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Abstract
Multivariate analysis of flood frequency was used extensively in water resources research. 
Often the only flood peak or volume is analyzed with statistical distributions, but for a per-
fect and exact result, the four main characteristics of a flood event, as well as peak, volume, 
duration, and time-to-peak, are needed. For this reason, multivariate statistical approaches 
like copula functions developed. This research aims to define and use the bivariate copula 
(2-copula) probability distribution functions (PDF) for flood characteristics multivariate 
analysis. When the joint distribution of characteristics such as volume and peak is known, 
it is possible to define the probability of simultaneous occurrence of design volume and 
peak flow values.

Keywords  Flood characteristic · Bivariate frequency analysis · Copula

1  Introduction

In most hydrological studies several random variables are generally considered independ-
ent. For instance, different combinations of rainfall intensity and duration (5), flood peak 
and volume (Di Michele et  al. 2005), drought duration, intensity, magnitude, and so on. 
Thus, it is often important to link the marginal probability distributions of different varia-
bles to describe the main aspect of hydrological events. Conventionally, multivariate prob-
ability distributions are used in hydrology (Singh 1987). The most used joint cumulative 
distribution function (CDF) was the Gaussian, but it has the obvious limitations that the 
marginal distributions should be normal. The Box-Cox’s formula helped to reach condi-
tion by data transformation (Box and Cox 1964), however, do not always ensure that the 
recorded data follow a Gaussian PDF. Thereafter, further bivariate PDFs with non-normal 
margin distribution, such as the Gumbel bivariate exponential model (Gumbel 1960), with 
exponential margins, and bivariate Gamma distribution function used in hydrological stud-
ies (Grimaldi and Serinaldi 2006). Yue (2001) suggests bivariate Gamma distribution in 
pairs peak-volume and volume-duration flood frequency analysis. Knowing that extreme 
hydrological events can be represented by one of the three univariate extreme value 
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distributions (Sklar 1959), bivariate Logistic and mixed models with Gumbel margins pro-
posed (Gumbel and Mustafi 1967).

However, all mentioned models show some limits such as a similar family of marginal dis-
tributions, complicated mathematical formulation of an increased number of variables, and dis-
tinguish of marginal and joint behavior of variables. The copula PDF functions could overthrow 
these restraints. Many studies present some recent advances of copula using in hydrological 
modelings such as calculation of conditional probabilities, level curves of joint distributions, 
and return periods of multivariate events. Palynchuk and Guo (2011), applied copulas to joint 
distributions of rainstorm variables (depth, duration, and peak intensity). Serinaldi and Grimaldi 
(2007) used Fully Nested 3-copula to model the wave height, peak period, and maximum height 
as three characteristics of sea wave behavior. Renard and Lang (2007) used the Gaussian copula 
for multivariate extreme value analysis to prepare discharge-duration-frequency (QDF) models. 
Wang et al. (2009) used copula for flood frequency analysis of the confluence of river systems. 
Ghizzoni et al. (2010) used copula functions to provide an estimate of the joint probability of 
flood events in a multisite analysis. Grimaldi and Serinaldi (2006), Dupuis (2007), Genest and 
Favre (2007), Chen et al. (2010), Reddy and Ganguli (2012), Ganguli and Reddy (2013) used 
copula in multivariate flood frequency analysis (flood volume, peak, and duration). Razmkhah 
et al. (2016a, b) used copulas to analyze the spatial dependence of rainfall events and its effect 
on Rainfall-Runoff (RR) uncertainty modeling. Razmkhah et al. (2017) evaluated the effect of 
parameter correlation on the RR uncertainty, using 2-copula. Lorenz et al. (2018) used copula 
for downscale daily precipitation considering spatial correlation. Ayantobo et al. (2019) used a 
four-variate Archimedean copula in drought frequency analysis. Zhong et al. (2021) analyzed 
flash flood risk under the compound effect of soil moisture and rainfall using a copula function. 
Zening et al. (2020) analyzed reservoir inflow for four reservoirs on mainstream and its tributar-
ies using a multivariate copula.

