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Abstract
Accurate prediction of river discharge is essential for the planning and management of 
water resources. This study proposes a novel hybrid method named HD-SKA by integrat-
ing two decomposition techniques (termed as HD) with support vector regression (SVR), 
K-nearest neighbor (KNN) and ARIMA models (combined as SKA) respectively. Firstly, 
the proposed method utilizes local mean decomposition (LMD) to decompose the origi-
nal river discharge series into sub-series. Next, ensemble empirical mode decomposition 
(EEMD) is employed to further decompose the LMD-based sub-series into intrinsic mode 
functions. Further, the EEMD decomposed components are used as inputs in three data-
driven models to predict river discharge respectively. The prediction of all components is 
then aggregated to obtain the results of HD-SVR, HD-KNN and HD-ARIMA models. The 
final prediction is obtained by taking the average prediction of these models. The proposed 
method is illustrated using five rivers in Indus Basin System. In five case studies, six mod-
els were built to compare the performance of the proposed HD-SKA model. The data anal-
ysis results show that the HD-SKA model performs better than all other considered mod-
els. The Diebold-Mariano test confirms the superiority of the proposed HD-SKA model 
over ARIMA, SVR, KNN, EEMD-ARIMA, EEMD-KNN, and EEMD-SVR models.
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1  Introduction

The prediction of river discharge is essential for the planning and management of water 
resources. Hydrological data prediction provides critical information on the impending 
drought, heatwaves, or floods which brings devastation due to its delayed and inaccurate esti-
mation (Sehgal et al. 2014). River discharge prediction has gained attention to handle extreme 
events as an outcome of climate changes. Different studies on river discharge have been stud-
ied in China (Wei et al. 2013), the USA (Meshram et al. 2019), Iran (Dehghani et al. 2021) and 
North America (Alizadeh et al. 2021). Thus, precise river discharge estimation is necessary to 
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construct warning systems for water management to deal with extreme events (Wang et al. 
2018; Adnan et al. 2021).

Data-driven models are used to predict hydrological variables such as inflow, out-flow 
and discharge. These include both statistical and artificial intelligence (AI) models. Statisti-
cal models for time series include Moving Average (MA), Autoregressive (AR), ARMA 
and Autoregressive Integrated Moving Average (ARIMA) models and others (Bayazit 2015; 
Fashae et al. 2019; Bonakdari et al. 2020; Musarat et al. 2021; Aghelpour et al. 2021). How-
ever, these models are unable to capture time changes with sufficient accuracy because of lin-
ear analysis phenomena. Nowadays, AI models are widely used to model complex and non-
linear time series data. For example, K-nearest Neighbor (KNN), Support Vector Regression 
(SVR) and Artificial Neural Network (ANN) are popular models implemented in hydrological 
studies (Wu et al. 2008; Nikolic and Simonovic 2015; Poul et al. 2019; Sharghi et al. 2019; 
Riahi-Madvar et al. 2021). However, the drawback of AI models is that they do not incor-
porate noise and ignore the complex multi-scale structure of hydrological variables (Rezaie-
Balf et  al. 2019). Therefore, using a single model to predict river discharge is challenging. 
Researchers in the field of hydrology have introduced hybrid methods to improve the predic-
tion accuracy of models. This study aims to overcome the limitations on the models applica-
tion and proposes a new hybrid method that helps in the precise estimation of river discharge.

Many pre-processing techniques are integrated with data-driven models to create hybrid 
models for predicting hydrological variables. Some pre-processing methods such as Empiri-
cal Mode Decomposition (EMD), Local Mean Decomposition (LMD) and Ensemble EMD 
(EEMD) are combined with data-driven models to predict river discharge (Rezaie-Balf et al. 
2019; Silva et al. 2021; Vidya and Janani 2021). In this study, the focus is on improving the 
prediction of river discharge by using hybrid pre-processing techniques.

