of 
the water level of the wells. This hydrograph was compared to the observed aquifer’s 
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hydrograph, and the forecasting accuracy was examined. The second approach is dis-
tributed forecasting of groundwater levels in which changes in groundwater levels 
could be assessed in distributed wells. The SVR and SVR-PSO were programmed in 
MATLAB (2018). In both approaches, the groundwater level was forecasted through 
the three models (SVR, BN, and SVR-PSO), and their results were compared.

The results of the models were evaluated using monthly data from 35 observation 
wells in Zanjan plain, Iran, from 2004 to 2017. Data from 129 months were used for 
the training period (2004 to 2014) and 23 months for the testing period (2015 to 2017). 
The input variables of forecasting were precipitation, exploitation of groundwater 
(Discharge), temperature, evaporation, and groundwater level in the current month, 
and output was the groundwater level model in the next month. Different scenarios 
were used to assess the impacts of various inputs in simulation. For all models, five 
different scenarios were evaluated using input data. In the first scenario, all 5 input 
parameters were used for prediction. In the second scenario the evaporation parameter 
was removed due to it’s less importance than other parameters. In the third scenario, 
both evaporation and temperature were eliminated. In the next scenario, two param-
eters of discharge and groundwater level in this month were used for forecasting, and 
in the last scenario, the only groundwater level in the month was used for forecasting 
(Table 1). After modeling and conducting a verification test, the results obtained from 
the best scenarios in each model were compared. Finally, the results of the approaches 
were compared and analyzed. Figure 1 displays the models’ procedure, the number of 
scenarios, and methods.

2.1.1 � Support Vector Regression (SVR) Model

The Support Vector Machine (SVM) is a supervised learning model developed by Vapnik  
in 1995 (Vapnik 2013). This model has been broadly used for classification and regres-
sion purposes (Hosseini and Mahjouri 2014; Mirarabi et al. 2019; Panahi et al. 2020). 
The SVM was first developed for classification and later expanded for regression analy-
sis (Safavi and Esmikhani 2013). The objective of the Support Vector Regression (SVR) 
is to train the function F(x) for the training patterns x in which the trained values fall 
into the thickness curve (ε) to have the least error in the test (Smola and Schölkopf 
2004). The minimization of structural risk in SVR is superior to conventional empiri-
cal risk minimization used in neural networks or classical statistical methods (Dai et al. 

Table 1   Different scenarios of input parameters to SVR-PSO, SVR, and BN models

MODEL Scenario Input Data in Model

GWL Discharge Precipitation Temperature Evaporation

SVR-PSO
SVR
BN

1 ✔ ✔ ✔ ✔ ✔
2 ✔ ✔ ✔ ✔
3 ✔ ✔ ✔
4 ✔ ✔
5 ✔
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2012). Moreover, it cannot fall in local minimum error like neural networks because 
SVR can achieve the desired results with a small amount of data. As a matter of fact, 
adding unnecessary variables would create a more complex model than is required. 
Moreover, the complex model is susceptible to overfitting of training data. Therefore, 
SVR is a more authentic approach for regression with little-size datasets (Karimipour 
et al. 2019; Wu et al. 2008).

Given the dataset ( xn.yn ), where xn and yn denoting independent and dependent vari-
ables respectively, and n = 1,2,3, …, N, in which N is considered to be the total number 
of input and output data pairs, the linear regression function can be written as follows 
(Elbisy 2015):

The value of �n(x) in Eq.  (1) displays the features of input functions and wn and b 
are coefficients determined by minimizing Eq.  (2) using Eq.  (3) as constraints (Elbisy 
2015):

In Eq. (3), l�
(
Yn.f

(
xn
))

 is the insensitive loss function, and C is the regulator constant 
defined by the user, which determines the exchange curve between the smoothing model 
and experimental risk. The � is permissible tolerance between observed and computed 
values. The ∥w∥

2

2
 is a smoothing component. By introducing the slack variables � and �∗ 

in Eq.  (3), the general form of optimization equation is formulated as follows (Elbisy 
2015):
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Fig. 1   Flowchart of the research procedure
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To solve the above optimization model, a Lagrangian form of equations can be used. 
Based on the Lagrangian form, the regression equation can be written as Eq. (5) (Elbisy 
2015).

