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Abstract
Reasonable runoff forecasting is the foundation of water resource management. However, 
the impact of environmental change on streamflow was not fully revealed due to the lack 
of enough streamflow features in many previous studies. In contrast, too many features also 
could lead cause undesired problems, including unstable model, interpretation difficulty, 
overfitting, high computational complexity, and high memory complexity. To address the 
above problems, this study proposes a cause-driven runoff forecasting framework based on 
linear-correlated reconstruction and machine learning model and refers to this framework 
as CSLM. We use variance inflation factor (VIF), pairwise linear correlation (PLC) recon-
struction, and long short-term memory (LSTM) to realize this framework, referred to as 
VIF-PLC-LSTM. Four experiments were conducted to demonstrate the accuracy and effi-
ciency of the proposed framework and its VIF-PLC-LSTM realization. Four experiments 
compare 1) different filter thresholds of driving factors, 2) different combination prediction 
features, 3) different reconstruction methods of linear-correlated features, and 4) different 
CSLM models. Experimental results on daily streamflow data from the Tangnaihai station 
at the Yellow River source and the Yangxian station at the Han River show that 1) data 
filtering has the risk of feature information loss, 2) when the streamflow, ERA5L, and mete-
orology data are used as inputs at the same time, the performance of the model is superior 
to the combination of other prediction features; the prediction effect of different prediction 
features, 3) the reconstruction of linear-correlated features is not only better than dimension 
reduction but also can improve the forecasting performance for streamflow prediction, and 
4) among different CSLM models, LSTM is superior to other models.
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1  Introduction

Reasonable runoff forecasting is the foundation of water resource management. It not only 
can support reservoir operation but also provide reference to water resources planning. 
However, streamflow is affected by regional environment factors under dynamic environ-
ments (Yang et al. 2021), leading to the formation mechanism. The evolution law of stream-
flow is constantly changing, which brings new challenges to streamflow prediction. Studies 
show that meteorology change, direct human activities, and underlying surface environment 
change are the main factors affecting runoff change (Jin et al. 2021; Su et al. 2021; Wang 
et al. 2021a; Li et al. 2009). Meteorology factors affect the streamflow, including precipi-
tation, evaporation, and temperature (Zhang et  al.  2021; López-Ballesteros et  al.  2020). 
Underlying surface environment change factors also affect the streamflow, including terrain, 
vegetation cover, and land use (Chanapathi and Thatikonda 2020; Li et al. 2009). In addi-
tion, direct human activity, such as water use and drainage, can directly change the stream-
flow. Therefore, ideally, meteorology change, underlying surface change, and direct human 
activities should be considered in streamflow prediction.

The existing streamflow prediction methods are mainly physical and data-driven models 
(Yin et al. 2021). Physical mode required many boundary conditions and physical features 
to be determined in modeling hydrological processes with variabilities (Devia et al. 2015; 
Zuo et al. 2020). Further, most of the existing physical models were designed for the small 
watersheds, and thus it is laborious to verify the model in the large catchment due to the 
lack of a lot of relevant data (Nourani et al. 2011).

Recently, data-driven models have been widely used due to fewer requirements about 
the study area and low computational complexity. Data-driven models are mainly divided 
into machine learning (ML) models and time-series models. The linear assumption 
required for the time-series model limited its application for non-stationary and nonlinear 
streamflow prediction (Alizadeh et al. 2021). Long short-term memory (LSTM) (Alizadeh 
et al. 2021; Kim and Kim 2021), gradient boosting regression tree (GBRT) (He et al. 2020; 
Liao et al. 2020), deep neural networks (DNN) (Mahmoodzadeh et al. 2021), support vec-
tor regression (SVR) (Yang et  al.  2017; Maity et  al.  2010), and other ML models were 
explored for streamflow prediction.

Input plays an indispensable role in the modeling process. Reasonable input can 
decrease the complexity of the problem and improve the prediction performance of the 
algorithm. Previous studies on runoff prediction mainly focused on precipitation run-
off as an input feature (Kratzert et  al.  2018; Mao et  al.  2021; Yokoo et  al.  2022; Sedki 
et al. 2009). Because the selection of features can significantly affect the precision of the 
model (Vu et al. 2015), in recent years, the impact of meteorological features other than 
precipitation has attracted the attention of many researchers (Awotwi et  al.  2021). (Xu 
et al. 2021) developed an ensemble streamflow forecast method under the considered rain-
fall, temperature, relative humidity, and land-use change. (Wang et al. 2021b) studied the 
contribution of soil, precipitation, land use, and temperature for streamflow increases in 
the high glacierized tributaries of Tarim River Basin, China. It is not hard to find that most 
studies only consider meteorology and underlying surface change because it is challenging 
to obtain data on the impact of direct human activities on runoff in real life. Therefore, this 
study considers the impact on streamflow from two aspects: meteorology and underlying 
surface change.

