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Abstract
Accurate estimates of groundwater modeling in arid regions have a crucial role in reaching a sus-
tainable management of groundwater sources. However, groundwater modeling has been faced 
with different uncertainty sources; besides our imperfect knowledge, it is difficult to derive a  
proper prediction that can lead to reliable planning. This study aimed to improve the ground-
water numerical simulations using different Model Averaging Techniques (MATs). For this,  
three numerical models, such as Finite Difference (FD), Finite Element (FE), and Meshfree 
(Mfree), were developed and their performance was verified in a real-world case study. Then 
various MATs including Simple Model Average (SMA), Weighted Average Method (WAM), 
Multi Model Super Ensemble (MMSE), Modified MMSE (M3SE) and Bayesian Model Aver-
aging (BMA) were employed to improve the simulated groundwater level Fluctuations (outputs 
of three numerical models). The findings of this study demonstrated that the numerical model 
uncertainty is considerable and should not be neglected in the uncertainty analysis of ground-
water modeling. In terms of RMSE, the lowest value of 0.148 m was obtained by Mfree while 
higher values of 1.355 m and 0.287 m are calculated for FD and FE respectively. In addition, 
the performance assessment of MATs showed a capacity to generate a skillful simulation com-
pared to numerical predictions. Although the MMSE and M3SE (with RMSE values of 0.088 
and 0.103 m) generated a desirable prediction in the majority of piezometers, they suffer from a 
main deficiency, such as the multicollinearity issue. From this perspective, it was concluded that 
the BMA produced a more reliable and reasonable prediction than other MATs.

Keywords  Mathematical model uncertainty · Mesh less · Radial interpolation method · 
Consensus prediction · Weight estimation

1  Introduction

Groundwater modeling without uncertainty analysis may lead to contradictory predic-
tions; consequently, the unreliable options are delivered to policymakers in planning water 
resource management (Wu and Zeng 2013). Hence, in ground water modeling studies, it 
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is tried to consider and fix the major influencing uncertainty sources as much as possi-
ble. There are different types of uncertainty in groundwater modeling, including concep-
tual model structure uncertainty (consisting of boundary conditions, hydrodynamic param-
eters, and aquifer recharge), mathematical uncertainty (numerical structure uncertainty and 
parameter uncertainty related to shape and weight functions), input data uncertainty (rain-
fall, evaporation and abstraction rate) and epistemic uncertainty (Rajabi et al. 2018).

So far, many studies were conducted in the context of groundwater aiming to assess 
different types of uncertainty, including parameters uncertainty (Jing et al. 2019; Pagnozzi 
et al. 2020) input data uncertainty (Xu et al. 2017; Hassanzadeh et al. 2019) model struc-
ture and boundary conditions uncertainty (Refsgaard et  al.  2012; Pham and Tsai  2016; 
Enemark et al. 2019; Cao et al. 2019; Pan et al. 2020; Rojas et al. 2010; Person et al. 2012). 
The most commonly used methods in literature for quantifying the parameters and input 
data uncertainty is employing a numerical algorithm such as Generalized Likelihood 
Uncertainty Estimation (Mertens et  al.  2004; Rojas et  al.  2008; Hassan et  al.  2008) and 
Monte Carlo Markov Chain-MCMC (Troldborg et al. 2007; Yoon et al. 2013 ). In addi-
tion, a number of studies employed the Kalman Filtering (KF) in estimating parameter 
uncertainty (Yu et al. 2020). Further, it is suggested in literature to combine the predictions 
of different alternative conceptual models to consider the uncertainty arising from model 
structure and boundary conditions (Nettasana et al. 2012; Mustafa et al. 2019). These stud-
ies perform the combination stage using different techniques among which Bayesian Model 
Averaging (BMA) is known as the most effective and practical ones. Additionally, there are 
few studies, coupling the Ensemble KF (EnKF) simulations to the BMA to quantify model 
structure uncertainty (Xue and Zhang 2014).

Although there are many literatures to assess the uncertainty sources of groundwater 
process, quantifying, and fixing all uncertainty sources is very difficult in practice due to 
high complexities and our defective knowledge. Hence, some studies such as Mosavi et al. 
(2021), Mustafa et al. (2020), Roy and Datta (2019), Zhang et al. (2018), and Rajib et al. 
(2017) suggested improving groundwater model outputs using Model Averaging Tech-
niques (MATs) as post processing measurements.

The literature reveals that most relevant studies aiming to improve the total uncertainty 
in groundwater modeling have usually employed the BMA (Mustafa et al. 2020) and EnKF 
(Van Geer et  al.  1991; Klise and McKenna  2007; Rajib et  al.  2017; Zhang et  al.  2018) 
techniques. For example, Rajib et al. (2017) simulated contaminant concentration through 
Finite Difference (FD) in a synthetic test case. After that, the numerical results were 
updated using different types of EnKF and were compared with analytical solutions. How-
ever, addressing the various sources of uncertainty is not possible in Kalman’s approaches 
(Ridler et  al.  2018). Mustafa et  al. (2020) have presented a comprehensive framework 
to quantify and improve the total uncertainty in groundwater modeling. They used the 
DREAM algorithm to identify the uncertainty arising from hydrodynamic parameters, 
boundary conditions, and input data in different conceptual models. Then they feed the dif-
ferent model outputs into the BMA to improve simulations. Despite considerable achieve-
ments obtained in their study, it is not without drawbacks; for example, they employed FD 
to simulate groundwater table through Processing Modflow for Windows (PMWIN), while 
there are the serious drawbacks due to irregular and non-continuous domains in its appli-
cation in real case studies (Hu et al. 2020). Indeed, the mathematical model uncertainty is 
missing in their study.