In this study, a novel hybrid method is proposed by combining two pre-processing tech-
niques with data-driven models. The two pre-processing techniques used are LMD and 
EEMD (abbreviated as HD) and three models applied are SVR, KNN, and ARIMA mod-
els (termed as SKA). Our proposed hybrid method uses LMD to decompose the original 
river discharge series into sub-series. Then, EEMD is applied to decompose the obtained 
sub-series into different components. The HD components are used as the inputs to SVR, 
KNN and ARIMA models. The predictions of these components are aggregated for HD-
SVR, HD-KNN and HD-ARIMA models respectively. The final forecast of HD-SKA model 
is obtained by taking the average of these predictions. The effectiveness of the proposed 
hybrid method is illustrated on the discharge data of five rivers of Indus Basin System, Paki-
stan. The rivers include Kabul River, Kanshi River, Kunhar River, Jhelum River (Domel 
station) and Jhelum River (Chattar Kallas station). The superiority of the HD-SKA method 
is successfully presented on five data sets where six benchmark models are used to verify 
the performance of the proposed hybrid model. The HD-SKA method is novel based on 
the combination of hybrid decomposition with data-driven models which efficiently decom-
poses discharge series and capture its complex features with higher prediction accuracy.

2 � Methodologies

2.1 � Local Mean Decomposition (LMD)

Smith (2005) introduced LMD as a tool for analyzing the time–frequency of the electro-
encephalogram signal. LMD is a self-adaptive time–frequency approach that is useful in 
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capturing non-linear features of data (Liu and Han 2014; Huynh et al. 2021). LMD decom-
poses a signal into several product functions ( PFs ) that have a physical meaning. The 
time–frequency distribution of the signal is obtained by assembling the instantaneous fre-
quency and instantaneous amplitude of all the obtained PFs . Given the original signal y(t) , 
it is decomposed using the following steps:

	 (i)	 Obtain the local extrema ( ni ) from y(t) and then compute the average ( mi ) of the two 
successive extrema as follows:

		    All the mean values ( m�
i
s) are connected through the straight lines and the local 

mean function m11(t) is formed by moving averaging which smooth the m′
i
s. 

	 (ii)	 The envelope estimate ( ai ) is defined as follows:

		    The estimates of the local envelope are smoothed in similar ways as the local 
means to derive the envelope function a11(t).

	 (iii)	 The m11(t) is subtracted from y(t) which forms the resulting signal as h11(t):

	 (iv)	 h11(t) is amplitude demodulated by dividing it by envelope function a11(t)  which 
forms s11(t) given as:

		    The function s11(t) is the purely frequency modulated signal known as the envelope 
function a12(t) of s11(t) should satisfy the condition a12(t) = 1 . If this condition is 
not satisfied, then s11(t) is regarded as the original signal and the above process is 
repeated until the purely frequency modulated signal ( s1n(t) ) is derived that satis-
fies −1 ≤ s1n(t) ≤ 1 . Therefore,

where 

⎧⎪⎨⎪⎩

s11(t) = h11(t)∕a11(t)

s12(t) = h12(t)∕a12(t)

⋮

s1n(t) = h1n(t)∕a1n(t)

.

	 (v)	 The envelope signal a1(t) known as instantaneous amplitude function is obtained 
by taking the product of the functions of successive envelope estimate which are 
obtained during the iterative procedure discussed above.

where l denoted the times of iterative procedure.

(1)mi =
1

2

(
ni + ni+1

)

(2)ai =
1

2
|ni + ni+1|.

(3)h11(t) = y(t) − m11(t).

(4)s11(t) =
h11(t)

a11(t)
.

(5)

⎧⎪⎨⎪⎩

h11(t) = y(t) − m11(t)

h12(t) = s11(t) − m12(t)

⋮

h1n(t) = s1(n−1)(t) − m1n(t)

,

(6)a1(t) = a11(t)a12(t)… a1n(t) =
∏n

l=1
a1l(t),
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	 (vi)	 The first product function (PF1) is obtained by taking the product of a1(t) with the 
purely s1n(t) i.e., PF1 = a1(t)s1n(t). The instantaneous amplitude of PF1 is a1(t) and 
the instantaneous frequency of PF1 can be obtained from s1n(t) as:

	 (vii)	 The difference of y(t) from PF1 is obtained as the new resulting signal. The whole 
process is repeated k times until uk(t) is monotonic or constant.