However, although many studies have considered meteorology and underlying surface 
change in runoff prediction, the selection of feature quantity or type is subjective, which 
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cannot guarantee the optimal feature selection without information loss. Fewer features 
cannot fully reflect the impact of meteorology and underlying surface change on stream-
flow. Although many features can provide more information, they can induce a higher com-
putational complexity and computing resource requirements. Further, the model can be 
unstable and difficult to interpret due to multicollinearity. Thus, it is important to reflect the 
streamflow change with more detail while improving stability and computational efficiency.

To address the above problems, we propose a cause-driven streamflow forecasting 
framework based on linear-correlated reconstruction and machine learning model and refer 
to this framework as CSLM. The linear-correlated reconstruction includes variance infla-
tion factor (VIF) and pairwise linear correlation (PLC) reconstruction. We use VIF, PLC 
reconstruction, and LSTM to realize this framework, referred to as VIF-PLC-LSTM. First, 
the prediction feature set is established based on the meteorology and ERA5-Land (referred 
to as ERA5L; see Sect. 2.2 for more information) data related to the cause of streamflow. 
Second, the redundant features are removed from the feature set in multicollinearity recon-
struction by VIF, and then, the remaining features are reconstructed by PLC. Lastly, the 
reconstructed features are used for streamflow prediction. Four experiments were con-
ducted to evaluate the accuracy and efficiency of the proposed CSLM framework and VIF-
PLC-LSTM implementation. The first experiment showed the risk of feature information 
filtering by comparing driving factors screening based on different filtering thresholds MI. 
The second experiment analyzed the effects of different features: the streamflow, ERA5L, 
and meteorology data, on the prediction results. The results indicate that the best prediction 
performance can be derived with the existence of all three features. The third experiment 
explored the difference between the two linear correlation feature reconstruction meth-
ods based on principal component analysis (PCA) and VIF-PLC, showing the superior-
ity of VIF-PLC. The fourth experiment compared the performance of SVR, GBRT, DNN, 
and LSTM based on the CSLM framework, showing that LSTM has the best prediction 
performance.

2 � Study Area and Dataset

2.1 � Study Area

In this study, we examine the streamflow forecasting performance of the two stations in 
the main study area, the source of the Yellow River, and the comparative study area, the 
upstream of the Han River in China, respectively. The source of the Yellow River (see 
Fig. S1), the second-largest river in China, is located in the Three Rivers national nature 
reserve of Qinghai Province. It is one of the most sensitive areas to meteorology change 
(Su et al. 2016; Sun et al. 2019) and is hardly affected by direct human activities. The pre-
vious research showed that meteorology change is the main factor leading to the streamflow 
change in the source of the three rivers, accounting for 90% (Jiang et al. 2017). The control 
basin above Tangnaihai station in the source area of the Yellow River covers an area of 
12.19 × 104 km2. Tangnaihai station is not only the control station on the mainstream of 
the Yellow River and the monitoring station of the Longyangxia Reservoir. Therefore, the 
predicted streamflow prediction of Tangnaihai station can be used to estimate the yield at 
the source of the Yellow River and the inflow of Longyangxia Reservoir, which is very 
important for the water resources management at the Yellow River.
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The Han River (see Fig. S2), the largest tributary of the Yangtze River. The upstream 
of the Han River is the water source of the ‘Hanjiang-to-Weihe River Water Diversion 
Project.’ The Hanjiang-to-Weihe River Water Diversion Project is an inter-basin water 
diversion project in Shaanxi Province, transferring water from the Han River to the water-
deficient area in Guanzhong of Shaanxi Province. Yangxian hydrological station has 
a catchment area of 14,484 km2 and controls the mainstream of Hangjiang River with a 
length of 201.4 km. Therefore, the streamflow prediction of the Yangxian station upstream 
can effectively evaluate the adjustable water of the project. It has important strategic 
importance for alleviating the pressure of water resources in the Guanzhong area.

