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Abstract
In any meta-heuristic algorithm, each search agent must move to the high-fitness areas 
in the search space while preserving its diversity. At first glance, there is no relationship 
between fitness and diversity, as two key factors to be considered in selecting a guide for 
the solutions. In other words, each of these factors must be evaluated in its specific and 
independent way. Since the independent ways to evaluate the fitness and diversity usually 
make any meta-heuristic consider these factors disproportionately to choose the guides, the 
solutions’ movements may be unbalanced. In this paper, we propose a novel version of the 
Particle Swarm Optimization (PSO) algorithm, named Dual Fitness PSO (DFPSO). In this 
algorithm, not only fitness and diversity of the particles are properly evaluated, but also 
the abilities to evaluate these features are integrated to avoid the abovementioned problem 
in determining the global guide particles. After verification of the DFPSO via applying 
them to several benchmark functions, it is applied to solve a real-world optimal conjunctive 
water use management problem. The objective is minimizing shortages in meeting irri-
gation water demands under several climatic conditions. The optimal results suggest that 
while the water demands are desirably met, the cumulative groundwater level (GWL) draw-
down is highly decreased to help maintain the sustainability of the aquifer, demonstrating 
the high efficiency of the DFPSO to also handle the practical engineering problems.

Keywords  Particle swarm optimization · Meta-heuristic algorithms · Conjunctive water 
use · Sustainability

1  Introduction

1.1 � Particle Swarm Optimization

Particle Swarm Optimization (PSO) is a stochastic population-based meta-heuristic 
technique, first proposed by Kennedy and Eberhart (1995). The population of the PSO 
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algorithm includes several particles which mimic animals’ social behavior such as insects, 
birds, and fishes in their movements in the space. Each particle attempts to find food coop-
eratively, while frequently changing the search pattern based on the experiences of itself 
and other particles in finding food (Wang et al. 2018). The population diversity at any step 
of the PSO algorithm is of great importance to improve the global search of the algorithm. 
In PSO, the easiest way to preserve diversity in the population is resetting or mutating 
some particles, whenever diversity is going to be lost (Wang et al. 2018). Wu et al. (2014) 
proposed a superior-guided PSO (SSG-PSO) with a novel solution-based mutation strat-
egy. In this algorithm, a set of superior solutions are updated using the evolutionary opera-
tors and other solutions learn from these recorded solutions. Zhou et al. (2016) proposed a 
reverse learning competitive PSO algorithm utilizing competitive group optimization and 
reverse learning mechanism and chose the best-matching learning mechanisms concern-
ing the fitness value of the particles. Chen et al. (2018) employed two different crossover 
operations to find promising exemplars. Then, through applying crossover on the personal 
historical best position of each particle, the effective exemplars were bred to better preserve 
the diversity. Rezaei and Safavi (2020) proposed the GuASPSO algorithm as a novel PSO 
variant. In this algorithm, the local guide particles are all divided into several clusters to 
endow every region in the search space with a chance to globally guide the particles. This 
chance is set to be gradually decreased as the iterations go on to balance the exploration 
and exploitation phases of the GuASPSO. Liu et  al. (2021) utilized the Gaussian white 
noise with adjustable intensity to randomly perturb the acceleration coefficients of the PSO 
in order not to only keep the diversity of the swarm, but also to boost the chance of the par-
ticles not being trapped in local optima.

1.2 � Conjunctive Water Use Management

Conjunctive water use was first conceptualized by Burt (1964). The use of both sources of 
surface water and groundwater brings about some advantages and disadvantages. Ground-
water suffers no losses due to seepage, leakage, evaporation, and water transfer, and this 
fact bestows groundwater superiority to the surface water (Afshar et al. 2010). The ground-
water is subject to low sedimentation. In addition, the groundwater vulnerability to be con-
taminated and climate change-resulting droughts are of low chance. The main disadvantage 
of the groundwater use may be hidden in its need for a high amount of energy for pumping, 
leading it to be costly to be extracted from the underlying water table. Soil subsidence due 
to groundwater over-extraction is another disadvantage of this source of water. The sur-
face water also benefits from some unique advantages including the capability for generat-
ing electrical energy and providing a suitable bed for recreation and flood control. Among 
the disadvantages, the construction of the large surface water reservoirs is always breeding 
crucial environmental problems such as providing the possibility for the downstream of 
the river feeding the reservoir to be desiccated. The conjunctive use of both surface and 
groundwater use can hold a good balance between the advantages and disadvantages of 
these water resources (Hollander et al. 2009).