Besides, the literature review indicates that due to more frequent use and easier access 
to FD-based platforms (e.g. GMS, PMWIN, and VISTA) majority of studies utilize the 
FD method for groundwater modeling. (Pacheco et al. 2018; Karimi et al. 2019; Aliyari 
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et al. 2019; Gelsinari et al. 2020; Sabzzadeh and Shourian 2020). While the FD has been 
criticized for its structure and many researches have acknowledged that, the performance of 
other numerical methods such as Finite Element (FE) and Meshfree (Mfree) is much more 
desirable than FD (Anshuman and Eldho 2019). Further, the literature suggests that most 
related studies not only did not compare the performance of different numerical models, 
but also have ignored the uncertainty of mathematical model. However, this type of uncer-
tainty is very important because if the conceptual model and input datasets are installed on 
an inappropriate mathematical framework, the model may give the invalid results. There-
fore, the examination of the mathematical model uncertainty takes precedence over other 
uncertainty sources.

Moreover, there are some MATs, which their application has been investigated mainly in 
meteorological sciences and hydrology, in particular in rainfall-runoff modeling (Georgakakos 
et al. 2004). Ajami et al. (2006) reported that MAT methods such as Multi Model Super Ensem-
ble (MMSE) and Modified MMSE (M3SE) have noticeable performance in hydrology science. 
Despite some deficiencies in estimated weights related to model ranking (Duan et al. 2007), 
the performance of these methods in improving groundwater modeling uncertainty has been 
neglected.

Hence, improving the total uncertainty of groundwater modeling in the real-world stud-
ies requires more researches which examines different numerical model at same time to 
consider mathematical model uncertainty. Therefore, it needs the different approaches of 
MAT methods employed and assessed in groundwater studies.

Accordingly, the current study aims to enrich previous works by presenting an appli-
cable design for quantifying the uncertainty arising from different mathematical models. 
Furthermore, this design is capable of improving total prediction uncertainty by employing 
different varieties of MAT. In this plan, the simulations of FD, FE, and Mfree methods are 
given to different types of MATs such as Simple Model Averaging (SMA), Weighted Aver-
age Method, MMSE, and M3SE, as well as BMA to produce the skillful simulation series 
for groundwater modeling in a real-world case. This study implements its plan on Birjand 
aquifer, eastern Iran, to address the performance of the proposed framework in the actual 
conditions.

2 � Methods

2.1 � Study Area

Birjand plain is located in eastern Iran, where annual rainfall is very low (<100 mm), and 
is classified as an arid region based on Dumbarton climate classification (see Fig. 1). The 
average annual temperature and evaporation are 24.5 centigrade and 2600 mm (Jafarzadeh 
et  al.  2021a). It is worth noting that the basic element of development was traditionally 
defined as the agriculture section, which is resulting in severe withdrawal of groundwater 
resources.

2.2 � Conceptual Model

Some studies that have been previously conducted in Birjand aquifer focused on uncer-
tainty issues. These studies employed a well-predefined conceptual model in which either 
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parameter uncertainty has been perfectly examined (e.g., Hamraz et al. 2015; Mohtashami 
et al. 2017) or conceptual model was revised and enhanced in the recent studies by Sadeghi-
Tabas et al. (2016) and Sadeghi-Tabas et al. (2017). According to assumption of these stud-
ies, Birjand aquifer is known as a one-layer hydrogeological model with different thickness 
(8 m to 255 m). Ten input and output paths were also added to aquifer domain to account 
for the effects subsurface recharge and depletion (see Fig. 2). Boundary conditions in these 
sections are considered constant values (Dirichlet conditions).In addition, the drain flows 
(in the southwest regions), the surface recharge arising from rainfall and the return flow of 
extraction wells concerning spatial and temporal variations are imposed to conceptual mod-
els. Moreover, there are about 191 extraction points (including wells, springs, and Qanat) 
and 11 piezometers, within the Birjand aquifer. Finally, given the geology heterogeneous 
and anisotropy conditions, 17 zones for hydraulic conductivity and specific yield were con-
sidered over the aquifer domain (see Fig. 3).

2.3 � Mathematical Modelling

Numerical methods are classified into weak and strong form methods. In the strong form 
methods, the initial form of the governing equation is kept and numerical method approxi-
mates directly solution. For example, FD discretizes the second-order spatial derivatives 
through Taylor series and solves the discretized equation. While, strong numerical meth-
ods, such as FE and Mfree, convert the initial form of governing equation to secondary 
form by decreasing the order derivatives. The most commonly used weak form methods 
are subset of Weighted Residual Methods (WRMs). In the WRMs, a mathematic trick is 

Fig. 1   Location of Birjand plain and aquifer
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used to force the residuals to be zero. One of the most commonly used methods is to com-
pute a weighted average of residuals through a series of weight functions and then, mini-
mize the integral of weighted average throughout problem domain as much as possible. For 
each numerical method, the weight functions are selected based on different approaches. 
For example, the FE method employs the Galerkin while Petrov- Galerkin is used in the 
Mfree method (Liu and Gu 2005). The FE method splits the global domain into triangular, 
square or rectangular elements, while Mfree uses local quadrature or circle domains sur-
rounding each grid point.