2.2 � Dataset

The measured time-series data of Tangnaihai and Yangxian stations are from the Yel-
low River Network and hydrological Yearbook. The measured streamflow of Tangnaihai 
and Yangxian stations is obtained from 2006/05/02 to 2018/11/13 and 1981/01/02 to 
2014/12/31, respectively.

The daily dataset of surface climatological data in China (V3.0) (hereinafter referred 
to as climatic dataset) is got from the China Meteorological Data Service Center. The cli-
matic dataset includes 824 baseline and basic weather stations in China. The information 
of meteorological variables used in this study is shown in Table S1, where the small and 
large evaporations are converted to evaporation denoted by ‘EVP.’

ERA5L is a global land-surface dataset at 9 km resolution (Hereinafter referred to as the 
ERA5L dataset) obtained from ECMWF. The ERA5L is used to conduct lumped transfor-
mation on the same feature of different longitude and latitude in the control catchment area 
of Tangnaihai and Yangxian stations, where the overall feature change in the catchment 
area is evaluated. The information of ERA5-Land variables is summarized in Table S2.

The total data for the Tangnaihai station and Yangxian station is divided into the 
training, validation, and test sets with a ratio of 8:1:1. For Tangnaihai station, the train-
ing, validation, test sets include data from 2006/05/02 to 2016/05/11, from 2016/05/12 
to 2017/08/12, and from 2017/08/13 to 2018/11/13, respectively. For Yangxian station, 
the training, validation, and test sets include data from 1981/01/02 to 2008/03/14, from 
2008/03/15 to 2011/08/07, and from 2011/08/08 to 2014/12/31, respectively.

3 � Methods

3.1 � Variance Inflation Factor

Variance inflation factor (VIF) (Vu et al. 2015) measures the severity of multicollinearity, 
defined as follows:

where R2 is the coefficient of determination. When the correlation between the target fea-
ture and other features is low, the closer the value of R2 to 0. The closer the VIF value to 
1, the lighter the multicollinearity. In general, a greater VIF value than 5 indicates a high 
linear correlation between the target feature and other features, which needs to be recon-
structed (Vu et al. 2015).

(1)VIF =
1

1 − R2
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3.2 � Long Short‑term Memory (LSTM)

LSTM was proposed to address the gradient disappearance problem that often occurs 
in recurrent neural networks when training long sequences (Hochreiter  1998). Similar 
to recurrent neural networks (Hochreiter and Schmidhuber  1997), LSTM is also struc-
tured with a neural network repeating module chain (Fig. S3) (Kratzert et al. 2018; Lian 
et al. 2022).

LSTM dominates the flow of information to the cell state through the forget gate (f t) , 
output gate (ot) , and input gate (it) . The main process of LSTM is as follows:

1.	 In the forget gate, the sigmoid function � decides which information to throw away. 
The f t vector represents the preserved and abandoned information in the cell state Ct−1 , 
represented as follows:

where Wf  is the input weight matrix, and xt is the current input vector. ht−1 is the last 
hidden cell state, and Uf  is recurrent weight matrix. bf  represent the bias vector and 
t ∈ (1, n) is each time step.

2.	 ht−1 and xt are used to obtain new candidate cell information 
∼

Ct through the tanh layer, 
the process is shown in the following equation:

where the tanh represents activation function. The output of the tanh function is 0, 
when the input is 0.

3.	 Ct−1 is updated to get the Ct as follows.

4.	 Which state characteristics of the output cell are based on the input ht−1 and xt is judged. 
Next, the cell state gets a vector through the tanh level. The final output of this unit as 
following equation, where the range of ht is [-1,1].

3.3 � The CSLM Framework and the VIF‑PLC‑LSTM Realization

Few features cannot fully express the basin information, and too many features can make 
the model inefficient and unstable due to multicollinearity. In order to solve these prob-
lems, a CSLM framework based on the cause law of streamflow is proposed in this paper, 
as shown in Fig. 1. The relevant parameters of the model are shown in Table S3. The spe-
cific process of the framework is as follows:

(2)f t = �(Wf xt + Ufht−1 + bf )

(3)it = �(Wixt + Uiht−1 + bi)

(4)
∼

Ct = tanh(WC̃xt + UC̃ht−1 + bC̃)

(5)Ct = it ∗
∼

Ct + f t ∗ Ct−1

(6)ot = �(Woxt + Uoht−1 + bo)

(7)ht = ot ∗ tanh(Ct)
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Step 1	 The meteorology, ERA5L, and streamflow data are collected and organized.
Step 2	 The feature variances of meteorology and ERA5L are computed, respectively. 