This paper aims to model the bivariate joint distribution of flood peak, volume, base 
flow duration, and time to peak using a wide range of copula families in the Karoon III 
basin. The innovation of this work is to analyze flood characteristics such as time to peak 
(tp), volume (V), peak discharge (Qp), and hydrograph base time (tb), using two variable 
copula and considering the dependence of the parameters. The accuracy of predicted flood 
properties such as volume and peak discharge and time to peak is important for flood warn-
ing purposes, maintenance, and the operating rules of the dam.

2 � Methodology

2.1 � Multivariate Flood Frequency Analysis

A probability distribution function (PDF) is a function used to define a particular probabil-
ity distribution. It is the mathematical function that gives the probabilities of occurrence 
of different possible outcomes (Everitt 2006; Ash 2008, in Wikipedia) of a random phe-
nomenon in terms of its sample space and the probabilities of events (subsets of the sample 
space) (Evans and Rosenthal 2010, in Wikipedia).

Flood frequency analysis (FFA) is the means by which flood discharge magnitude (Q) 
is related to the probability of its being equaled or exceeded in any year or to its frequency 
of recurrence or return period (T). The return period is used to indicate the average interval 
between floods of a given magnitude (Archer 1998). Most of the studies, use peak flood 
frequency analysis to find the occurrence probability of a flood event.
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But to design most hydraulic structures, it is more accurate to have information not only 
about peak discharge (QP, m3/s), but also the duration of the event (tb, days), in terms of the 
time interval that discharge exceeds the fixed threshold, volume (V, m3) (Yue et al. 2002), 
and their joint probabilistic behavior together with flood peak because these flood variables 
are correlated (Singh and Singh 1991). Hence, many researchers have performed multivariate 
FFA. For example, Yue (2001) used a bivariate gamma PDF to describe the joint probability 
distributions, conditional distributions, and joint return periods of two correlated variables. A 
brief review of univariate and multivariate approaches was explained in Vittal et al. (2015).

Multivariate frequency analysis makes it possible to jointly evaluate Qp, tb, and V. 
Knowing the CDF of (P, V, D, …) and given design P, the pair (V, D) with a specific joint 
return period can be estimated (Grimaldi and Serinaldi 2006).

2.2 � Derivation of Multivariate Distributions

The joint cumulative distribution function (H) of two random variables X and Y can be 
defined:

where x and y are the values of X and Y, and P is the non-exceedance probability. Or the right-
hand side represents the probability that the random variable x takes on a value less than or 
equal to x, and that y takes on a value less than or equal to y (Park 2018, in Wikipedia).

The joint return period of an event (X, Y) , TX,Y (X, Y) , can be expressed as:

2.3 � Copula

Let observation 
(
X11,X21,…… .Xn1

)
,……………… ,

(
X1n,X2n,…… .XnN

)
 be drawn 

from a multivariate population of 
(
X1,X2,… ..Xn

)
 , where N is the number of observa-

tions and n is the number of variables. LetFXi

(
Xi

)
, i = 1, 2,…n , be the marginal CDFs of 

Xi, i = 1, 2,…n.

The objective is to determine the multivariate distribution denoted as H
X1,X2,……..Xn(

X1,X2,… ..X
n

) or simply H. Copulas are functions that join one-dimensional marginal 
PDFs to a multivariate PDF (Nelsen 1999). Therefore the multivariate PDF (H) expressed 
in terms of its marginal distributions and the associated dependence function, C, as:

where C, named copula, takes the quality of random variable dependence. The copula func-
tions were developed by Sklar (1959), and different copula families were proposed by Nelsen, 
(1999). Some copula functions like Archimedean 2-copula e.g. Frank copula (Joe 1997) can 
model all ranges of variables dependence such as positive, null (independence), or nega-
tive (Grimaldi and Serinaldi 2006). Normal and t copulas are a subdivision of the Elliptical, 
which means that a copula is constructed based on the normal and t PDFs. Both normal and 
t are symmetrical, and the normal copula is a limiting case of the t when m becomes infinity. 
The advantage of the t copula is that it can capture lower and upper tail dependence of data 

(1)H(X, Y) = P(X ≤ x, Y ≤ y) = ∫ x

−∞
∫ y

−∞
h(U,V)dUdV

(2)TX,Y (X, Y) =
1

1 − H(X, Y)