There are plenty of researches being carried out to investigate the different effects of conjunc-
tive water use management on societies. Rezaei et al. (2017a) proposed a novel multi-objective 
PSO algorithm, named f-MOPSO, utilizing the transformation of the diversity to the extremity 
of the non-dominated solutions in the objective space. The algorithm was designed to solve a 
bi-objective conjunctive water use management problem. Rezaei et al. (2017b) developed the 
f-MOPSO to also handle a tri-objective optimal multi-crop pattern planning problem. Fazlali 
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and Shourian (2018) applied a nested optimization procedure coupling the shuffled frog leap-
ing algorithm (SFLA) and the network flow programming (NFP) algorithm to maximize the net 
benefit obtained from the crop production. Wei et al. (2020) developed an optimization model 
for water resource allocation based on interval-parameter two-stage stochastic programming. 
Kerebih and Keshari (2021) developed a coupled simulation–optimization-based conjunctive 
water use model. The simulator was the MODFLOW whose simulation results were introduced 
to the optimization model utilizing the response matrix method. Majedi et al. (2021) developed 
another simulation–optimization framework in which the water balance and the water resources 
reserves were simulated by the MODFLOW and WEAP models, respectively. The simulators 
were then linked to the NSGA-II to maximize the supply of water and hydropower demands 
while sustaining the aquifer.

1.3 � The Proposed Algorithm and the Organization of the Paper

This paper aims to propose a novel improved variant of the PSO algorithm, named Dual Fit-
ness Particle Swarm Optimizer (DFPSO). We found one of the special features of the fuzzy 
logic theory called fuzzy implication function very useful to enhance the capabilities of the 
PSO algorithm. The organization of this paper is as follows. Section 2 describes the methodol-
ogy introducing the original PSO algorithm and the proposed DFPSO algorithm in detail. In 
Sect. 3, the proposal is validated through implementation on a set of benchmark functions. 
Section 4 first introduces the study area and the mathematical formulation of the optimal con-
junctive water use management model. Thereafter, the proposed DFPSO algorithm is applied 
to solve this model and the results are presented and discussed in detail in Sect. 5. Finally, 
Sect. 6 concludes the paper.

2 � Methods

2.1 � Original Particle Swarm Optimization (PSO)

Suppose for a D-dimensional optimization problem, Xi = (xi1, xi2,… , xiD) and V
i
=(

v
i1, vi2,… , v

iD

)
 are the ith particle’s position vector and velocity vector, respectively. 

If Pbestt
i
=
(
pi1, pi2,… , piD

)
 is the personal best (Pbest) position of the ith particle and 

Gbestt =
(
pg1, pg2,… , pgD

)
 represents the global best (Gbest) position of the swarm at the 

tth iteration, the velocity and position of each particle are updated using Eqs. (1) and (2).

where i Є{1, 2, …, N}, D is the number of dimensions and N is the swarm size; superscript 
t is the iteration number; w is the inertia weight; r1 and r2 are two random vectors and 
c1 and c2 are cognitive and social scaling parameters, respectively. An efficient form of 
Eq. (2) is the constriction coefficient model shown below (Rezaei et al. 2017a):

where � , �1 , and �2 are introduced in Eq. (5).

(1)Vt+1
i

= wVt
i
+ c1r1(Pbest

t
i
− Xt

i
) + c2r2(Gbest

t + Xt
i
)

(2)Xt+1
i

= Xt
i
+ Vt+1

i

(3)Vt+1
i
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]
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where χ is the constriction factor. The parameter k Є [0,1] in Eq. (5) controls the explora-
tion and exploitation abilities of the swarm, which can be calculated as follows:

where kmax and kmin are constants that must be set properly; t is the number of iterations, 
and itermax is the maximum number of iterations.

2.2 � The Proposed Method: Dual Fitness Particle Swarm Optimization (DFPSO)

The major shortcoming the PSO algorithm suffers from is lacking a strategy to maintain the 
diversity of the particles in the search space while optimization is going on over the iterations. 
In this paper, a novel approach is proposed to simultaneously evaluate diversity of the particles 
along with their fitness by a single index. According to the fuzzy logic, the multiplication of 
the fuzzy membership degrees of several variables represents their similarity. This multiplica-
tion is named the product-based Larsen implication function. On the other hand, the multipli-
cation of several fuzzy membership degrees, denoted by �1 × �2 ×⋯ × �n , can be regarded 
as the pseudo-geometric average of those membership degrees, i. e. the geometric average of 
all membership degrees denoted by n