In which K
(
xi.x

)
 is the kernel equation that can be used to solve the problem in N-dimensional 

space (Eq. (6)) (Elbisy 2015; Suryanarayana et al. 2014).

The radial basis function (RBF) kernel was used in this study since Several studies 
reported that the RBF kernel equation produces the best results compared to other exist-
ing kernels such as linear, polynomial, and sigmoid (Al-Fugara et  al. 2020; Jin et  al. 
2021; Rajaee et  al. 2019). Three numbers assigned to parameters ε و C. γ obtained by 
trial and error method and 27 states were evaluated as the total permutations for param-
eters�(0.1.0.01.0.001).C(10.100.1000).�(1.0.1.0.01) . The best model corresponds to the 
least RMSE error in the test.

2.1.2 � The Development of (SVR‑PSO) Model

Although the SVR model is superior to artificial intelligence and statistic models, the 
parameters of the model require optimization to have desired results (Xiong and Xu 2006). 
In this study, the PSO optimization algorithm was applied to minimize RMSE in the test 
phase and determine the desired SVR parameters, and the SVR-PSO hybrid model was 
developed (Fig. 2). The performance of the SVR-PSO hybrid model was evaluated using 
RMSE.

The Particle Swarm Optimization (PSO) algorithm is an evolutionary computation 
technique (Kennedy and Eberhart 1995). This technique is based on the flock of birds 
(considered to be particles), with each bird searching for least distance in the search-
space solutions, seeking food considered to be the best solution. Firstly, particles are 
positioned in the search space of the N-dimensional problem. The objective function in 
each particle’s current position could be estimated by each of these particles, demonstrat-
ing a potential solution. Then, particles repeatedly fly in the swarm to search for the best 
solution. The pbest and gbest are the best positions obtained by the particle and swarm, 
respectively. The next position of each particle is updated by gbest and pbest, seeking 
the most desired performance (Poli et  al. 2007). This algorithm is commonly used in 
optimization problems due to its simplicity and excellent capability (Li et al. 2018; Patil 

(5)f (x) =

N∑
n=1

(ai.ai
∗) + K(xi.x) + bs.t ∶ 0 ≤ ai

∗
≤ C0 ≤ ai ≤ C

(6)

K
(
xi.x

)
= exp

(
∥ xi − x ∥2

2�2

)
RBF

K
(
xi.x

)
= xi.x linear

K
(
xi.x

)
= (1 + xi.x)

q polynomial
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et al. 2019; Shourian et al. 2008). The procedure of forecasting groundwater levels using 
SVR-PSO is as follows:

1.	 Setting the first value for iteration i = 0, and dividing the dataset (152 data) into two 
groups; training and testing (129 samples for the training period and 23 samples for the 
testing period).

2.	 Normalizing the entire datasets (training and testing data) at the interval of [0,1] using 
Eq. (7) to enhance the ability of the model for identification of inputs and outputs rela-
tionship (Zounemat-Kermani et al. 2016):

	 where Xik ، xik ، Xmax
ik

 and Xmin
ik

 are the normalized value, the main value, the maximum 
and minimum values of variable k in the dataset, respectively.

3.	 Randomly determining the position and velocity of each particle and also learning 
parameters (inertia weight and the maximum number of iterations) in PSO.

(7)Xik =
xik − Xmin

ik

Xmax
ik

− Xmin
ik

Fig. 2   Flowchart of GWL forecast using PSO-SVR hybrid model
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4.	 Computing the SVR value function (RMSE Test) for each particle in its current position.
5.	 Computing the current performance value for each particle and evaluating its improve-

ment compared to prior pbest (update pbest, otherwise pbest remains unchanged).
6.	 Comparing new pbest values with gbest value, update the gbest if the new pbest present-

ing a better value than gbest value, otherwise gbest remains unchanged.
7.	 Computing and updating the velocity and position of the particle, respectively.
8.	 Adding a number to iteration (i = i + 1).
9.	 If the iterative termination criterion is not satisfactory, go to step 5; otherwise, gbest 

presents the best-optimized parameter of SVR (Hasanipanah et al. 2017).