Fig. 2   Definiation of grid model in Birjand aquifer ( Adopted from Hamraz et al. 2015)

Fig. 3   Definition of specific yield and hydraulic conductivity zones in Birjand aquifer ( Adopted from Sadeghi-
Tabas et al. 2017)
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2.3.1 � Groundwater Flow‑governing Equations

The governing equation of groundwater flow for two dimensional, isotropic and homog-
enous aquifers is given by (Arnold et al. 1993):

Considering following boundary and initial conditions:

where h, Sy, K, t are potential groundwater level (m), specific yield, hydraulic conductiv-
ity in horizontal and vertical direction (m/day), time (day). While Q, q and � are source 
or sink function (m3/day), distributed rate of recharge or evapotranspiration over aquifer 
domain (m/day) and Dirac Delta function respectively. Also, qt, h̄, h0 are known inflow rate 
(m2/day), constant groundwater level (m), and initial head (m). Furthermore, Γ, Γt, Γu are 
global, essential (Dirichlet) and natural (Neuman) boundary conditions respectively, while 
Ω indicates aquifer domain.

Since the FD, FE, and Mfree models in groundwater modeling frequently –are applied 
in several literatures, as well due to a recent related publication of current research team 
(Jafarzadeh et al. 2021b, c), this paper did not repeat them. Interested readers are referred 
to Appendix where more details about the formulation of numerical models, in particular 
Mfree as a newer method, has been provided.

2.3.2 � Numerical Modeling Process

This study performed the groundwater modeling by designing a conceptual model for 
Birjand aquifer. First, the various datasets including rainfall and evaporation time series, 
geologic information (groundwater depth, bedrock, hydraulic conductivity, and specific 
yield), topographic maps, extraction wells (type, location, and rate), as well as observa-
tion wells are collected and through Arc GIS converted to gridded data. Then, consid-
ering boundary conditions, the conceptual model of Birjand aquifer was constructed. 
Birjand aquifer domain was gridded to 34 rows and 94 columns in which horizontal and 
vertical distance (size of mesh) is 500 m. Also, the size of local and support domains 
was considered 0.8 and 3 respectively to ensure the stability and accuracy of results (Liu 
and Gu 2005; Mohtashami et al. 2017). Further, the parameter of radial shape function 
was considered 0.3. The numerical methods employed the gridded datasets to simulate 
the groundwater table fluctuations influenced by continued pumping during a hydrologic 
water year (from 23 October 2011 to 21 October 2012). In this study, monthly stress 
periods with daily time steps were considered and used for simulating. The groundwater 
table in the first stress period was simulated to verify the hydrodynamic components and 
boundary conditions (calibration step). This model setup was later used as initial condi-
tions of the transient state. Since in the current field study the most rainfall occurred in 
winter and the early spring (from Mid-November until Mid-April), the abstraction rates 
of extraction wells in this period are minimum. Hence, the temporal variation of the 
abstraction rates and rainfall were considered in models.

(1)K.h
�
2h

�x2
+ K.h

�
2h

�y2
+ Q(i, j) = Sy

�h

�t
,

(
Q(i, j) = q +

n∑
i=1

Qi�(xo − xi, yo − yi)

)

(2)

𝜕h

𝜕Γt
=

qt

K
⇒ on Γ = Γt

h(x, y, t) = h̄ ⇒ on Γ = Γu

h(x, y, o) = h0 ⇒ on Ω
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Moreover, since the current study intends to present a numerical model in an open-
source format coded in MATrix LABoratory (MATLAB) environment, the verification 
of the presented model is inevitable. This stage was carried out based on the findings of 
Jafarzadeh et al. (2021b, c) where the validity of numerical model was carefully exam-
ined in a synthetic case modeling. They revealed that based on the comparison of sim-
ulated groundwater levels with analytical solutions, the validity of all three proposed 
models was confirmed successfully. Also, their results acknowledged that the ability 
of Mfree is better than FE, and FD, respectively in terms of RMSE. After verification 
of proposed numerical models, we performed the groundwater simulation of Birjand 
aquifer.

2.4 � Model Averaging Techniques (MATs)

The robustness of various MAT methods is examined through an ensemble of different 
competing numerical models. The first applications of these models have been around 
since 1970s when they were tested in the meteorology and economics sciences (Bates and 
Granger 1969; Dickinson 1973; Thompson 1977). There are two common approaches of 
MATs; deterministic and probabilistic. Some methods such as BMA generate a consen-
sus probabilistic simulation from competing models outputs. In the process of probabilistic 
methods, the concepts such as likelihood functions and sampling methods (i.e., MCMC) 
play a vital role (Duan et al. 2007). While the fundamental of other techniques, including 
Weighted Average Method (WAM) and MMSE, is based on linear combination techniques 
such as Multiple Linear Regression (MLR). Though, the interested readers are referred to 
Zhous (2012) for more discussion about ensemble methods and their formulation, here an 
overview of used MATs was provided as the following.