√
�1 × �2 ×⋯ × �n without defining the nth root for the 

product. When the root of the geometric average is the same for all products in comparisons 
such as the case study in this paper, the nth root could be neglected in calculations. There-
fore, the product of the membership degrees assigned to several particles’ objective values 
can simultaneously reflect the average and the similarity existing among these particles. In 
DFPSO, the total fitness of a particle depends on the dual fitness of its opposite particles. 
When calculating the objective function values obtained for each particle at each iteration, the 
new Pbest particle is selected. Then, for all opposite Pbest particles of a certain Pbest parti-
cle, the pseudo-geometric average of the fuzzy membership degrees attributed to the Pbests 
is calculated. In a minimization problem, when the product of the membership degrees of the 
opposites of a focused particle is increased, firstly all the opposite objectives are of larger and 
thus, worse values, and secondly the similarity among these objectives increases, indicating 
that these particles are located at a more-densely populated region. Consequently, the focused 
particle has a smaller objective value and is, at the same time, more diversified in the search 
space, representing its suitability. With a similar inference, the less the pseudo-geometric aver-
age value for a given particle, the worse that particle will be. As a result, the pseudo-geometric 
average can be used as a weight for each particle, delineating its power to guide other parti-
cles. To accomplish this idea, an ascending sigmoidal fuzzy membership function for a given 
set of x values should be defined as follows:

where a and c are the tunable parameters of the fuzzy membership function and a < 0. This 
function defines the membership degree of the variable x to the set of “high x values”. 
Rezaei et al. (2017a) proved that c = � and a =

−4

�
√
e
 , where � is the mean of the x values 

belonging to the x fuzzy set and � is the standard deviation of the x set. In addition, e is 

(4)� =
2k

�2 − � −
√
�(� − 4)�

;� = �1 + �2;�1 = c1r1;�2 = c2r2

(5)k = kmax −
kmax − kmin

itermax
× t

(6)f (x) =
1

1 + ea(x−c)
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Napier’s constant. Replacing x with the objective function value of a given Pbest particle, 
the fuzzy membership degree of the jth Pbest particle can be calculated according to 
Eq. (8).

where Zt
Pbest,j

 is the objective function value of the jth Pbest particle in the tth iteration, �t 
is the standard deviation of the objective function values of all Pbest particles in the tth 
iteration, �t is the mean of the Pbest particles’ objective values in the tth iteration, MFt

j
 

is the fuzzy membership function value of the jth Pbest particle and N is the number of 
particles in the swarm. Then, the dual fitness index (DFI) of the ith Pbest particle can be 
calculated as follows.

where N is the swarm size and DFIt
i
 is the dual fitness index assigned to the ith particle at 

the tth iteration. Therefore, a weighted average should be defined for all Pbest particles to 
yield the unique Gbest for each of them. Equation (10) indicates the mentioned relation:

where Gbestt
i
 is the global best particle calculated for the ith particle in the tth iteration and 

Pbestt
j
 is the personal best particle for the jth particle in the tth iteration. Moreover, the ε 

is a very small positive number applied to hinder the denominator of the fraction coming 
in Eq. (10) to get a zero value. Thus, the Eq. (4) applied in the standard PSO algorithm is 
turned into Eq. (11) in DFPSO as follows:

The rest of the steps of the proposed DFPSO algorithm are the same as typically pursued 
in the standard PSO algorithm. Figure 1 depicts the flowchart of the DFPSO algorithm.

3 � Results on the Benchmark Functions

To validate the performance of the DFPSO algorithm in solving optimization problems, at 
the first stage, it is compared with six other PSO variants including CLPSO (Liang et  al. 
2006), HPSO-TVAC (Ratnaweera et al. 2004), FIPSO (Mendes et al. 2004), LPSO (Kennedy 
and Mendes 2002), DMSPSO (Liang et al. 2005), and LFPSO (Hakli and Uguz 2014). At the 
second stage, the DFPSO is compared with four other independent meta-heuristic algorithms 
including GA (Holland 1992), GSA (Rashedi et al. 2009), GWO (Mirjalili et al. 2014), and 
the original PSO (Kennedy and Eberhart 1995).

(7)
MFt

j
=

1

1 + exp
�
−

4

�t
√
e
×
�
Zt
Pbest,j

− �t

�� ;j = 1, 2,… ,N

(8)
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1
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All of the competitive algorithms are implemented on six high-dimensional bench-
mark functions spanning a variety of the difficulties for an optimization algorithm to 
search for the global optimum. The mathematical formulations of these benchmark 
functions are shown in (Tian et al. 2019). All of these functions are to be minimized. 
The optimal objective value of all these benchmark functions is zero. These problems 
include three uni-modal functions (F1-F3) and three multi-modal functions (F4-F6).