(3)C
(
FX1

(
X1

)
,…… ..FXn

(
Xn

))
= HX1,X2,……..Xn

(
X1,X2,… ..Xn

)
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(Goda 2010). Another widely used family of 2-copula is the Archimedean. A detailed list 
of the Archimedean copulas is presented in Nelsen (2006). Popular Archimedean includes 
the Gumbel, Frank, and Clayton copulas. A difference between them is the tail dependence: 
the Gumbel and Clayton capture upper and lower tail dependence, respectively, but Frank 
does not. One disadvantage of the mentioned 2-copulas is the symmetrical feature concerning 
diagonal lines of a unit square. To deal with, a class of asymmetrical Archimedean, which 
are a transformed shape of mentioned family, can be used. Goda (2010) compared simulated 
samples of the normal and t copula, Gumbel, Frank, and Clayton copulas for different corre-
lation coefficients and parameters and tail dependence characteristics.

The dependence of the variables is usually measured via the canonical Pearson’s 
coefficient of a linear correlation when this parameter only models a linear depend-
ence, and in some cases, it may not exist (De Michele et  al. 2005). In copula mod-
eling, the dependence of random data is measured by Kendall’s and Spearman’s coef-
ficients. The Kendall’s stated as the difference between the probability of concordance 
and discordance, while the Spearman’s expressed as the linear correlation coefficient 
of the probability-transformed variables. The measures are rank-dependent and invari-
ant under strictly monotonic transformations and can be expressed in terms of a copula 
function (Goda 2010). A copula function can be expressed as:

where Ui ∼ U(O, 1) for i = 1,… , d . Copulas allow characterizing the dependence structure 
of random variables from the marginal PDFs. For any multivariate (joint) distribution F of  
X1,…… .Xd as random variables, there exists a unique copula C as:

where F−1
1

 as the quantile function defined by F−1
1
(u) = inf

[
x ∶ Fi(x) ≥ u

]
 (Sklar 1959).

Dupuis (2007) defined F as a multivariate PDF with marginal PDFs F1,… .,Fd as:

where C is copula function. Some of the bivariate copula families were presented in  
Razmkhah et  al. (2016b). In this study, several bivariate copula families like Elliptical 
(Gaussian and Student t), Archimedean (Clayton, Gumble, Frank, Joe), BB1 (Clayton-
Gumbel), BB6 (Joe-Gumbel), BB7 (Joe-Clayton), and BB8 (Frank-Joe)) have been fitted to 
data to select the most suitable one. For more details about copula families, readers could 
refer to Genest and MacKay (1986), Joe (1997), Favre et al. (2004), Nelsen (2006), and  
references therein. For the Archimedean families rotated versions cover negative depend-
ence. The parameters of the 2-copula are estimated using maximum likelihood estimation.

2.4 � Copula Model Selection

Copulas are selected according to the Akaike and Bayesian information criteria (AIC and 
BIC, respectively). First, all available copulas are fitted, then the criteria are computed and the 
copula with the minimum value chosen.

•	 AIC

(4)C
(
u1,… , ud

)
= Pr

(
U1 ≤ u1,… ,Ud ≤ ud

)

(5)C
(
u1,…… , ud

)
= F

[
F−1
1

(
u1,…… ,F−1

d

(
ud
))]

(6)F
(
x1,… , xd

)
= C

[
F1

(
x1
)
,… ,Fd

(
xd
)]
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	   The AIC is a criterion to estimator the relative quality of statistical models (McElreath  
2016; Taddy 2019, in Wikipedia). For a statistical model with k as the number of esti-
mated parameters, and L̂ as the maximum value of the likelihood function of the model, 
the AIC value is calculated as (Burnham and Anderson 2002; Akaike 1974, in Wikipe-
dia):

	   Given a set of candidate models, the preferred model is the one with the minimum AIC 
value.

•	 BIC
	   The BIC or Schwarz information criterion is another criterion for model selection; the 

model with the lowest BIC is preferred. It is based, in part, on the likelihood function. It 
was developed by Schwarz (1978), considering a Bayesian argument.