Modeling by SVR-PSO hybrid model was similar to SVR model except that the 
parameters �andC.� were optimized employing the PSO algorithm. The range of opti-
mization for each particle should be determined to optimize in the PSO algorithm and 
obtain the optimal point. The number of particles and the maximum number of neces-
sary iterations in the SVR-PSO hybrid model were 100 and 1000, respectively. Stopping  
occurs when there is no significant difference in the rate of optimization between two 
consecutive iterations. This value is considered by the program at 10^-6. But if the opti-
mization does not reach the desired point, the optimization should be removed from the 
program after a certain number of iterations to avoid the infinite loop. Most optimizations  
in this article reached a desired point at around100 repetitions, to ensure this value 1000 
repetitions were considered.. Ranges of parameters are: ɛ—(0 to 1); ɣ—(0.0001 to 1), 
and C—(1 to 1000).

2.1.3 � Bayesian Network

Judea Pearl first introduced the BN model in 1988 (Pearl 1988). The foundation of this 
model is based on the Bayes rule presented by Thomas Bayes in the eighteenth century 
(Aguilera et al. 2011; Uusitalo 2007). The advantage of this model is its application risk 
and uncertainty analyses compared to the other data-driven models, which merely give the 
forecasted values (Aguilera et al. 2011). Laplace developed this theory and the probabilis-
tic logic was determined based on this theory (Farmani et al. 2009). If E and F are assumed 
events which P(E) ≠ 0 and P(F) ≠ 0, then:

The BN model provides forward and backward computation for analysis. The effect of 
each of the input variables on the outputs of the model could be determined by forecasting 
the targeted variable applying the status of the input variables in combination with having 
forecasted variable status (Aguilera et al. 2011; Uusitalo 2007). The BN model comprises 
a series of interconnected nodes that examine both occurrence and non-occurrence for 
each process. The joint probability distribution of n events, including E

1
.E

2
.… .En where 

P(E) ≠ 0 for 1 ≤ i ≤ n obtained from Eq. (9) (Roozbahani et al. 2018):

(8)P(E|F) = P(E)P(F|E)
P(F)

(9)P
(
Ei|F

)
=

P(Ei)P(F|Ei)

P(FP
(
E
1

)
P
(
F|E

1

)
+ P

(
E
2

)
P
(
F|E

2

)
+⋯ + P(En)P(F|En))
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The GeNie software was used in this study for modeling, training, and validation. The 
Path Condition (PC) and Necessary Path Condition (NPC) algorithms are the most com-
monly used in training due to their simplicity.

2.1.4 � Performance Criteria for Model

The performance of the developed models is evaluated using statistical indicators such 
as coefficient of determination ( R2 ), Root Mean Square Error (RMSE) (Nossent and 
Bauwens 2012). RMSE and R2 used not only to evaluate the accuracy of the models  
but also to compare them in this study as given in Eqs. (10)–(11) (Krause et al. 2005; 
Wunsch et al. 2018).

where Pi indicates the forecasted values, Oi is the observed values, P indicates mean predi-
cated values, O indicates the mean observed values. The RMSE shows the difference 
between the observed and the predicted value. The RMSE increases from zero to large  
positive values as the difference between predicted and observed values increases. A rel-
atively low amount of RMSE and a high amount of R2 (up to one) indicate an efficient 
model (Rezaie-Balf et al. 2017).

2.2 � Study Area

The aquifer studied is located in Zanjan plain of Iran, at coordinates 48° to 48°60′ E and 
36°20′ to 37°N, with an area of approximately 2154 km2. This aquifer is one of the most 
important water resources for agricultural, industrial, and drinking purposes due to its 
proper water supply and lack of reliable surface water resources in the region. The annual 
water consumption is 490 MCM, in which 400 MCM of this amount is supplied from the 
aquifer.