2.4.1 � SMA

The SMA is the simplest method among MATs because it presents a simple weighted 
average of the models’ outputs. In this method, the weight of each model is equal to one. 
Historical review of SMA indicates that Georgakakos et  al. (2004) firstly employed this 
method to improve rainfall-runoff simulations. The formulation of SMA for each time step 
is given by the following equation:

where Dt
SMA

 is SMA output, D̄Obs is observation values, m indicates number of individual 
competing models (here FD, FE, and Mfree simulations) while Dt,i

Sim
 and D̄i

Sim
 denote simu-

lation and mean value simulation of ith numerical method.

2.4.2 � WAM

Shamseldin et al. (1997) firstly applied this approach for hydrology research to enhance the 
runoff simulation output of five conceptual models. In WAM, the weight of competing models 

(3)Dt
SMA

= D̄Obs +

m∑
i=1

D
t,i

Sim
− D̄i

Sim

m

359Performance Assessment of Model Averaging Techniques to Reduce…



1 3

is computed based on a constrained MLR such that they have to be positive, and the sum of 
them must be equal to one. The following equation expresses WAM formulation:

where Dt
WAM

 is simulation obtained by WAM and, xi is weight of i th of numerical model.

2.4.3 � MMSE

Krishnamurti et al. (1999) advanced previous techniques (SMA and WAM) and proposed the 
MMSE method. Examination of MMSE in different studies indicated its better performance 
than both competing models and traditional MATs (i.e., SMA and WAM) (Mayers et al. 2001; 
Yun et al. 2003). In the MMSE procedure, the weight of competing models is calculated based 
on non-constrained MLR. Indeed, weights can take any real numbers, and there is no specific 
limitation for their summation. The MMSE formulation can be expressed as the following:

where Dt
MMSE

 is the tth output of MMSE.

2.4.4 � M3SE

The M3SE technique, introduced by Ajami et  al. (2006), is based on the MMSE concept, 
except putting a powerful bias correction method that is called frequency mapping. In the fre-
quency mapping, the simulation values will be replaced by observations that have the same 
frequency. The other stages, including weight estimation and formulation, are repeated simi-
larly to the MMSE method. Figure 4 displays the procedure of M3SE containing of bias cor-
rection, weight estimation, and formulation modules.

2.4.5 � BMA

BMA as an ensemble averaging method presents a consensus simulation from compet-
ing models outputs. It estimates the weights of competing models based on the probabilis-
tic likelihood function. Let to consider observation values as Y = [yobs

1
, yobs

2
, ... , yobs

T
] and {

S1, S2, ..., SK
}
 as numerical simulation. In the first step, the numerical simulations are cor-

rected using linear regression (i.e., 
{
Si, i = 1, 2, ..., n

}
 is converted to 

{
fi, i = 1, 2, ..., n

}
 ). 

Based on probability’s law, the probabilistic density of observation (y) can be expressed as 
following:

where p( fi||Y) is the posterior probability of ith competing model and it reflects the similar-
ity of ith model relative to observation. Hence, it can be considered as the weights of com-

peting models so that they sum to one as formula 
K∑
i=1

wi = 1 where,wi = p( fi
||Y) . Also, 

pi(y|fi, Y) denotes the conditional Probabilistic Density Function (PDF) of ith competing 

(4)Dt
WAM

=

m∑
i=1

xi.D
t,i

Sim

(5)Dt
MMSE

= DObs +

n∑
i=1

xi.(D
t,i

Sim
−D

i

Sim
)

(6)p(y|f1, f2 ... , fk, Y) =
K∑
i=1

p( fi
||Y).pi

(
y|fi, Y

)
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model. BMA represents conditional PDF by a Gaussian distribution with zero average and 
�i variance. The revised version of Eq. (6) is given by:

The BMA consider weights of competing models and �i as parameters set 
( � =

{
wi, �i, i = 1, ... , K

}
 ) and estimates them using a numerical algorithm. This study 

employed the MCMC based DiffeRential Evolution Adaptive Metropolis (DREAM) 
algorithm for producing the prior distribution of parameters set and the strength of each 
parameters set was evaluated by log likelihood function as following:

For more details see Raftery et al. (2005).

(7)p(y|f1, f2 ... , fk, Y) =
K∑
i=1

p( fi
||Y).pi

(
y|fi, Y

)
=

K∑
i=1

wi.g(y|fi, �2
i
)

(8)�(�) = log

(
k∑

i=1

wi.pi
(
y|fi, Y

))

Fig. 4   The flowchart of M3SE 
method
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2.5 � Model Evaluation

To evaluate the performance of numerical methods and to examine the effects of different 
MATs, error estimation was quantified through Root Mean Square Error (RMSE). Since 
the groundwater level has generally a low dynamic, the variance-based indicators, such as 
Nash Sutcliff Efficiency (NSE) and Kling Gupta Efficiency (KGE), are not recommended 
for model ranking. In addition, the correlated-based criteria such as coefficient of determi-
nation do not consider over or under prediction, and these factors merely account for how 
much of the observed dispersion is explained by the prediction. Then RMSE has enough 
merits than other criteria in in groundwater modeling field. More discussion about perfor-
mance criteria and their formulation can be found in study done by Krause et al. (2005).