	   The BIC is defined as (Wit et al. 2012):

where

•	 (L̂) = the maximized value of the  likelihood function  of the model  M, i.e. 
(
L̂

)
=

= p

(
x∕(�̂,M)

)
 , where  �̂   are the parameter values that maximize the likelihood 

function;
•	 x = the observed data;
•	 n = the number of data points in x, the number of observations, or the sample size;
•	 k = the number of parameters estimated by the model

2.5 � Conditional Probabilities

The conditional probabilities can be calculated, differentiating the corresponding copula (C) 
of random variables U and V (Nelsen 1999):

2.6 � Copulas and Return Periods

Return period, as the average time between two successive realizations of the event, is a crite-
rion for sizing the hydraulic structures and risk analysis (Salvadori and De Michele 2007). The 
univariate frequency analysis may lead to an under/overestimation of the risk because many 
hydrological events are characterized by the joint behavior of several random variables. Using 
copula can cover the mentioned disadvantage.

(7)AIC = 2K − 2Ln(̂L)

(8)BIC = KLn(n) − 2Ln(̂L)

(9)p{V ≤ v|U = u} =
�C(U,V)

�U

(10)p{U ≤ u|V = v} =
�C(U,V)

�V
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2.7 � Bivariate Return Periods

Bivariate return period is discussed for x and y variables with increasing marginals Fx and Fy 
and C copula. Having U and V as Eq. (5) we have:

In practice, an event could be dangerous if either U or V exceed given thresholds, Eq. (12), 
or both U and V are longer than a prescribed value, Eq. (13):

where ∪ and ∩ are or and operators and E∪
U,V

 and E∩
U,V

 are the events with the greatest inter-
est. Let the P∪

U,V
 and P∩

U,V
 be the probability of the events E∪

U,V
 and E∩

U,V
 respectively. Using 

copula we have (Nelsen 1999):

where

Then the return periods T∪
U,V

 and T∩
U,V

 of the events E∪
U,V

 and E∩
U,V

 can be defined as:

where � = average interval time between two successive events Ei …. T∪
U,V

 and T∩
U,V

 are 
decreasing functions so we have (Salvadori and De Michele 2007):

Using the above equations, we can calculate the return periods of the events E∪
U,V

 and 
E∩
U,V

 , in terms of the pair (x, y).

2.8 � Univariate Versus Multivariate Analysis

In a multivariate hydrological event, univariate frequency analysis cannot evaluate the 
occurrence of an event completely. Salvadori and De Michele (2007) showed the desire 
return period (�) followed this equation:

(11)
{

U = Fx(x)

V = Fy(y)
<=>

{
x = F−1

x
(U)

U = F−1
y
(V)

(12)E∪
U,V

= {U > u} ∪ {V > v}(or case)

(13)E∩
U,V

= {U > u} ∩ {V > v}(and case)

(14)P∪
U,V

= P{U > u ∪ V > v} = 1 − C(U,V)

(15)P∩
U,V

= P{U > u ∩ V > v} = C̄(1 − U, 1 − V)

(16)C̄(U,V) = U + V − 1 + C(1 − U, 1 − V)

(17)T∪
U,V

=
�

P∪
U,V

(18)T∩
U,V

=
�

P∩
U,V

(19)P∪
U,V

≥ P∩
U,V

,

(20)T∪
U,V

≤ T∩
U,V

.
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So if the desire return period (�) was not determined using joint PDFs design could be 
under dimensioned leading to risk increase, or overestimated leading to waste of money. 
De Michele et  al. (2005) using the value of real design showed the return period of the 
event E∪

U,V
 was about 20% smaller than � , while the return period of E∩

U,V
 was about 30% 

larger.
Another problem is the identification of the events having an assigned return period (T). In 

general, the solution is not unique, because different choices of U and V may yield the same 
T. Thus iso-lines of T∪

U,V
 and T∩

U,V
 should be identified (Salvadori and De Michele 2007).

2.9 � Level Curves

The level curves of a joint distribution can provide practical information in the design pro-
cess. Given 0 ≤ t ≤ 1 , the curves defined by the Eq. (22) are called the level curves of C:

The use of copulas may yield analytical solutions to the problem of calculating the iso-
lines (Salvadori and De Michele 2007).