		    Up to this point. However, the original signal can be obtained by

where q is the number of PF and uk(t) represents the residual term. In this study, the LMD 
is applied in Python through Jupyter Notebook in Anaconda Navigator using “pyLMD” 
package.

2.2 � Ensemble Empirical Mode Decomposition

In 1998, Huang introduced empirical mode decomposition (EMD) to analyze non-linear 
signals. In EMD, a signal is decomposed into intrinsic mode functions ( IMFs ). To become 
an IMF , a signal needs to satisfy two conditions (a) the average of lower and upper enve-
lopes is zero everywhere and (b) The number of extremes and zero-crossing should be 
equal or differ at most by 1. However, EMD has a major issue of mode-mixing (Huang 
et al. 1998). To overcome the drawback of EMD, Wu and Huang (2009) introduced Ensem-
ble empirical mode decomposition (EEMD) which has a noise-assisted system. The EEMD 
algorithm is given as follows:

(i)	 Initialize the amplitude of added white noise ( wnj(t) ) and ensemble number N to the 
observed series y(t) . The jth noise-added signal is yj(t) = y(t) + wnj(t).

(ii)	 All the local minima and maxima of yj(t) are identified as lower and upper envelopes 
obtained by cubic spline functions.

(iii)	 Compute the average of m1(t) lower and upper envelopes.
(iv)	 Compute difference of yj(t) and average value mj(t) i.e., h1(t) = yj(t) − m1(t).

(v)	 Check if h1(t) is the first IMF component of the signal i.e., h1(t) = c1(t), r1(t) is defined 
from the remaining data by r1(t) = yj(t) − c1(t). Otherwise, steps (ii)-(v) are repeated.

To determine the residue ( r1(t) ) as a new signal, step (ii)-(v) should be repeated n times 
until the sift out all the IMFs till the stopping criterion is met. The stopping criteria occurs 
when the IMF component or residue becomes so small that is smaller than the predeter-
mined value. After the sifting processing, the original signal yj(t) can be determined as the 
sum of all the IMFs and the residual error as follows:

(7)f1(t) =
1

2�
.
d
[
arccos

(
s1n(t)

)]
dt

.

(8)

⎧⎪⎨⎪⎩

u1(t) = y(t) − PF1(t)

u2(t) = u1(t) − PF2(t)

⋮

uk(t) = u(k−1)(t) − PFk(t)

.

(9)y(t) =
∑k

q=1
PFq(t) + uk(t),
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where n is the number of IMFs , ck(t) denotes the kth IMF when adding jth noise and  rn(t) 
denotes the final residual error.

2.3 � Support Vector Regression (SVR)

The SVR is a widely applied supervised learning algorithm for regression and classifica-
tion problems. SVR algorithm estimates the relationship between the output and input of 
a system using an existing sample (Vapnik 1995). Therefore, SVR is applied to model the 
non-linear and complex features of the river discharge series.

Suppose we have the training set with n observations 
{
xj, yj

}
 , where yj represents the 

estimated output value of the data, xj is the corresponding lagged input vector. Then, the 
SVR is developed as follows:

where w is the weights vector, b is a constant which represents the bias and Φ(x) is the non-
linear transfer function applied to project the input data into high dimensional space. Using 
the structural approach of risk minimization, Eq. (11) is solved as follows:

where C > 0 denotes the penalty parameter, �∗ and � represent the slack variables which 
denotes the lower and upper constraint of g(x) and � represents the insensitive loss func-
tion. The Lagrangian function is further implemented which uses the regression function to 
replace the Φ(x) and weight vector given in the Eq. (11) as:

where �j and �∗
j
 are the Lagrange coefficients and k

�
x, xj

�
= ⟨Φ(x),Φ

�
xj
�⟩ denotes the kernel  

function. There are different forms of kernel functions such as linear and radial basis. How-
ever, the choice of kernel depends upon the nature of the data. In this study, the SVR algo-
rithm is implemented in R programming language using “e1071” package.

2.4 � K‑Nearest Neighbor (KNN)

Cover and Hart (1967) introduced the KNN algorithm as a non-parametric method for pat-
tern recognition work. The KNN algorithm also has a good approximation ability for non-
linear dynamics and is used for time series prediction (Martinez et  al. 2018; Al-Juboor 
2021). Thus, it is utilized as an efficient tool to capture non-linear dynamics of river dis-
charge in this study.