3 � Results and Discussion

3.1 � Numerical Methods Efficiency

The evaluation of the numerical model performance through observed and simulated tem-
poral groundwater level fluctuations was carried out in Birjand aquifer. Table 1 represents 
the RMSE value obtained from the Mfree, FE, and FD, for each piezometer. Moreover, 
the last row indicates the total RMSE for each individual numerical method, so that higher 
accuracy of Mfree method is displayed with bolded value equal to 0.148 m.

Figure 5 displays the visual comparison of measured and predicted groundwater level 
fluctuation for four observation wells (the remaining piezometers are not shown here). 
As shown in Fig.  5, the Mfree method has generated a skillful prediction of groundwa-
ter fluctuation at all observation wells during the simulation period. The examination of 
simulations reveals that the spatial variations of some influencing factors (e.g., rainfall, 
abstraction rate, and geology conditions) challenge the numerical models to reflect their 
impacts. The obtained results showed that Mfree mimics the spatial and temporal varia-
tions well, while FE, and FD can’t present a perfect and reliable prediction in some obser-
vational wells (e.g., Piez995). This issue may be related to the structure of the numerical 
method. As discussed in Appendix, the computation domain in the Mfree method is local 
and smaller than FE and FD methods.

Table 1   The amount of 
calculated RMSE for different 
numerical methods

Piezometer Mfree FE FD

Piez13 0.066 0.195 0.155
Piez53 0.198 0.272 0.516
Piez85 0.196 0.159 0.749
Piez212 0.143 0.266 0.410
Piez340 0.122 0.410 0.355
Piez482 0.049 0.470 4.015
Piez560 0.211 0.342 1.528
Piez631 0.064 0.120 0.174
Piez749 0.222 0.149 0.345
Piez760 0.109 0.200 0.496
Piez995 0.102 0.343 0.463
Total RMSE (m) 0.148 0.287 1.355
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Moreover, the results demonstrate a conflicting behavior between numerical models in 
some piezometers. For example, the best prediction of the Mfree belongs to the Piez482 pie-
zometer where the FE and specially FD yield the inefficient predictions. Also, in the Piez749, 
FE presented one of the best responses, while the Mfree produced inappropriate estimation.

Considering the simulated fluctuations of groundwater level in Piez212 and Piez749 
(first and third panels in Fig. 8), it can be found that FE has superior accuracy to Mfree 
from 7 Feb to 4 Apr while in total simulation period and in terms of RMSE the Mfree out-
performed FE in both piezometers. This pattern can verify that the accuracy of numerical 
models has a temporal dependency besides the spatial correlation and can vary for different 
sections of a groundwater level curve.

The findings of some studies conducted in the Birjand aquifer have a close agreement 
with the current study. Hamraz et  al. (2015) and Sadeghi-Tabas et  al. (2017) employed 
MODFLOW package to simulate the groundwater level and reported that the RMSE of 
FD is nearly 3.46 and 0.9 m, respectively. The explanation for the difference in results may 
be related to the fact that they performed simulations on a monthly scale, it leads to more 
accuracy and they ignored the surface recharge. Also, Mohtashami et al. (2017) reported 
that Mfree has a better capability than conventional numerical methods such as FD and FD.

It is noticeable that although different numerical models take advantage of an identical 
conceptual model, their outputs are just different (see Table 1 and Fig. 5). It is likely related 
to the ability of each numerical model on how to simulate the groundwater behavior (i.e., 
the model structure uncertainty). As shown in Table 1, the higher RMSE values of numeri-
cal models, (e.g., FD) are significant and it can be very effective in the outcomes. Also, the 
graphical user interfaces, including GMS, PMWIN, VISTA, and MODFLOW, are based 
on FD formulations. Hence, considering all strengths of FD-based models and according 
to current research’s findings, it can be inferred that the numerical model uncertainty in 
mentioned platforms is most likely, inevitable, and considerable. Therefore, for enhancing 
the groundwater modeling uncertainty, firstly it needs to polish the numerical model uncer-
tainty. A recent study involved with this issue is conducted by Mustafa et al. (2020), which 
have disregarded this argument.

Fig. 5   Comparison of observed and simulated groundwater level by different numerical methods
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3.2 � Performance Assessment of Model Averaging Techniques (MATs)

This section describes the efficiency of different MATs in improving the numerical models’ pre-
dictions. The RMSE of MATs was represented in Table 2, and the best value has been bolded. As 
shown, the MMSE and M3SE yield better than other MATs, as these two methods have the first 
and second ranks in the most piezometers. Also, From Table 2, it may be discovered that MATs 
have the required potential to reduce the uncertainty of numerical models predictions, since the 
MATs outcomes is much better than original numerical simulations for each piezometer.

Figure 6 exhibited the color map of RMSE values for MATs and numerical models in 
all piezometers, at the same time. It can be derived from the figure that the RMSE color of 
the MATs in all piezometers is lighter than FD and FE, while the Mfree yields better per-
formance than some MATs in few piezometers (e.g., Piez340 and Piez482). For example, 
the Mfree in the Piez482 is outperformed the SMA prediction. Further, the RMSE color 
has a wide range in some piezometers (e.g., Piez482 and Piez 560), while some cells has 
almost stable color for others, including Piez631 and Piez13. This matter also reveals the 
spatial dependency of the numerical models and MTAs.