2.9.1 � Isolines of T∪
U,V

In the equation T∪
U,V

=
�

P∪
U,V

=
�

1−CU,V

 ,  P∪
U,V

 reduces by increasing C, while the T∪
U,V

 
increases. Increasing C is equivalent to choosing more extreme events with a longer return 
period. Salvadori and De Michele (2007) showed that iso-line plots would be the same for 
all of the distributions Fxy generated by C.

2.9.2 � Isolines of T∩
U,V

We told that P∩
U,V

= C̄(1 − U, 1 − V) = 1 − U − V + C(U,V) where 0 ≤ C(U,V) ≤ 1 . The 
authors referred to Salvadori and De Michele (2007) for preparing T∩

U,V
 isolines.

2.10 � Tail Dependence

The most common definition of tail dependence between two random variables X and Y is:

where �U and �L are called the upper and lower tail dependence. GX(X) and HY (Y) are the 
marginal distributions and U and V are threshold levels. The tail dependence corresponds 
to the probability that one margin to be large/small conditioned on the other margin being 

(21)T∪
U,V

≤ � ≤ T∩
U,V

(22)Lt = {C(U,V) = t}

(23)𝜆U = lim
U→1

P
{
GX(X) > U|HY (Y) > V

}

(24)�L = lim
U→0+

P
{
GX(X) ≤ U|HY (Y) ≤ V

}
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large/small. The tail dependence can also be defined by a copula function. The authors 
referred to Yue et al. (2014) for a detailed description.

2.11 � Case Study

The Karoon III is a sub-basin of large Karoon, located in the southwest of Iran. The 
watershed boundaries limit to 49°, 30’ to 52° E and 30° to 32°, 30’ N. The area is 
approximately 24,200 (km2) with 30 reliable climatology and synoptic gauges. The ele-
vation varies from 700 (m) at the outlet of the basin to 4500 (m) on the Kouhrang and 
Dena mountains. The digital elevation model (DEM)  and  major drainage network of 
Karoon III are shown in Fig. 1. About 50% of the watershed area has a higher elevation 
than 2500 (m). The watershed receives an average annual precipitation of 767 (mm) 
that about 55% of precipitation is as snowfall. The average daily discharge flow of the 
basin is about 384 (m3/s). The sub-basins physiographic characteristics were presented 
in Razmkhah et al. (2016a, b) . Pole-Shaloo was the only existed streamflow gauge, at 
the outlet of the basin with recorded daily data used in this study.

3 � Results

Since Qp, tb, tp, and V are variables defined by the same physical phenomenon, they should 
be mutually correlated. Table 1 summarized the statistics of the Pearson’s correlation coef-
ficient (r), Kendall’s tau ( �), and Spearman’s rho ( �s) of tb, tp, Qp, and V random vari-
ables. A two-sided test with 5% and 1% of significance levels confirmed that variables are 
correlated. Pearson’s correlation coefficient represents the linear dependence between two 
variables. Both � and �s are based on the ranks which represent the degree of association 

Fig. 1   DEM and major drainage network  of Karoon III (Razmkhah 2018)
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between two random variables (Yue et al. 2014). The copula (P, V) is more correlated than 
the others. Equation (25) shows the rank of correlation between flood characteristics:

The order of correlation between variables could be explained by the physical governing 
low of rainfall-runoff processes. Extreme rainfalls resulted in a large amount of runoff vol-
ume and consequently peak discharge; long-based time floods have a longer time to peak; 
larger base time floods belong to the larger volume of floods and so on.

Table 2 shows copula families fitted to the flood characteristics, and related parameters, 
using R software (Brenchmann and Schepsmeier 2013). The P-value of the independent 
test showed that all of the variables are dependent. Quantities (V ,Qp) and 

(
tp, tb

)
 , seem 

to follow Clayton’s family of copula while the others follow BB8 copula. The (V ,Qp) and (
tp, tb

)
 were the most correlated ones and tail dependence analysis showed that they are 

lower tail dependent, (Table 2). The BB8 copula family fitted to the other variables, did not 
show any lower or upper tail dependence.

Figure 2a–f represent 3D plots of copula functions fitted to the flood characteristics. The 
variation of correlated parameters could be seen in the figures. It could be seen that (V ,Qp) 
and 

(
tp, tb

)
 are the most correlated variables with lower tail dependence (Fig. 2c, d).