The KNN algorithm calculates the similarity (neighborhood) of the input variables 
Xo =

{
x1o, x2o,… , xno

}
 with historical observations of the input variable Xt =

{
x1t, x2t,… , xnt

}
 

using Euclidean distance function ( Dot ) which is given by (Araghinejad 2013):

(10)yj(t) =
∑n

k=1
ck(t) + rn(t),

(11)g(x) = wTΦ(x) + b,

(12)Minimize ∶

�����w2����
2

+ C
∑n

j=1
(� + �∗)

�
subject to ∶

⎧
⎪⎨⎪⎩

g
�
xj
�
− yj ≤ � + �∗

yj − g
�
xj
�
≤ � + � ,

� , �∗ ≥ 0

(13)g
�
xj
�
=
∑n

j=1

�
�j − �∗

j

�
k
�
x, xj

�
+ b,
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The predicted variable ( Yo ) is computed by using the probabilistic function of the 
observed values of discharge series ( Tp):

where f
(
Dop

)
 denotes the kernel function of the KNN computed by using the distance ( Dop

):

The main parameter of KNN algorithm is K , finding an optimal value of K is a practical 
problem. In this study, the optimal value of K is computed by using metrics through the 
“caret” package in R.

2.5 � Autoregressive Integrated Moving Average (ARIMA) Model

ARIMA model is a simple method for predicting a time series. ARIMA model is applica-
ble for both non-stationary and stationary time series, which makes it an efficient model for 
predicting the uncertainty of river discharge (Wang et al. 2018). Thus, ARIMA model is 
used to predict river discharge which has uncertainty with time changes. Let yt be the time 
series and �t represent the random error at time t . Then yt is considered to be the linear 
function of past p observations (yt−1, yt−2,… , yt−p) and q random errors (�t, �t−1, …, �t−q ). 
The corresponding ARIMA model is given as:

where �j(j = 0, 1, 2,… , p) are the autoregressive coefficients, �j(j = 0, 1, 2,… , q) are the 
moving average coefficients and �t is identically distributed with zero mean and constant 
variance. Similar to parameter d , the coefficients q and p are referred as the order of the 
ARIMA model. The main issue of ARIMA model is the determination of the appropriate 
order of ( p, d, q ) which is determined using correlation tools i.e., autocorrelation function 
(ACF) and partial ACF (Box et al. 2008).

3 � Proposed Hybrid Modelling Method

In this study, a novel hybrid method is proposed to enhance the forecasting accuracy of 
hydrological data. The hybrid method proposed in this study is shown in Fig. 1.

The steps of the proposed hybrid method are described as follows:

(i)	 The LMD algorithm is applied to decompose the original river discharge series into 
several product functions ( PFs ) and residual.

(ii)	 The EEMD is employed to decompose the sub-series obtained in step (i). In this step, 
each component obtained by LMD is further decomposed into IMFs and residual.

(14)Dot =

�∑n

j=1

�
xjo − xjt

�2
, t = 1, 2,… , n.

(15)Yo =
∑K

p=1
f
�
Dop

�
× Tp,

(16)f
�
Dop

�
=

1∕Dop∑K

p=1

�
1∕Dop

� .

(17)yt = �1yt−1 + �2yt−2 +⋯ + �pyt−p + �t − �1�t−1 − �2�t−2 −⋯ − �q�t−q,
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(iii)	 The SVR, KNN and ARIMA models are applied to predict each IMF and residual 
component obtained in step (ii).

(iv)	 The predictions of all components is aggregated for HD-SVR, HD-KNN and HD-
ARIMA models.

(v)	 The average of the predictions obtained from HD-SVR, HD-KNN and HD-ARIMA 
models is the final prediction of the river discharge series.

4 � Case Studies

In this section, the description of data and the index measures used for evaluation are pro-
vided. Program codes were written in R and Python programming language version 4.0.3 
and 3.7, respectively. All the analyses were performed on a personal computer with Intel 
Core i9-9900 CPU and 32.0 GB of RAM.