The effect of MATs in enhancing the numerical models’ prediction was shown in 
Fig. 7 for some piezometers. As shown, the fluctuation of the groundwater level has been 
improved using MMSE and M3SE, and consequently, as the MATs predictions have a 
more closeness, the total uncertainty will be reduced. The same findings were obtained for 
other piezometers that were skipped here.

3.3 � Examination of Ensemble Estimations

The results in the previous section showed that the MATs simulated different predic-
tions, so here we focused on MTAs approaches and discussed their employed strat-
egies for producing an ensemble averaging. As mentioned in Sect.  2.4, the MATs 
utilized different techniques to estimate the weights of the ensemble members (i.e., 
numerical models). The SMA considered the same weight for all numerical models, 
while The WAM evaluated them based on a constrained MLR. Also, both MMSE 
and M3SE used the unconstrained MLR to estimate weights, and the BMA computed 
them based on the probabilistic likelihood function. Furthermore, only the M3SE and 
BMA involved with the correction step into computations. Anyway, these assumptions 

Table 2   the RMSE values for 
MATs

Piezometer SMA WAM MMSE M3SE BMA

Piez13 0.069 0.066 0.034 0.039 0.066
Piez53 0.214 0.198 0.195 0.225 0.198
Piez85 0.152 0.136 0.116 0.122 0.136
Piez212 0.149 0.140 0.105 0.045 0.140
Piez340 0.171 0.122 0.024 0.008 0.123
Piez482 0.345 0.038 0.019 0.014 0.038
Piez560 0.172 0.203 0.114 0.212 0.203
Piez631 0.031 0.027 0.017 0.023 0.027
Piez749 0.139 0.118 0.041 0.028 0.118
Piez760 0.111 0.109 0.066 0.030 0.109
Piez995 0.122 0.029 0.019 0.014 0.029
Total RMSE (m) 0.171 0.123 0.088 0.103 0.1234
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affect the weights and combined outputs largely. Since the weights directly repre-
sent the importance of each numerical model in ensemble averaging, so they must 
be related to the performance and accuracy of each member reasonably. Table  3 

Fig. 6   The Spectral color map represented RMSE variations between different piezometers

Fig. 7   Comparison of observed and simulated groundwater level by Mfree, MMSE, and M3SE
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represents the estimated weights of different MATs for each piezometer. As results 
showed, it can be discovered that the estimated weights by the MMSE and M3SE are 
not connected to the numerical model’s ability for some piezometers. For example, in 
the Piez13 the MMSE and M3SE allocated the highest weight to the FD prediction, 
while FD has been resulted to less accuracy than FE and Mfree models (see Sect. 3.1). 
Furthermore, it can be understood that wherever there is a strong correlation between 
the predictions of the numerical models, the multicollinearity issue is problematic for 
the MMSE and M3SE methods (see Jafarzadeh et al. 2021c). However, the estimated 
weights by the BMA and WAM in all piezometers reflect completely the performance 
of the numerical models.

It seems that the main objective of MATs is the rational use of all capacities of mem-
bers because each member has its unique strengths and weaknesses. From this perspec-
tive, there are some violations in the process of some MATs. For example, despite the 
SMA involved all numerical models, it does not consider their superiority because the 
SMA assumes similar weights for ensemble members. Also, the WAM sets the weights 
of the FD and FE in most piezometers to be zero to eliminate them. But, the estimated 
weights by BMA satisfied all mentioned issues, including multicollinearity (MMSE and 

Fig. 8   The BMA results about the posterior distribution of numerical models’ weights and predictions
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M3SE), similar weights (SMA), and ensemble member elimination (WAM). Further, 
the BMA produces a PDF instead of a particular value for weights of numerical mod-
els; hence, no single optimum weight set can be determined. Figure  8 illustrated the 
obtained results of the BMA for Piez560 (other piezometers are not shown here). The 
posterior distribution of the numerical models’ weights is shown in the first three panels 
(a, b, and c), and the best values were displayed as red lines. Also, the last panel shows 
the 95% prediction uncertainty bounds of the BMA estimated by the DREAM algorithm 
(the gray area) versus the observed potential groundwater level (red line-circle). In this 
panel (d), the best prediction of the BMA is showed by blue dots, and the green line 
shows the Mfree simulation (as the best numerical model). This figure revealed that 
the best estimation of the BMA is associated with each numerical model skill. Also, 
the BMA did not set zero value as the weight of some numerical models to remove 
them from model averaging. Moreover, the BMA generated a distribution of different 
weights to supply the various combinations of the numerical models’ prediction for bet-
ter analysis.

Moreover, in order to provide more insight about weight identifiability, Fig. 9 illus-
trates the posterior distribution for the FD and Mfree models for Piez85, Piez560, 
Piez631, and Piez760 to compare the PDF of estimated weights. This figure revealed 
that the posterior distribution of the FD’s weights has a positive skew, while the PDF 
of the Mfree’ weight has more identifiability. In the final solution of the DREAM algo-
rithm, the Mfree model has obtained higher weight than FD. This conclusion proves 
that the estimated weights by the BMA have a direct relation to numerical model 
ability.