(25)(V ,Qp) >
(
tp, tb

)
>
(
V , tb

)
>
(
V , tp

)
>
(
tb,Qp

)
>
(
tp,Qp

)

Table 1   Dependence between 
variables as expressed by 
Pearson’s (r), Kendall’s tau 
( �), and Spearman’s rho ( �

s
) 

correlation coefficients

* Correlation is significant at 0.05 level; **Correlation is significant at 
0.01 level

Variables r � �
s

tb-Qp 0.223** 0.222** 0.298**

0.009 0.000 0.009
tp-Qp 0.201* 0.163* 0.206*

0.019 0.012 0.016
tp-tb 0.457** 0.490** 0.541**

0.000 0.000 0.000
V-Qp 0.947** 0.879** 0.979**

0.000 0.000 0.000
V-tb 0.350** 0.322** 0.430**

0.000 0.000 0.000
V-tp 0.278** 0.233** 0.302**

0.001 0.000 0.000

Table 2   Copula families fitted to the flood characteristics

Flood  
Characteristic

P-value of 
Independent 
Test

Copula Family Parameter 1 Parameter 2 Lower tail  
Dependence

Upper tail 
dependence

tb-Qp 0.000134 BB8 1.908471 0.9323931 0 0
tp-Qp 0.005030 BB8 3.203957 0.8607931 0 0
tp-tb 0 Clayton 2.980911 0 0.7925271 0
V-Qp 0 Clayton 4.705008 0 0.8630168 0
V-tb 3.11e-08 BB8 2.005408 0.924485 0 0
V-tp 6.26e-05 BB8 3.329927 0.8346275 0 0
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Figure 3a–f show iso-lines (contour plots) of the fitted copula functions. As we told 
the identification of the events having an assigned return period (T) in the multivari-
ate analysis does not have a unique solution, because different choices of U and V may 
yield the same T. Thus iso-lines of T  prepared. The figures could be used to determine 

a. , b. ,

c. , d. ,

e. ( , ) f. ,

Fig. 2   3D plots of flood characteristics copula functions
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a. , b. ,

c. , d. ,

e. ( , ) f. ,

Fig. 3   Contour plots (iso-lines) of copula functions
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c. , d. ,

e. ( , ) f. ,

a. , b. ,

Fig. 4   Conditional probability iso-lines of copula functions (V/U) for (U, V)
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different 
(
tb,Qp

)
 with a specified T or return period (figure a); 

(
tp,Qp

)
 from figure b; (

tp, tb
)
 from figure c; 

(
V ,Qp

)
 from figure d; 

(
V , tb

)
 from figure e, and 

(
V , tp

)
 from figure f. 

Then another flood characteristics could be extracted from the other graphs, and we have 
many possible variables with different probability to make a decision more precisely.

Figure 4a–f shows conditional probability iso-lines of the bi-variates copula functions 
of (V/U) for (U, V). The conditional probability iso-lines of (U/V) figure was not presented 
because of the large volume of the article. The figures could be used to determine a Qp for a 
specified tb and tp (figure a, b); tp for a specified tb (figure c); Qp for a specified V (figure d); 
V for a specified tb , and tp for a specified V (figure e, f) and so on.

4 � Conclusion

In this study, a multivariate flood frequency analysis was performed using 2-copula func-
tions. By this multivariate tool, bivariate density and distribution of peak, volume, dura-
tion, and time to peak of flood events are determined without assuming the same type of 
marginal distributions. A brief analysis of observed data shows that peak, volume, dura-
tion, and time to peak variables are dependent in several manners. Properties of the copulas 
are described numerically and graphically. Advantages in using copulas are highlighted 
and confirmed in the case study.

The use of copulas yields analytical or graphical solutions to the problem of calculating 
the iso-lines of a joint distribution. Once the design return period has been decided, it is 
easy to calculate all the joint events such as E∪

U,V
 and E∩

U,V
 in terms of the pair (x, y).

In particular, we consider events, depending upon the joint behavior of two dependent 
random variables. This approach can be easily generalized to the multivariate case, using 
copula functions without traditional multivariate joint distributions. These results yield a 
copula-based procedure for the estimation of the probability of correlated random vari-
ables. The results help hydrologists for stochastic joint dependence of the variables and 
offer the possibilities of correctly sizing the structures.
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