4.1 � Data Description

In this study, the discharge data of different rivers in Indus Basin System has been col-
lected which is used for the thorough evaluation of the performance of the proposed hybrid 
method. The data is collected for five rivers i.e., Jhelum River (Chattar Kallas station), 
Jhelum River (Domel station), Kabul River (Nowshera station), Kunhar river (Talhata sta-
tion) and Kanshi River (Palotte station). The daily river discharge data is obtained from 
the Surface Water Hydrology Project agency of Water and Power Development Authority 
(WAPDA) Pakistan with different hydrological periods given in Table 1.

Orignal River
Discharge Series LMD

PF1 EEMD

IMF1

SVR
KNN

ARIMA
... ...

IMFm

SVR
KNN

ARIMA

RESIDUAL
SVR
KNN

ARIMA
... ... ... ...

PFn EEMD

IMF1

SVR
KNN

ARIMA
... ...

IMFm

SVR
KNN

Aggregate predictions of
three hybrid models:

a. HD-SVR (F1)
b. HD-KNN (F2)   
c. HD-ARIMA (F3)

Generate final
forecast by
averaging

i.e., (F1+F2+F3)/3ARIMA

RESIDUAL
SVR
KNN

ARIMA

RESIDUAL EEMD

IMF1

SVR
KNN

ARIMA
... ...

IMFm

SVR
KNN

ARIMA

RESIDUAL
SVR
KNN

ARIMA

Fig. 1   Proposed Hybrid Method (HD-SKA)
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The river discharge series (m3/s) is denoted by Si for i = 1, 2, 3, 4 and 5 for Jhelum River 
(Chattar Kallas station), Jhelum River (Domel station), Kabul River, Kunhar river and Kanshi 
river respectively. Initially, the data cleaning procedure was performed on the five data series 
and the missing values were replaced by the average discharge of the month. In Table 1, the 
descriptive summary of the river discharge is given. It shows that on average the discharge was 
highest in S1. The standard deviation (SD) of discharge is 564.13 m3/s, 210.66 m3/s, 750.68 
m3/s, 85.18 m3/s and 9.31 m3/s in S1, S2, S3, S4 and S5, respectively. The shape of discharge of 
all rivers is positively skewed.

Figure 2b represents the box plot of discharge of five rivers. There is an evident difference 
between the discharge of rivers. The discharge of S5 is relatively low as compared to other 
rivers (S1-S4). In Fig. 2b, some unusual discharge records are in all rivers that indicate a sign 
of water overflow in these rivers that is a hydrological hazard and needs proper exploration to 
avoid floods.

Figure 3 represents the time series plot of river discharge. It shows that the river discharge 
in all cases is non-linear, volatile and has huge variability during the given years. The dis-
charge series (S1-S5) is divided into the training and testing sets. The first 80% observations 
are used as the training set and the last 20% observations are used as the testing set.

4.2 � Evaluation Indexes

The root mean square error (RMSE), mean absolute error (MAE) and root-relative square 
error (RRSE) are adopted to evaluate the prediction performance of models. Several research-
ers have used these indicators e.g., Rezaie-Balf et al. (2019). These measures are defined as 
follows:

RMSE =

�
1

m

∑m

j=1

�
yj − ŷj

�2
,

MAE =
1

m

∑m

j=1
�yj − ŷj�,

Table 1   Hydrological stations details and descriptive summary

Jhelum
River

Jhelum
River

Kabul
River

Kunhar River Kanshi
River

Stations Chattar Kallas Domel Nowshera Talhata Palotte
Abbreviation S1 S2 S3 S4 S5

Period 2003–2017 2000–2017 2005–2017 2005–2017 2003–2017
Years 15 18 13 13 15
Observations 5479 6575 4748 4748 5479
Mean (m3/s) 748.74 272.5 871.79 96.86 2.39
SD (m3/s) 564.13 210.66 750.68 85.18 9.31
Minimum (m3/s) 104.6 35.28 68.7 15.75 0.09
Median (m3/s) 560.2 200.6 531.6 58.09 1.09
Maximum (m3/s) 2823 1469 4724 478.2 230.6
Skewness 0.82 1.25 1.41 1.24 13.49
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where yj represents the actual value, ŷj represent the predicted value, ̄̂y is the mean of pre-
dicted values and m is the total number of observations in the considered case. To further 