Then, features whose lower variance (close to 0) is removed.

Redundant features with low variance are removed to avoid a complex model com-
plexity and high computational time while ensuring sufficient information to prevent 
accuracy loss caused by the lack of features.

Step 3	 VIF is used for multicollinearity reconstruction about meteorology and ERA5L 
features processed in Step2.

Despite the removal process of Step 2, there still remain redundant features that have 
multicollinearity. VIF further removes the multicollinearity features to avoid the insta-
bility and interpretation difficulty of the model.

Step 4	 Judge whether the VIF ≥ 5 of the feature in Step 3. If so, remove it, return to Step 
3, calculate the VIF of the remaining features, and then judge again. Repeat Step 4 until 
the VIF < 5 of all the remaining features.

Step 5	 The retained features in Step 4 are reconstructed by PLC.

Fig. 1   The diagram of the CSLM framework, which is realized based on VIF-PLC-LSTM
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The features with higher absolute Pearson correlation coefficients (APCCs) (APCCs>0.8) 
are removed. The remaining features are fed into the prediction model as an input.

Step 6	 The partial autocorrelation function (PACF) diagram for each input feature data is 
drawn to select optimal lag. The forecasting sample is generated based on the optimal 
lag.

Step 7	 The forecasting samples are divided into training, validation, and test samples and 
then normalized with the same parameters.

Step 8	 The normalized training and validation samples are used to train and cross-validate 
the LSTM model. The prediction is conducted on the test samples.

3.4 � Comparative Experimental Setups

The proposed CSLM framework and its VIF-PLC-LSTM realization are evaluated in the 
following four experiments. The first experiment compares the influence of different fil-
ter thresholds of driving factors on prediction results. The second experiment compares 
different prediction features: streamflow, ERA5L, and meteorology data on streamflow 
prediction results. The third experiment compares the effect of different reconstruction 
methods of linear-correlated features on streamflow prediction. The fourth experiment 
compares the different models based on the CSLM framework. The streamflow forecast-
ing samples of the comparative experiment are generated based on the CSLM frame-
work in Fig. 1. The sample sources of each experiment are summarized in Table S4. The 
details of the experiment are described in the following.

Experiment 1  Comparison of different filter thresholds of driving factors.

Ten filter thresholds (0.1 ~ 0.9) with the interval of 0.1 are compared on the normal-
ized MI between predictors and streamflow in the S2 sample in Table S4.

Experiment 2  Comparison of different combinations of prediction features.

The sample S2 ~ S7 in Table S4 are generated based on the permutation and combi-
nation of streamflow, ERA5L, and meteorology data. Then, the prediction results of the 
streamflow, ERA5L, and meteorology data are compared.

Experiment 3  Comparison of different reconstruction methods of linear-correlated 
features.

S1 uses PCA and S2 uses VIF-PLC for the reconstruction of linear-correlated fea-
tures. Thus, the comparison between S1 and S2 can analyze the PCA and VIF-PLC on 
reconstructing linear-correlated features.

Experiment 4  Comparison of different machine learning models.

…Cause  driven Streamflow Forecasting Framework ased on Linear- B 1667
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Streamflow prediction by LSTM, DNN, GBRT, and SVR models for 1 ~ 7  days lead 
time are compared on S2 samples. Based on the comparison, the advantages and disadvan-
tages of these models are analyzed.

4 � Case Study

4.1 � Calculation of Feature Variance

Figures S4 and S5 show the variance of meteorology and ERA5L features at Tangnaihai 
station. They indicate no feature with a variance value of 0 but many features with small 
variance values. Also, there is a correlation between these selected features, which can eas-
ily lead to over-fitting. And, too many input variables often reduce the convergence speed. 
It means that these features contribute little to streamflow change and can be discarded. 
Therefore, in this paper, we remove the feature of variance less than 0.001.

4.2 � Reconstruction of Linear‑correlated Features

The remaining features after removing features whose difference is less than 0.001 are fur-
ther tested and reconstructed. The process consists of the following two steps. Firstly, mul-
ticollinearity features are reconstructed by cycle removal. The feature with the highest VIF 
is removed repetitively until the remaining feature VIF is all less than 5. Table 1 depicts 
the process and results of the reconstruction of the multicollinearity meteorology features.