Yes

No

Performing optimization by generating (for

t = 1) or updating (for t > 1) the particles

based on the standard PSO equations

Evaluating the objective values of the particles

and designating the Pbest of each particle

Calculating the product of all other (opposite)

Pbests’ fuzzy membership function values of

a Pbest particle as its dual fitness index

Considering the dual fitness indices as the

weight for each Pbest particle

Calculating the unique Gbest for each particle

of the swarm via computing the weighted

average over all opposite Pbest particles

Stopping criteria

satisfied?

Transferring the best of the Pbest
particles to an external archive as

the best-so-far solution

Presenting the best solution

recorded in the external archive

Stop

Start

t = 1

t = t + 1

Fig. 1   Flowchart of DFPSO
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As the results of the PSO-based algorithms are all derived from (Tian et al. 2019), all 
of the settings are just the same as are in this research. In detail, the number of dimen-
sions for all test functions is set to 30, the number of the iterations was set to 1000 and 
the population size of all the algorithms was set to 40. The results of running the pro-
posed DFPSO and other PSO variants are shown in Table 1. The results of the imple-
mentation of the proposed DFPSO and other independent algorithms can also be seen in 
Table 2. The term “Std” means “standard deviation” in all these Tables.

As can be seen, the proposed DFPSO outperforms the other PSO-based competitors 
in all of the benchmark functions, except for F3. The statistical results of the proposed 
DFPSO as compared to the other competitive independent algorithms can also suggest 
the superiority of the proposal in almost all criteria.

Table 1   Minimization results of the benchmark functions solved by the PSO variants. (The performance 
criteria corresponding to the best-performing algorithms are bold-faced).

Function Criterion CLPSO HPSO-
TVAC

FIPSO LPSO DMSPSO LFPSO DFPSO

F1 Average 1.58E − 12 2.83E − 33 2.42E − 13 3.34E − 14 2.65E − 31 4.69E − 31 4.86E-117
Std 7.70E − 13 3.19E − 33 1.73E − 13 5.39E − 14 6.25E − 31 2.50E − 30 1.74E-116

F2 Average 2.51E − 08 9.03E − 20 2.76E − 08 1.70E − 10 2.64E − 17 2.64E − 17 1.02E-64
Std 5.84E − 09 9.58E − 20 9.04E − 09 1.39E − 10 6.92E − 17 6.92E − 17 4.61E-64

F3 Average 1.14E + 01 2.39E + 01 2.51E + 01 2.81E + 01 4.16E + 01 2.38E + 01 2.68E + 01
Std 9.85E + 00 2.65E + 01 5.10E − 01 2.18E + 01 3.03E + 01 3.17E − 01 8.08E-01

F4 Average 9.09E − 05 9.43E + 00 6.51E + 01 3.51E + 01 2.72E + 01 4.54E + 00 0.00E + 00
Std 1.25E − 04 3.48E + 00 1.34E + 01 6.89E + 00 6.02E + 00 1.03E + 01 0.00E + 00

F5 Average 3.66E − 07 7.29E − 14 2.33E − 07 8.20E − 08 1.84E − 14 1.68E − 14 3.49E-15
Std 7.57E − 08 3.00E − 14 7.19E − 08 6.73E − 08 4.35E − 15 4.84E − 15 1.60E-15

F6 Average 9.02E − 09 9.75E − 03 9.01E − 12 1.53E − 03 6.21E − 03 8.14E − 17 0.00E + 00
Std 8.57E − 09 8.33E − 03 1.84E − 11 4.32E − 03 8.14E − 03 4.46E − 16 0.00E + 00

Table 2   Minimization results of the benchmark functions solved by the independent algorithms (The per-
formance criteria corresponding to the best-performing algorithms are bold-faced)

Function Criterion GA GSA GWO PSO DFPSO

F1 Average 1.01E + 00 3.81E-17 3.88E-65 5.78E-04 4.86E-117
Std 5.08E-01 1.28E-17 6.33E-65 1.03E-03 1.74E-116

F2 Average 2.56E-01 3.13E-08 3.16E-38 4.45E-02 1.02E-64
Std 7.98E-02 5.45E-09 4.92E-38 4.35E-02 4.61E-64

F3 Average 2.88E + 02 4.08E + 01 2.67E + 01 6.46E + 01 2.68E + 01
Std 3.08E + 02 5.57E + 01 6.88E-01 3.68E + 01 8.08E-01