RRSE =

�����
∑m

j=1

�
yj − ŷj

�2
∑m

j=1

�
̄̂y − ŷj

�2 ,

Fig. 2   (a) Pakistan Rivers Network (b) Box plot of original river discharge series (S1-S5)
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Fig. 3   Original River Discharge series (S1-S5)
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evaluate the performance of models, the improved percentage indicators of RMSE, MAE 
and RRSE are used in this study. These are defined as follows:

5 � Results and Discussion

In the proposed hybrid method, LMD and EEMD algorithms are used to decompose the 
original river discharge series. The training set of the original discharge series of S1 is 
decomposed by LMD and the resulting PFs are given in Fig. 4. Then, using EEMD each 
PF and residual is further decomposed into IMFs . The EEMD decomposition results of 
PF1 to PF4 are presented in Fig.  5. Similarly, all the other series are decomposed. The 
remaining decomposition results of S1-S5 are provided in the supplementary materials. 
Further, the EEMD decomposed components were fed to SVR, ARIMA and KNN models 
individually. The predictions for all components is obtained and aggregated respectively 
to obtain the final forecasts of the HD-SVR, HD-KNN and HD-ARIMA models. Lastly, 
the average prediction of these three models is computed as the final prediction of the HD-
SKA model.

Discharge data of five rivers is used to verify the prediction performance of the pro-
posed HD-SKA model. The six benchmark models compared to the HD-SKA model are 
ARIMA, SVR, KNN, EEMD-ARIMA, EEMD-SVR and EEMD-KNN models. Lastly, the 
proposed hybrid model (HD-SKA) is applied to predict the daily river discharge of S1-S5.

5.1 � Prediction Results

In this section, the prediction results of seven models on the S1-S5 series are compared 
and discussed. The prediction results of the training and testing phase are represented in 
Table 2. The detailed results are summarized as follows:

	 i.	 The SVR, KNN and ARIMA models are close competitors of each other in predicting 
daily river discharge of S1-S5.

	 ii.	 The EEMD-based models have better performance than single SVR, ARIMA, and 
KNN models except in some instances. For example, in S4 training phase, the MAE of 
the EEMD-KNN model is more than the KNN model. The use of the decomposition 
technique improves the prediction accuracy of models for hydrological time series 
(Huynh et al. 2021). Therefore, EEMD has improved the prediction accuracy of SVR, 
ARIMA and KNN models in all five cases.

	 iii.	 For S1-S5, the RMSE, MAE and RRSE of the proposed HD-SKA model are smaller 
compared to the other considered models. However, there are certain situations where 

PRMSE =
RMSE1 − RMSE2

RMSE1

× 100%,

PMAE =
MAE1 −MAE2

MAE1

× 100%,

PRRSE =
RRSE1 − RRSE2

RRSE1

× 100%.
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the MAE of the proposed HD-SKA model is slightly higher than EEMD-based models 
but this difference is negligible. The proposed HD-SKA model has better predictive 
accuracy than EEMD-based ARIMA, KNN and SVR models.

	 iv.	 Overall, the proposed HD-SKA model has better performance than all considered 
models in the study. The implementation of hybrid decomposition in the proposed 

Fig. 4   LMD results for the original river discharge series of S1
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Fig. 5   Decomposition of PF 1-PF 4 obtained from LMD using EEMD (S1)
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method has enhanced the prediction capability of models. The HD-SKA model pro-
duces reliable river discharge prediction.

Figure  6a represents the prediction performance of the HD-SKA model compared to 
EEMD-based models in the testing phase of the S1 and S2 series. It can be observed that 
the proposed HD-SKA model precisely predicts the S1 and S2 series and is quite near to the 
original daily discharge. The remaining prediction plots for the S3-S5 series are provided 
in the supplementary material. For further verification of HD-SKA model performance, 
the coefficient of determination (R2) of all the seven models is represented in Fig. 6b. It is 
observed that the proposed HD-SKA model yields highest R2 value and has produces bet-
ter prediction results compared to all other considered models in both training and testing 
phase.