Then, the APCCs of the features, screened in the previous step, is computed; the results 
of meteorology features are shown in Fig. S6. As shown in Fig. S6, the APCCs between the 
MAX_T and MIN_ST exceeds 0.8, thus removing MAX_T. Therefore, the selected fea-
tures of meteorology are MIN_ST and P2020 used to predict streamflow for the Tangnaihai 
station. Since the APCCs between these features are all less than 0.8 after multicollinearity 
reconstruction on ERA5L features, no further reconstruction is unnecessary. smlt, evavt, 
sro, evabs, sd, sf, u10, and v10 are selected as the features of ERA5L in the prediction of 
the Tangnaihai station.

4.3 � Determination of Input Predictors

In ML model, PACF is widely used to select the optimal input lags (He et al. 2020). How-
ever, some lags that pass the 95% confidence test but are insignificant may lead to a high 
modeling time and computational cost (Zuo et al. 2020). Based on this, we select all lags 
before the first insignificant lag as the optimal input. Meteorology features MIN_ST, 
P2020, and ERA5L features smlt, evavt, sro, evabs, sd, sf, u10, v10 are used to predict the 
streamflow of the Tangnaihai station in Sect. 4.1. After obtaining the feature dataset, the 
forecasting samples are generated. According to the CSLM framework in Fig. 1, PACF is 
used to select the optimal lag of features. The meteorology feature, smlt, of Tangnaihai sta-
tion is taken as an example to illustrate how to get the optimal lag. According to Fig. S7, 
The PACF of the lags after the seventh day is all around the blue line (95% confidence 
interval) and insignificant. Therefore, x1(t) , x1(t−1) , x1(t−2) , x1(t−3) , x1(t−4) , x1(t−5) , x1(t−6) , and 
x1(t−7) are selected as the optimal input predictors of the smlt. The optimal input predictors 
of all features are selected and combined to obtain the final predictors of CSLM framework 
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for the Tangnaihai station. Then, the 1-day lead time as an example, the predicted target is 
Q(t+1) of the measured daily streamflow.

4.4 � Normalization of Learning Samples

All samples are normalized through (8) to find the optimal hyperparameter for the model.

where xmin , xmax , y, and x are the minimum, maximum, normalized, and original values, 
respectively. Please note that these parameters of the training set are also used to normal-
ize the test and validation samples to avoid using the information of the test and validation 
samples.

4.5 � Evaluation Indicators

The accuracy of the model is evaluated with three criteria: the peak percentage of threshold 
statistics (PPTS) (Lohani et al. 2014), the normalized root mean squared error (NRMSE) 
(He et al. 2020), and Nash–Sutcliffe efficiency (NSE) (He et al. 2019). Let denote x(t) , x̂(t) 
and x(t) be the measured, predicted, and average of the measured samples, respectively, 
and T be the number of samples. In PPTS, the samples are arranged in descending order, 
� is the threshold level, which denotes the percentage of the arranged samples from the 
largest value. m is the number of values above � . For instance, PPTS(5) represents that the 
top 5% peak samples are selected from the descending order of the measured sequence to 
calculate the index value.

5 � Results and Discussion

5.1 � Comparison of Different Filter Thresholds of Driving Factors

Figures S8 and S9 show the results of Experiment 1 (Sect. 3.4), where PPTS(5), NRMSE, 
and NSE of LSTM on 1-day ahead for the Tangnaihai and Yangxian stations are depicted, 
respectively. As shown in Fig. S8, 1) the NSE fluctuates within a narrow range with the 
change of mutual information, 2) when the normalized mutual information is 0.1 or 0.2, the 

(8)y = 2 ∗
x − xmin

xmax−xmin
− 1

(9)NRMSE =

�∑T

t=1
(x(t) − x̂(t))

2
∕T

∑T

t=1
x(t)∕T

(10)PPTS(�) =
100

�

1

T

∑m

t=1

||||

x(t) − x̂(t)

x(t)

||||

(11)NSE = 1 −

∑T

t=1
(x(t) − x̂(t))

2

∑T

t=1
(x(t) − x(t))

2

…Cause  driven Streamflow Forecasting Framework ased on Linear- B 1671



	

1 3

NRMSE value of LSTM is lower, and 3) the NRMSE value increases with the normalized 
mutual information increase. PPTS also has a similar change law. As shown in Fig. S9, 
the LSTM has lower NRMSE, higher NSE, and PPTS (5) when the normalized mutual 
information is 0. It indicates a risk of information loss when the key predictors-driven are 
screened based on the normalized mutual information. Comparing with Figs. S8 and S9, 
it can be found that the daily streamflow prediction for the Tangnaihai station has signifi-
cantly lower PPTS(5) and NRMSE and higher NSE than the Yangxian station. It indicates 
the prediction results of the Tangnaihai station are better than the Yangxian station because 
the streamflow of the Yangxian station maybe more affected by human activities than that 
of the Tangnaihai station.