The geographical location of the Zanjan plain and observation wells are illustrated in 
Fig. 3. This aquifer is in critical situation facing a 0.54-m annual drop due to overexploita-
tion and recent droughts. The general slope in this plain surface is declining from southeast 
to northwest. Groundwater levels are between 1,540 and 1,800, dropping from east to west. 
The average annual temperature in central areas is 11 and in high land is 8 degrees °C. The 
maximum precipitation of 600 mm occurs in the southwest, and the minimum precipitation 
of 250 mm is in the northwest.

(10)RMSE =

√√√√1

n

n∑
i=1

(Pi − Oi)
2

(11)R2 =

⎛
⎜⎜⎜⎝

∑n

i=1
(Pi − P)(Oi − O)�∑n

i=1
(Pi − P)

2

�∑n

i=1
(Oi − O)

2

⎞
⎟⎟⎟⎠

2
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3 � Results and Discussion

A lack of a simple relationship between input and output data is one of the error sources 
in data-driven models. Thus, various combination input variables (different scenarios) 
should be examined to find the optimal variable for the data-driven models. To have a 
better groundwater level forecast and determine the optimal input variables, five differ-
ent scenarios of input variables combination were tested for the BN model. Precipitation,  
discharge, temperature, evaporation, and groundwater level (GWL) in the current month 
are five forecasters used to forecast the groundwater level in the next month (NMGWL). 
Figure 4 shows the BN structure. Five different scenarios of the input data were examined 
in the forecasting by SVR, and SVR-PSO hybrid models are shown in Table 1.

3.1 � Comparison of the Models in the First Approach (Aquifer‑Oriented)

Various scenarios were assessed for the three models in each approach, and the superior 
scenario was selected based on the least RMSE value. Figure  5 displays the results of 
the forecasted groundwater hydrograph for the best scenario of the three models for the  
aquifer-oriented approach in the testing period. The results showed that in the first 
approach, the error in the SVR model was higher than the BN model. However, SVR opti-
mization parameters and developing SVR-PSO led to a better result, and thus the best out-
come was achieved using this model among the three models.

The results of the models for the first approach are presented in Table  2. Due to an 
excellent coefficient of determination ( R2 ) in most models, the RMSE test is used as the 

Fig. 3   The geographic location of the Zanjan aquifer
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criterion for comparison. Table 2 shows that the models were appropriately performed in 
the training period, and thus examined in the testing period. The second scenario in the 
SVR-PSO hybrid model using four parameters, precipitation, discharge, temperature, and 
groundwater level in a month, showed the least RMSE compared to the other scenarios in 
all three models.

Overall, the hybrid SVR-PSO hybrid model can accurately forecast the groundwater 
level in the aquifer, and the coefficient of determination for all scenarios is higher than 

Figure. 4.   BN structure for the groundwater level forecast
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0.8, except scenario 5. The value of coefficients signifies a good correlation between the 
observed and forecasted groundwater levels. Scenario 2 of the SVR-PSO hybrid model 
produced the best results having R2 = 0.873 and RMSE = 0.221 m amongst all models and 
developed scenarios for the aquifer.

3.2 � Comparison of the Models in the Second Approach (Well‑Oriented)

After modeling and optimizing its parameters, each well played a key role in deriving the 
aquifer’s hydrograph in the second approach (well-oriented). In other words, all models 
were first trained and tested using all observation wells in each scenario, then the particular 
values of C.� and � found for each well in the study area. Finally, the hydrograph for the 
aquifer was derived by the Thiessen method using the forecasted groundwater level.

Table 3 shows the results of the well-oriented approach. The coefficient of determina-
tion ( R2 ) was used for the training period in all different methods and scenarios, i.e., its 
value was greater than 0.9. The coefficient of determination ( R2 ) in the testing period in all 
SVR and SVR-PSO hybrid models except scenario 5 was desired. Scenario 2 of the SVR-
PSO hybrid model demonstrated the best training and testing RMSE values, which were 
0.2024 and 0.2194 m, respectively. Moreover, the BN model displayed the worst results in 
the well-oriented approach.