4 � Conclusion

In this work, we developed MATLAB program coding for three numerical models to 
simulate the groundwater level and compare the ability of five MATs to reduce prediction 
uncertainty. Afterward, the verification of proposed numerical models was implemented in 
a synthetic case study, and then simulation of fluctuations of groundwater level in a field 
study (Birjand aquifer) was performed using three verified models. Five different MATs 
approaches were then employed to combine three different numerical methods. Here are 
the major findings of this study:

First, the comparison of numerical model predictions with the observed values 
revealed the outstanding verification of proposed numerical models in groundwater 
modeling even in real and complex conditions. It was found that the Mfree model out-
performed FE and FD. Also, contrary to the routine of most related researches that the 
uncertainty of the numerical model is mainly neglected, current work confirmed that 
the numerical model uncertainty is considerable and it can significantly affect the final 
predictions.

Second, the results of the performance assessment of the MATs discovered that the 
application of MATs was effective in decreasing the total prediction uncertainty of numer-
ical models, as some MATs, including the MMSE and M3SE yield more accurate than 

Fig. 9   The posterior distribution of (a) FD’s weight) and (b) Mfree’s weight (b) in the different piezometers  ▸
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numerical models. Therefore current study extended effectiveness and applicability domain 
of MATs in groundwater numerical modeling context with high complex landscape.

However, there were some defects for the MATs based on MLR (i.e., WAM, MMSE, and 
MMSE). Some challenging including, similar weights and member elimination (by assigning 
the weights close to zero) complicate the interpretation of estimated weights by mentioned 
MATs. Also, The SMA considers the same weight for different numerical models, so that 
dismisses the superiority of the ensemble members. By contrast, the BMA prediction is not 
only outperformed numerical models but also BMA’s weights were highly correlated with 
the model ability, confirming that members that are more accurate give higher weight values.

Third, the promising results of the BMA in this study provide the required incentive 
for further addressing this approach for groundwater modeling. For example, the BMA 
has many developments in recent years, especially in determining the likelihood func-
tions. Compared to standard BMA, the main advantage of recent versions is formal likeli-
hood functions, assessing the correlated, heterscedastic, and non‐Gaussian residual errors 
(Schoups and Vrugt 2010). Hence, it is worthy that, future studies in this field examine the 
applicability of the various formal functions to quantify the total uncertainty of ground-
water modeling. Also, recently some related studies attempted to estimate the conditional 
PDF of the BMA through other fixed and flexible prior distributions such as Uniform, 
Binomial, Binomial-Beta, Benchmark, and Global Empirical Bayes (Samadi et al. 2020) 
and different approaches, such as Copula (Madadgar et al. 2014). Therefore, these modified 
versions of BMA can be tested in the groundwater modeling to present their ability. Fur-
ther, the current versions of BMA allocate larger/smaller weights to more/less proficient 
competing models, and these estimated weights are constant during simulation. This is 
while a relatively weak model may simulate some part of the groundwater level curve bet-
ter than a high-performance model. Therefore, here is posed a suggestion in future research 
to address new aspects of our research problem; the assessing the weights of the competing 
006Dodels whose simulation period is divided into several periods to consider the dynamic 
behavior of each competing model during the simulation process.

Fourth, regarding the successful application of new numerical methods and their capa-
bility of parameterizing (e.g., Mfree), it is suggested to integrate uncertainty of mathemati-
cal modeling next to other sources of uncertainty to provide a more realistic representa-
tion of the groundwater process. Also, this study was based on limited datasets, and there 
were some existed limitations in research progress that can be considered and overcome 
in future studies. For example, in the Mfree and FE formulations, there are various and 
influencing weight and shape functions. It would be an interesting future scope to examine 
their effect in the final prediction of numerical models. Moreover, this study applied the 
standard code of the DREAM introduced by Vrugt et al. (2008), while some researchers 
such as Laloy and Vrugt (2012) rendered more advanced DREAM codes (e.g., DREAMzs) 
in multi-dimensional and high-nonlinear problems.

Appendix

The appendix shows the formulations and discretization of numerical models used in 
the current study.
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A.1 FD

Taking the Taylor series approximation, the space derivatives of h in horizontal and ver-
tical directions can be calculated for each point. The change of variable v = h2 is imposed 
into to Eq. (1), to simplify computations for unconfined aquifer. Finally, using the for-
ward difference approximation for time derivatives, the fully implicit of FD is given by:

In the last, the groundwater level is obtained by using h =
√
v.