5.2 � Comparison of Different Combinations of Prediction Features

The results of Experiment 2 (Sect. 3.4) are shown in Fig. S10. The details of S2 ~ S7 sam-
ples used in this experiment are shown in Table S4. Figure S10 shows NSE, NRMSE, and 
PPTS(5) of LSTM on the 1-day ahead based on training, validation, and test samples for 
the Tangnaihai and Yangxian stations, respectively.

From Fig. S10, the following results can be found. 1) The mean NSE of S2, S3, and 
S4 are all significantly higher than that of S5, S6, and S7, while the mean NRMSE and 
PPTS(5) of S2, S3, and S4 are significantly lower than that of S5, S6, and S7. It indicates 
that the streamflow series can substantially improve the prediction accuracy of LSTM. The 
NSE mean of S2 is larger than that of S3 and S4, and the NSE mean of S5 is larger than 
that of S6 and S7. 2) The mean NRMSE and PPTS(5) of S2 are generally lower than that 
of S3 and S4, and the mean NRMSE and PPTS(5) of S5 are also generally lower than that 
of S6 and S7. The results show that utilizing meteorology and ERA5L data simultane-
ously is beneficial to improve the runoff prediction effect. 3) The mean NSE of S4 and S7 
are higher than S3 and S6, respectively. The mean NRMSE and PPTS(5) of S4 and S7 are 
lower than S3 and S7, respectively. It indicates that the streamflow forecasting accuracy 
of ERA5L is slightly better than meteorology data. 4) The mean NSE of the Tangnaihai 
station is higher than the Yangxian station, indicating that the influence of direct human 
activities on streamflow change is significant.

When using only the meteorology or ERA5L data, the streamflow prediction is worse 
than using the streamflow data due to the following reasons: 1) the quality of data is 
affected by interpolation and observation; 2) the model needs to fit the errors from dif-
ferent sources; 3) the sample of streamflow prediction based on the statistical law cannot 
reflect the law of runoff generation and concentration; 4) the streamflow is affected by 
direct human activities. The forecasting accuracy of ERA5L is slightly better than that of 
meteorology data due to the reanalysis based on measure data, higher spatial and temporal 
resolution, and more comprehensive response to relevant characteristic information in run-
off generation and concentration.

5.3 � Comparison of Different Reconstruction Methods of Linear‑Correlated Features

Experiment 3 (Sect. 3.4) results are shown in Fig. S11, where PPTS(5), NRMSE, and 
NSE of LSTM on 1-day ahead based on training, validation, and test samples for the 
Tangnaihai and Yangxian stations are depicted. In this experiment, S1 and S2 samples 
(Table S4) are generated by PCA and VIF-PLC, respectively. The results show that the 
reconstruction of linear-correlated features (S2) has a higher mean, lower interquartile 
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range of NSE, and lower average and interquartile range of NRMSE than feature dimen-
sion reduction (S1). The Tangnaihai station obtains a lower mean and higher interquar-
tile range of PPTS(5). In contrast, the Yangxian station obtains a higher mean and lower 
interquartile range of PPTS(5).

These results indicate that the VIF-PLC outperforms the PCA in terms of streamflow 
prediction. The possible reasons led this result are as follows: 1) some principal compo-
nents (PC) with smaller variance are excluded by PCA, resulting in a certain degree of 
information loss; 2) in the feature dimensionality reduction, more PCs of meteorology 
data and fewer PCs of ERA5L data are selected. The reconstruction of linear-correlated 
features include fewer meteorology features and more ERA5L features. As can be seen 
from Sect. 5.2, since the accuracy of ERA5L is better than meteorology data on stream-
flow prediction, a higher proportion of ERA5L could result in better accuracy.