Different scenarios were assessed for the models in a well-oriented approach, and the 
ideal scenario was selected as a scenario having the least RMSE value among all scenarios 
of each model. Having compared observed and forecasted groundwater levels in a well- 
oriented approach (Fig. 6), the superiority of the SVR model over BN was observed. Moreo-
ver, forecasted groundwater levels are close to observed values in SVR-PSO hybrid mod-
els and forecasted value using the SVR model is better than the BN model. Generally, the 

Table 2   Comparison of the performance criteria of SVR-PSO, SVR, and BN models in the aquifer-oriented 
approach and optimized parameters SVR

MODEL Training Testing Optimized parameters SVR

RMSE(m) R
2 RMSE(m) R

2 C ɣ ɛ

SVR-PSO 1 0.186 0.994 0.228 0.871 504 0.0005 0.2710
2 0.188 0.994 0.221 0.873 541 0.0007 0.2817
3 0.185 0.994 0.255 0.839 727 0.0005 0.2845
4 0.185 0.994 0.256 0.836 974 0.0006 0.0001
5 0.367 0.981 0.360 0.674 962 0.0671 0.6121

SVR 1 0.153 0.996 0.326 0.867 1000 0.01 0.01
2 0.158 0.996 0.324 0.862 1000 0.01 0.1
3 0.167 0.995 0.318 0.816 100 0.01 0.1
4 0.174 0.995 0.351 0.818 1000 0.01 0.1
5 0.337 0.983 0.365 0.673 100 0.1 0.001

BN 1 0.199 0.994 0.265 0.845 - - -
2 0.213 0.994 0.273 0.844 - - -
3 0.222 0.994 0.287 0.835 - - -
4 0.251 0.995 0.316 0.994 - - -
5 0.333 0.992 0.387 0.836 - - -
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SVR and SVR-PSO provide more accurate predictions for the groundwater level in the study 
case. On the other hand, the BN model estimates groundwater levels higher than actual val-
ues. Additionally, the best values were obtained by applying the SVR-PSO hybrid model to 
forecast groundwater level.

Table 4 displays the averaged performance criteria for 35 observation wells for the supe-
rior scenarios of the models in a well-oriented approach. The BN method shows the worst 
results indicating that the performance of the model was not desired for the wells. The 
accuracy of BN for observation wells declines for wells in which groundwater levels tem-
porally fluctuate (Kardan and Roozbahani 2016; Moghaddam et al. 2019).

The superior scenario of the models in a well-oriented approach was selected, and the 
percentage of best performance criteria for 35 observation wells are compared in Table 5. 

Table 3   Comparison of the 
performance criteria of SVR-
PSO, SVR, and BN models in 
the well-oriented approach

MODEL Training Testing

RMSE(m) R
2 RMSE(m) R

2

SVR-PSO 1 0.1974 0.9938 0.2316 0.8929
2 0.2024 0.9935 0.2194 0.8997
3 0.2060 0.9935 0.2256 0.8961
4 0.2173 0.9930 0.2237 0.8974
5 0.3226 0.9837 0.3678 0.6695

SVR 1 0.1940 0.9940 0.3275 0.8667
2 0.1929 0.9940 0.2822 0.8987
3 0.2010 0.9936 0.2846 0.8890
4 0.2081 0.9931 0.2709 0.8924
5 0.3182 0.9838 0.3753 0.6720

BN 1 0.5536 0.9935 0.2194 0.8997
2 0.6092 0.9938 0.2316 0.8929
3 0.6214 0.9935 0.2256 0.8961
4 0.9964 0.6370 0.9365 0.7407
5 0.9920 0.8571 0.8210 0.9484
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Fig. 6   Observed and forecasted groundwater levels in test period for well-oriented approach
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The superiority of models in the second approach (well-oriented) is defined by the percent-
age of the best performance criteria for each model in groundwater forecasts. Moreover, 
the RMSE test values were less in 88.75% of cases of SVR-PSO forecasts compared to 
the other two models (Table 5). Generally, applying the SVR model shows an accurately 
proper performance; however, overfitting errors could occur in this model. Thus, using the 
PSO optimization algorithm and optimizing SVR parameters assist forecast with excellent 
performance.