F4 Average 2.94E + 00 1.79E + 01 2.62E-01 4.85E + 01 0.00E + 00
Std 1.61E + 00 4.86E + 00 1.02E + 00 1.31E + 01 0.00E + 00

F5 Average 3.17E-01 4.91E-09 1.51E-14 4.95E-01 3.49E-15
Std 1.67E-01 7.35E-10 3.09E-15 6.76E-01 1.60E-15

F6 Average 7.51E-01 5.94E + 00 1.09E-03 1.25E-02 0.00E + 00
Std 2.13E-01 2.46E + 00 3.38E-03 1.00E-02 0.00E + 00
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4 � Conjunctive Surface‑ground Water use Management

4.1 � Study Area

The Gavkhouni river basin with an area of 41,547 km2 is located at the Central Plateau river 
basin in Iran. The basin is including 21 sub-basins. The study area is Najafabad Plain located in 
west-central Iran as a part of the Zayandeh-Rud River Basin located in the greater Gavkhouni 
river basin. This plain is of 1712 km2 area, with coordinates between 50° 33′ 32″ to 51° 40′ 
00″ Eastern longitudes and 32° 19′ 14″ to 33° 00′ 32″ Northern latitudes (Fig. 2). It is worth-
while mentioning that the “RB” in the Iran map in Fig. 2 is the acronym of “River Basin”. The 
Najafabad aquifer occupies an area of 940.9 km2 including 14,623 wells with an annual dis-
charge of 852.7 million cubic meters (MCM) (Yekom Consulting Engineers 2013). Najafabad 
plain comprises two main sub-plains: (i) Nekouabad-Right, and (ii) Nekouabad-Left. As a 
result of coverage of a large amount of agricultural and horticultural production, the Najafabad 
sub-basin is identified as the most important sub-basin of the greater Gavkhouni basin. Thus, 
the agricultural sector is the most water-consuming in the region consuming 93.3% of the water 
supplied in the region (Yekom Consulting Engineers 2013).

Lacking reliable surface water resources in the region poses challenges in surface 
water supply for this region, imposing much more pressure on groundwater resources 
to meet increasing agricultural demands in this region, such that the groundwater level 
in the Nekouabad-Right and Nekouabad-Left regions experiences a drastic 13 and 20 m 
drawdown in just a decade.

4.2 � Simulation–optimization Model Mathematical Formulation

Here, a simulation–optimization model is used to solve the conjunctive use problem, as the 
optimization model formulation contains some decision variables such as the monthly sur-
face water allocated and groundwater extracted volumes over a whole planning period (sce-
nario), and also some state variables such as the monthly GWL variations which should be 
estimated through a simulation process.

Subject to:

(11)MinimizeZ =

12∑

j=1

[(
Dij − Supij

)
∕Dij

]2
×
(
1 + Zpen1 + Zpen2

)
;i = 1, 2, 3

(12)

Zpen1 = m1 ×

{
1 − Gaussian

(||||||
min

[(
GWmax −

12∑

j=1

GWij

)
, 0

]||||||

)}
;i = 1, 2, 3

(13)

Zpen2 = m2 ×

{
1 − Gaussian

(||||||
min

[(
12∑

j=1

ΔHij − ΔHi,min

)
, 0

]||||||

)}
;i = 1, 2, 3

(14)Gaussain(x) = exp(−x2∕2)
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(15)Dij =
∑Nc

c=1
CDijc × Aic × 10

−5

(16)Supij = SWij,net + GWij,net

Fig. 2   Najafabad Plain in the Gavkhouni River Basin, Iran (Rezaei et al. 2017b)
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where the parameters are defined below.
Z = Objective function.
Zpen1 = First penalty function applied to restrict the cumulative groundwater extrac-

tion over the whole planning period.
Zpen2 = Second penalty function applied to restrict the cumulative groundwater level 

(GWL) variations over the whole planning period.
m1 = Penalty coefficient of the first penalty function.
m2 = Penalty coefficient of the second penalty function.
Dij = Net water demand of the jth month of a normal water year (MCM).
Supij = Net surface and ground water supplied in the jth month of the ith year (sce-

nario) (MCM).
Aic = Cultivated area of the cth crop in a normal water year (ha).
ΔHij = GWL variation in the jth month of the ith year (m). Note that the value of 

this parameter is positive when groundwater rises and is negative when groundwater 
withdraws.

ΔHi,min = Optimal cumulative GWL variations in the ith year (scenario) set depend-
ing on the climate conditions of each scenario (wet, normal, and dry) (m).