A.2 FE

This study used triangular element due to simplify in implementation and successful per-
formance. Therefore, the global domain of aquifer was divided to many elements and cal-
culation was performed on each element. The First step in FE is trial solution definition:

where ĥ(x, y) is trial solution (m),hL : is groundwater level for Lth node, n: total number of 
nodes in aquifer domain and NL(x, y) : is shape function. By substituting Eq. (10) into Eq. 
(1), and using fundamental assumption of WRM:

where WL is weight function that in FE method is similar to shape function based on Galerkin 
approach. The formulation of shape function for a specific triangular element consisted of i, j, 
and k vertices, is given by:

where A: is the area of triangular element. Using the integration by part in Eq. (11), the sec-
ond spatial derivatives of ĥ is converted to first spatial derivatives of ĥ and NL . Regarding 
Eq. (12), these spatial derivatives are calculated and final matrix form of FE is obtained. 
Considering forward approximation, the fully implicit scheme is given by:

(9)

vt+1
i,j

= (
1

� + 1
) ∗

(
(
vt+1
i+1,j

+ vt+1
i−1,j

+ vt+1
i,j+1

+ vt+1
i,j−1

4
) +

[
� ∗ vt

i,j

]
+

[
Qi,j

4 ∗ K

])

where,

� =
Sy ∗ a2

4 ∗ K ∗ dt.
√

vt
i,j

, a = Δx = Δy

(10)ĥ(x, y) =

n∑
L=1

hLNL(x, y)

(11)∫
Ω

(
Kh(

𝜕
2ĥ

𝜕x2
+

𝜕
2ĥ

𝜕y2
) + Q(i, j) − Sy

𝜕ĥ

𝜕t

)
WL.dΩ = 0

(12)

Ni =
1

2A

[
(xkyj − xjyk) + (yk − yj)x + (xj − xk)y

]

Nj =
1

2A

[
(xkyj − xjyk) + (yk − yj)x + (xj − xk)y

]

Nk =
1

2A

[
(xkyj − xjyk) + (yk − yj)x + (xj − xk)y

]
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where [G] is the conductance matrix, [P] is the mass matrix, {F} is the boundary flux and, 
{B} is the load vector.

A.3 Mfree

Mfree uses the local support domain ( Ωs ) around each node to determine the influencing 
nodes surrounding the point of interest. It can have various shapes (circle and rectangle) as 
well as different sizes. The local support domain is calculated from Ωs = rs.dc where dc is 
nodal distancing and rs is local support domain size. The effect of each point into support 
domain is determined by weight function. The weigh function has a very important role in 
Mfree, such that it influences on computation time, speed, and accuracy (He 2012). Indeed, 
weight function determines the weights of nodes fallen in support domain based on their 
distance (see Fig.  10). Each weight function should satisfy the following conditions: its 
magnitude for all points located into support domain is positive and it continuously reduces 
by increasing distance from center as it gives the maximum value in center while, the mini-
mum values are obtained in support domain edges. The most widely used functions are 
exponential and spline. This study employs the quartic spline function as following:

where WL(x) is weight function of Lth node relative to interested node, and rw is the weight 
function size.

(13)
(
[G] +

[P]

Δt

)
.
{
ht+1

}
=

(
[P]

Δt

)
.
{
ht
}
+ {BL} +

{
FL

}

(14)WL(x) =

{
1 − 6r2

L
+ 8r3

L
− 3r4

L
rL < 1

0 rL > 1

}
where, rL =

||x − xL
||

rw

Fig. 10   Illustration of problem domain and boundaries, local quadrature domain, support domain and 
weight function in the Mfree method
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In the Mfree, the Eqs. (10) and (11) is repeated exactly. In continue, the weight function 
is multiplied by each interior component of Eq. (11), and using the integration by part, the 
second spatial derivative is later converted to first order;

where Ωq and Γq are local domain and boundary. The local quadrature domain is taken 
from formula,Ωq = rq.dc where rq is local domain size. As shown in Fig. 10, the boundary 
Γq is comprised of three parts Γqt, Γqu and Γqi , where, Γqu and Γqt, indicate the part of 
local domain located on essential and natural boundaries, while Γqi indicates the interior 
boundary of local domain that has noting intersection with problem domain ( Ω ). We set 
the weight function size ( rw ) equal with quadrature domain size ( rq ) to vanish the integra-
tion over the Γqi , as recommended in previous studies (Atluri and Shen 2002; Liu 2002). 
Hence, the Eq. (15) can be simplified as following:

The approximation of Radial Point Interpolation Method (RPIM) was used to contrast 
Mfree shape function as following:

where ΦL(x, y) , R(x, y) and P(x, y) are shape, radial and polynomial functions. Also, R0 is 
the matrix of radial distance of points into support domain while, Pm is a polynomial func-
tion with m monomial. In this study, the Gaussian radial function and Pascal triangle with 
three monomials (m=3), were employed to create shape function:

where �c is a constant parameter of radial function. Substituting Eq. (18) into back Eq. 
(16), leads to following equation:

(15)
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(17)

ĥ(x, y, t) =

n∑
L=1

hLΦL(x, y)

where,

ΦL(x, y) = {R(x, y)P(x, y)}.G−1, G =

[
R0 Pm

PT
m

0

]

(18)
RX(rX� ) = exp[−�c(
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√
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PT
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}
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For accurate numerical integration in Eq. (21), each local domain ( Ωq ) should be divided 
into small regular partitions comprising multi Gauss quadrature points. Therefore, as shown in 
Fig. 10 for a point of interest there are two local domains: local quadrature domain and support 
domain ( Ωs ) of Gauss quadrature point. By simplification and rearranging of Eq. (19) we have:

Similar to FD and FE, using forward approximation for time, the fully implicit 
scheme can be expressed as following:

The all components in above equation are same to Eq. (13). A detailed discussion 
about local Mfree method is available in Atluri and Shen (2002), Liu (2002), and Liu 
and Gu (2005).
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