Groundwater level forecast is a critical element in groundwater resource consumption. 
Determining an appropriate approach with the least inaccuracy in groundwater level fore-
casting could support better water management. Each well-oriented and aquifer-oriented 
method enjoys its advantages and disadvantages, which could be used depending on the 
forecasting purpose. The very low computational complexity is considered one of the ben-
efits of the aquifer-oriented approach compared to the well-oriented method. Moreover, 
high computations, particularly in large aquifers with numerous observation wells, are a 
drawback for the well-oriented approach. Reasonably faster modeling and acceptable 
results obtained in the aquifer-oriented approach is due to not having severe fluctuations 
in the aquifer’s averaged groundwater level. However, only the general state of the aqui-
fer could be obtained in the aquifer-oriented approach demonstrating its serious disadvan-
tages. Thus, changes in groundwater level cannot be acquired in a distributed manner as 
obtained in a well-oriented approach. Having compared observed and simulated groundwa-
ter levels using aquifer-oriented and well-oriented approaches in the Bayesian model, the 
results of the aquifer-oriented approach were more accurate than a well-oriented approach. 
Nonetheless, the correlation and accuracy of the two approaches in the SVR-PSO hybrid 
model were similar, and scenario 2 in this model yields the best results. Therefore, the 
first approach is perceived as a proper solution for more precise decision-making and water 
resources management in the region and similar aquifers.

Table 4   The average of SVR-
PSO, SVR, and BN performance 
criteria for 35 observation wells 
in the present study

Model Training Testing

Average 
RMSE(m)

Average �2 Average 
RMSE(m)

Average �2

SVR-PSO 0.535 0.9545 0.397 0.8299
SVR 0.511 0.9584 0.479 0.8172
BN 0.874 0.9506 0.889 0.7868

Table 5   Percentage of the 
superiority of SVR-PSO, SVR, 
and BN models in 35 observed 
wells

Model Training Testing

RMSE R
2 RMSE R

2

SVR-PSO 14 8.57 88.57 57
SVR 71.43 51.43 5.71 20
BN 14.29 40.00 5.71 22.86
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4 � Conclusion

Considering the importance and sensitivity of groundwater levels in water resource man-
agement, the accuracy of groundwater level forecasting is critical. Therefore, in this study, 
the efficiency of various forecasting models is assessed to determine a more accurate 
groundwater level forecaster. Three BN, SVR, SVR-PSO hybrid models were developed 
in this study, considering different scenarios for two well-oriented and aquifer-oriented 
approaches. Monthly groundwater levels in a vital aquifer from 2015 to 2017 (23 months) 
were forecasted to examine the developed models.

The SVR-PSO hybrid model presented the best performance compared to the devel-
oped models. Moreover, the highest correlation was observed between observed and fore-
casted groundwater levels in the SVR-PSO hybrid model. The results showed that SVR is 
better at modeling groundwater levels than the BN model. The use of the PSO optimiza-
tion algorithm hastens finding the optimal parameters of the SVR model, leading to an 
increase in the speed of modeling and an improvement of the results. The analysis of the 
results showed that the SVR-PSO hybrid model in both well-oriented and aquifer-oriented 
approaches could produce better results than the other two models. In the aquifer-oriented 
approach, the SVR-PSO hybrid model could forecast groundwater level in the next month 
with RMSE training and testing of 0.188 and 0.266 m, respectively. However, the SVR-
PSO hybrid model showed a better performance even in the well-oriented approach than 
the other two models. Thus, the proposed SVR-PSO hybrid model works better in both 
well-oriented and aquifer-oriented approaches.

The aquifer’s hydrograph obtained by the SVR-PSO hybrid model displays that this 
model has a great ability to forecast groundwater levels. The high correlation and low 
RMSE value indicate that the SVR-PSO hybrid model could be reliably applied for the 
groundwater forecast. Therefore, forecasting groundwater levels using the SVR-PSO 
hybrid model in the first approach (aquifer-oriented) can be applied as a forecasting tool 
for decision support systems used by managers and water resource stakeholders to address 
water scarcity in similar aquifers.
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