5.4 � Comparison of Different Machine Learning Models

The performance of different streamflow prediction models is compared in Experiment 4 
(see Sect. 3.4), where S2 (Table S4) samples are used. The LSTM, DNN, GBRT, and SVR 
are used as the compared models in predicting the daily streamflow on the Tangnaihai 
and Yangxian stations with 1 ~ 7 days lead time. Figures S12 and S13 depict the NSE box 
figure of different models. Figures 2 and 3 compare the measured results and predicted 
results of different models with 1, 3, 5, and 7 days ahead.

The results found from Fig.  S12 are as follows. 1) the NSE interquartile range of 
the LSTM and DNN is significantly smaller than that of the GBRT and SVR. It indi-
cates the better generalization performance of the LSTM and DNN than the GBRT and 
SVR. 2) the NSE of LSTM is higher than DNN, indicating that the streamflow predic-
tion accuracy of LSTM is superior to the DNN. The results found from Fig. S13 are as 
follows. 1) the NSE interquartile range of the LSTM and DNN is slightly smaller than 
that of the GBRT and SVR, indicating that the streamflow forecasting results of the 
LSTM and DNN is slightly better than the GBRT and SVR. 2) the GBRT and SVR have 
a higher mean NSE but a larger interquartile range, indicating the poor generalization 
performance of GBRT and SVR. The same conclusion can be reached for PPTS(5) and 
NRMSE.

As shown in Fig.  2, the four models, the LSTM, SVR, GBRT, and DNN, provide 
good trend and periodicity fitting abilities. Also, Fig. 3a shows that these four models 
can capture random changes to predict daily runoff with one day ahead at the Yangxian 
station. However, as seen from Fig.  3b–d, the tracking ability of these models to the 
peak runoff gradually decreased with increasing lead time.

From Figs.  S12, S13,  2  and  3, it can be seen that the forecasting accuracy of the 
streamflow forecasting model mainly depends on the sample quality. The streamflow 
series of the Tangnaihai station is almost not affected by human activities, thus induc-
ing better prediction. However, the streamflow series of the Yangxian station is greatly 
affected by human activities, consequently resulting in poor prediction accuracy. The 
GBRT and SVR have a larger NSE interquartile range and a mean higher NSE due to 
the larger NSE values of training and development samples but smaller NSE values of 
the test samples. In summary, LSTM has great potential for streamflow prediction based 
on causes because the LSTM model can simulate the change of hydrometeorological 
time series and the long-term dependence between predictors and predicted targets.
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6 � Conclusion

This paper proposes the CSLM framework and its VIF-PLC-LSTM realization for 
streamflow prediction based on linear correlation reconstruction. The CSLM input fea-
ture is based on the cause-driven features of streamflow, which can better reflect catch-
ment changes. The CSLM reconstructs the linear correlation features to avoid serious 
collinearity, making the model stable. The CSLM prediction stage reduces the risk of 
overfitting while improving the model efficiency and prediction accuracy. Four experi-
ments demonstrate that the proposed framework and realization can simulate daily 
streamflow with competitive performance compared to benchmark models. With the 
first set experiment, we evaluate the risk of filtering features in streamflow prediction. 
With the second set experiment, we evaluate the necessity of meteorology, ERA5L, and 
streamflow features for streamflow prediction. With the third set experiment, we evalu-
ate the difference between PCA and VIF-PLC for linear correlation reconstruction. With 
the last set experiment, we evaluate the forecasting performance of the different CSLM 
models. The main conclusions summarized as follows.

1.	 There is a risk of feature information loss in driving factors filtering based on different 
filtering thresholds MI.

2.	 Historical streamflow is an essential predictor in streamflow prediction. The prediction 
effect is poor to use features excluding streamflow to predict streamflow. Both meteoro-
logical feature and ERA5L feature can significantly improve the performance of runoff 
forecasting. The predicted effect of the ERA5L feature is better than the meteorological 
feature.

3.	 The VIF-PLC is not only better than PCA but also can improve the prediction perfor-
mance for runoff forecasting.

4.	 The prediction performance of LSTM is better than SVR and GBRT based on the same 
CSLM framework.

The contribution of this study is to propose a prediction framework based on linear 
correlation reconstruction, considering the impact on streamflow from meteorology and 
underlying surface change. In addition, the variance inflation factor is used to remove 
the redundant features, and pairwise linear correlation reconstruction is used for fea-
ture reconstruction. The results of this paper demonstrate the superiority of the CSLM 
framework and the ability of the VIF-PLC-LSTM in runoff prediction.
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