Hij = initial GWL in the jth month of the ith year (scenario) (m).
CDijc = Net crop water requirement of the cth crop in the jth month of the ith year 

(scenario) (mm).
GWij,net = Net groundwater volume extracted from the aquifer in the jth month of the 

ith year (scenario) (MCM).
GWij = Gross groundwater volume extracted from the aquifer in the jth month of the 

ith year (scenario) (MCM).
GWmax = Maximum annual revivable groundwater extraction volume (MCM).
SWij,net = Net surface water volume allocated to the cultivated area in the jth month 

of the ith year (scenario) (MCM).
SWij = Gross surface water volume allocated to the cultivated area in the jth month of 

the ith year (scenario) (MCM).

(17)SWij,net = a × b × c × SWij

(18)GWij,net = a × GWij

(19)SWij = Dij∕(a × b × c) and GWij = 0; if SWij,net ≥ Dij

(20)GWij =
(
Dij − SWij,net

)
∕a; if SWij,net < Dij and GWij,net ≥ Dij − SWij,net

(21)SWavail
j,min

≤ SWij ≤ SWavail
j,max

(22)GWavail
j,min

≤ GWij ≤ GWavail
j,max

(23)Hij = Hi,j−1 − ΔHi,j−1; for j ≠ 1

(24)Hij = H0;forj = 1

998 F. Rezaei, H. R. Safavi



1 3

a = Coefficient of efficiency for the water use in the farm considering the water losses 
through evaporation and also the deep percolation to the aquifer set to 0.56.

b = Coefficient of efficiency for the water transfer through the main channels set to 0.85.
c = Coefficient of efficiency for the water transfer through the secondary channels set to 

0.9
SWavail

j,min
 = Minimum volume of the surface water allocated to the cultivated area in the 

historical data in the jth month (MCM).
SWavail

j,max
 = Maximum volume of the surface water allocated to the cultivated area in the 

historical data in the jth month (MCM).
GWavail

j,min
 = Minimum volume of the groundwater extracted from the aquifer in the his-

torical data in the jth month (MCM).
GWavail

j,max
 = Maximum volume of the groundwater extracted from the aquifer in the his-

torical data in the jth month (MCM).
H0 = Initial depth to the groundwater table level (m).
i = Indicator of the year (scenario), (i = 1, for a wet year, i = 2 for a normal year and i = 3 

for a dry year).
j = Indicator of the month of each year (scenario), (j = 1, 2, …, 12).

5 � Preparing the Simulation–optimization Model

5.1 � Artificial Neural Network

The simulation section is a multi-layer perceptron feed-forward neural network (MLPFNN) 
model which is well trained over the historical data. In the MLPFNN, each layer includes 
several neurons whose connections with the neurons located at the previous layer are 
called the weights of the network. The connections between the neurons in a layer and a 
special unit-sized neuron in the previous layer are called the biases of the network. Every 
MLPFNN model consists of the weights and biases as the effective parameters required to 
be optimized through a training process. The optimal number of these parameters depends 
on the number of neurons set at each layer of the multi-layer neural network. To have a 
plausible performance in the simulation, the number of the effective parameters of the 
network must not be more than the data series presented to the network in the training/
optimizing stage. In this paper, the MLPFNN model utilizes 286 input data series each 
of which comprises 14 features for the Nekouabad-Right sub-area and 13 features for the 
Nekouabad-Left sub-area. Generally, the inputs involve precipitation with up to two lags, 
temperature with up to two lags, surface water allocation with up to two lags, groundwater 
extraction with up to one lag, the deep percolation of the water from the river with up 
to one lag and finally, the initial monthly GWL. It is worthwhile mentioning that from 
the 286 data series, 65% is utilized for training the network, 10% is for the validation and 
25% is for the test round. The network is adopted as a single-hidden-layer network. The 
number of the hidden neurons of the MLPFNNs was calculated to be maximally 11 and 12 
for the Nekouabad-Right and Nekouabad-Left Regions, respectively. Thereafter, a series of 
trials and errors were conducted to estimate the optimal number of the hidden neurons. The 
results show that the structure of the network of the Nekouabad-Right must be 14–7-1 and 
the structure of the network of the Nekouabad-Left must be 13–10-1, each of which yields 
the best performance of the MLPFNNs for the respective study sub-area. Afterward, the 
networks designed were run several times and the best overall results were given. Finally, 
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the correlation coefficients of the training, validation, and test data with the target data of 
the best network designed for the Nekouabad-Right Region were obtained equal to 0.8406, 
0.9171, and 0.8173, respectively. Furthermore, the correlation coefficients were attained 
equal to 0.7449, 0.8401, and 0.8607 for the training, validation, and test stages of the 
Nekouabad-Left Region best network designed, respectively.

5.2 � DFPSO Algorithm

For solving the real-world conjunctive water use management problem, the DFPSO algo-
rithm was used as the optimizer. The population size was set to 20 and the maximum num-
ber of iterations was set to 200 for the DFPSO algorithm. The other parameter settings of 
the DFPSO are just like those at the typical PSO algorithm.

6 � Results and Discussion

In this paper, we aim at developing a management model for optimizing conjunctive sur-
face-ground water use addressing a wide range of management aspects. This optimal man-
agement model aims at minimizing the shortages of irrigation water while controlling the 
cumulative groundwater level drawdown. In this study, three wet, normal, and dry water 
years representing different climatic conditions faced by the region are considered as the 
planning periods, to benchmark the capability of the management model to manage the 
effects these climatic conditions could impose on the study area when operating the water 
resources systems. The study area includes two sub-areas named Nekouabad-Right and 
Nekouabad-Left regions. The Nekouabad-Left is larger in area than the Nekouabad-Right 
while benefiting from more surface water transferred to which. Meanwhile, the groundwa-
ter reserved at the aquifer beneath the Nekouabad-Left region suffers much more decline, 
as a result of the larger area cultivated at this region which in turn, needs more groundwa-
ter volume to be discharged and feed the crops of this sub-area. Here, the conjunctive use 
of the water resources in these two regions is optimized and the results are presented at the 
next sub-sections as the optimal operating policies the decision-makers can consider and 
implement in the region to increase the efficiency of the water use and improve the agricul-
tural activities carried out in the field.

6.1 � Nekouabad‑right

6.1.1 � Scenario I: Wet Year (2006–2007)

While the water demands are fully met in this scenario, the GWL rises by 2.12 m. This 
amount of rising is more than 1.86 m GWL rise observed in the Nekouabad-Right Region 
in the actual operation. As the results suggest, the groundwater is extracted by 4% less than 
that in the actual operation, while the surface water is allocated by 52% more than what is 
observed in the region, contributing not only the water demands to be supplied, but also the 
GWL reaches a level above than that in the actual operation.

1000 F. Rezaei, H. R. Safavi



1 3

6.2 � Scenario II: Normal Year (2004–2005)

In this scenario, except for the winter and spring months, the GWL is always higher than 
what is observed in the actual operation, such that the 1.14 m GWL drawdown observed in 
the region is turned into 28 cm GWL rise calculated by the model. In all over the planning 
period of this scenario except for July and August, the groundwater volume extracted from 
the aquifer is more than what is offered by the model.

6.3 � Scenario III: Dry Year (2010–2011)

While in this scenario, the model supplies over 97% of the water demands, the cumula-
tive GWL drawdown is calculated to be 1.4 m which is half of the cumulative drawdown 
observed in the study area. Furthermore, the ratio of the groundwater discharge to the 
groundwater recharge computed by the model is always less than what is observed in the 
study area, illustrating more surface water is allocated while nearly the same groundwater 
is extracted as offered by the model. Since this scenario occurs in a dry year, it is manda-
tory to somehow exploit the groundwater as the more abundant source of water to meet as 
much of the water demands as possible and to sustain the aquifer at the same time. Figure 3 
displays the optimized GWL variations versus what is observed in the actual operation in 
the Nekouabad-Right region in three examined scenarios.

It is noteworthy that the monthly water demands in all scenarios are averagely fully met 
and thus, reducing the GWL variations is the major problem the simulation–optimization 
model attempts to solve in this study sub-area.

6.4 � Nekouabad‑left

6.4.1 � Scenario I: Wet Year (2006–2007)

The results of running the simulation–optimization model indicate 1.75  m rise in the 
cumulative GWL, while the GWL has risen by 3.72  m in the actual operation over the 
whole planning period of this scenario. The reason making the GWL less rise as computed 
by the model compared to what is observed in the region may be found in the structure of 
the MLPFNN simulator which is unable to precisely estimate the GWL variations in the 
extreme climatic conditions as it is known that in a water year, there are much more sur-
face water resources including the abundant surface water available in the irrigation chan-
nels, high precipitation and high infiltration from the river, resulting in the high rise of the 
GWL. This problem was alleviated in the Nekouabad-Right Region due to a lower extrem-
ity of the climatic conditions contributing the GWL to more rise in a wet year representing 
scenario I.

6.5 � Scenario II: Normal Year (2004–2005)

Due to the normal climatic conditions of this year, the model can achieve 1.45 m rise in 
the GWL over the whole period, while the cumulative rise is observed to be 25 cm in the 
actual operation. Also, the water demands are fully met in this scenario as the model results 

1001Sustainable Conjunctive Water Use Modeling Using Dual Fitness…



1 3

-1
0
1
2
3
4
5
6
7
8
9

10

O
ct

N
o

v

D
ec Ja
n

F
eb

M
ar

A
p

r

M
ay Ju
n

Ju
l

A
u

g

S
ep

C
um

ul
at

iv
e 

G
W

L 
V

ar
ia

tio
ns

 (m
)

Planning Period (2006-2007)
Actual Operation DFPSO

-2

-1

0

1

2

3

4

5

6

7

O
ct

N
o

v

D
ec Ja
n

F
eb

M
ar

A
p

r

M
ay Ju
n

Ju
l

A
u

g

S
epC
um

ul
at

iv
e 

G
W

L 
V

ar
ia

tio
ns

 (m
)

Planning Period (2004-2005)
Actual Opertaion DFPSO

-4

-2

0

2

4

6

8

O
ct

N
o

v

D
ec Ja
n

F
eb

M
ar

A
p

r

M
ay Ju
n

Ju
l

A
u

g

S
ep

C
um

ul
at

iv
e 

G
W

L 
V

ar
ia

tio
ns

 (m
)

Planning Period (2010-2011)
Actual Operation DFPSO

(a)

(b)

(c)

Fig. 3   Cumulative GWL variations in the Nekouabad-Right; (a) scenario I; (b) scenario II; (c) scenario III
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Fig. 4    Cumulative GWL variations in the Nekouabad-Left; (a) scenario I; (b) scenario II; (c) scenario III  
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suggest. The surface water allocation is increased by 34% and the groundwater extraction is 
decreased by 9%, which in turn helps the GWL be higher at the end of the period as com-
pared to that in the actual operation.

6.6 � Scenario III: Dry Year (2010–2011)

In this critical scenario, the groundwater is withdrawn by 3.94 m in level as calculated by 
the model. This figure is versus 5.36 m GWL drawdown observed in action. The ratio of 
the aquifer discharge volume to the total surface-ground water volume interaction reaches 
from 56 to 48% in the model computations which in turn, causes a more desirable balance 
to be held in the groundwater exploitation which helps such a vital groundwater resource be 
sustained in such a dry year. Figure 4 displays the optimized GWL variations versus what is 
observed in the actual operation in the Nekouabad-Left region in three examined scenarios.

It is noteworthy that the monthly water demands in all scenarios except for scenario III 
are averagely fully met. In scenario III the monthly demands are averagely met by 88%. 
Thus, reducing the GWL variations is the major problem the simulation–optimization 
model attempts to tackle in this study sub-area.

7 � Conclusion

In this paper, a new variant of the Particle Swarm Optimization (PSO) algorithm, named 
Dual Fitness PSO (DFPSO) was proposed. In the meta-heuristic algorithms, the fitness and 
diversity of the solutions are the main factors to be addressed in selecting a guide caus-
ing the search particles’ movements in the search space; however, these movements could 
be unbalanced when the fitness and diversity are measured by two different and separate 
mechanisms. In this case, it is possible that achieving high fitness is of higher priority than 
preserving the diversity when the particles are gathered in a closed region in the search 
space. Applying separate mechanisms, it is also probable that maintaining the diversity is 
of higher priority than reaching the high fitness when the solutions are so far from the fitted 
region of the search space. In the latter case, the particles could be trapped in local optima. 
As a solution, we attempted to incorporate the capability of evaluating fitness and diver-
sity and make it the mission of the global best (Gbest) particle. In DFPSO, there are also 
multiple Gbests to help better preserve the diversity. The proposed approach was validated 
through implementation on a set of benchmark functions.

The proposed algorithm was then employed to solve an optimal conjunctive use of sur-
face and ground water problem under three different climatic conditions. The objectives 
were to minimize the shortages of water, while maximizing the groundwater table sus-
tainability. The results showed that the optimization model can desirably satisfy the water 
demands while decreasing the cumulative groundwater level drawdown. As the future 
work, we aim at improving the DFPSO algorithm by investigating whether the personal 
best (Pbest) particles might be eliminated from the updating procedure of the particles 
in favor of local optima avoidance to further strengthen the exploration capability of this 
algorithm.
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