5.2 � Improvements by the Proposed Hybrid Model

The effectiveness of hybrid decomposition in the proposed hybrid model is illustrated in 
Table 3 through improved percentage indexes of RMSE, MAE and RRSE. By comparing 
the percentage improvements of the HD-SKA model to ARIMA, SVR and KNN models, it 
is observed that PRMSE, PMAE, and PRRSE are all positive. The performance of the proposed 
HD-SKA model is superior to ARIMA, SVR, and KNN models in all five cases.

Further, the comparison of percentage improvements of the proposed HD-SKA model 
with EEMD-based models indicates that the HD-SKA model performs better than EEMD-
ARIMA, EEMD-SVR and EEMD-KNN in all case studies. The PRMSE, PMAE, and PRRSE 
are mostly positive except PMAE index in some situations. For example, the MAE of the 
HD-SKA model compared to the EEMD-KNN model is increased by 1.38% in the training 
phase of the S5 series. However, it can be observed that both models have similar perfor-
mance and the difference is not much.

Overall, the proposed HD-SKA model has better performance than all other consid-
ered models. The hybrid decomposition-based models have better predictive performance 
than single decomposition-based models as studied in the literature see Vidya and Janani 
(2021). It may be deduced that the implementation of LMD with EEMD in the proposed 
hybrid model efficiently reduces the complexity and randomness of river discharge.

The proposed HD-SKA model in this study can serve as a helpful tool for the accurate 
prediction of river discharge.

5.3 � Diebold‑Mariano Test

The Diebold Mariano (DM) test is a well-known statistical hypothesis testing approach 
that helps in the identification of the degree of discrepancy among the proposed model and 
the compared models (Silva et al. 2021). The null hypothesis of the DM test is that the two 
models have similar prediction accuracy against the alternative that model 2 has lower pre-
diction accuracy than model 1. Symbolically,

H0 ∶ E[L
(
e1
t
)
]
≥ E[L

(
e2
t
)
]
,
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Fig. 6   Models analysis (a) Prediction performance of HD-SKA model on testing data of S1 and S2 series 
(b) Prediction accuracy plot for of seven models for S1-S5
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where e1
t
 and e2

t
 are the prediction errors of two comparison models and L denotes the loss 

function of the prediction errors. The DM statistic is defined as follows:

where f̂d(0) represents the spectral density, m is the length of prediction results,  2𝜋 f̂d(0) 
denotes the consistent estimator of the asymptotic variance and d̄ =

1

m

∑m

t=1

�
L
�
e1
t

�
− L

�
e2
t

��
 . 

In this study, the loss function used is mean squared error (MSE). The null hypothesis will 
be rejected if DM < −Z𝛼∕2 where � is the level of significance.

In this study, the DM test is applied to verify the prediction results of models at 1%, 5%, 
and 10% levels of significance. The null hypothesis will be rejected for S1-S5 if the DM 
statistic value is smaller than –2.58, –1.96, and –1.64 for 1%, 5% and 10% levels of signifi-
cance respectively. The DM test is applied using the proposed HD-SKA model as “model 
1” and benchmark models as “model 2” respectively.

In Table 4, the DM test statistic values on predictions of testing data sets are given for 
S1-S5 series. The null hypothesis is rejected for all cases except for the EEMD-SVR model 
in S5. The DM test results reveals that the performance of the proposed HD-SKA model for 
the S1-S5 series is markedly diverse and superior to all considered models. However, in S5 
the EEMD-SVR model and HD-SKA model have similar prediction accuracy. Thus, the 
proposed HD-SKA model has higher prediction accuracy among all considered models for 
river discharge prediction.

6 � Conclusion

In this study, a novel hybrid method is proposed to predict daily river discharge. The appli-
cation of the proposed method is illustrated using discharge data of five rivers in the Indus 
Basin System, Pakistan. The performance of the proposed HD-SKA model is compared 
with six benchmark models. The models’ performance is evaluated using different perfor-
mance indicators and the Diebold-Mariano test. The data analysis results show that the 
proposed HD-SKA model outperforms all the models considered in the study. The results 
of the Diebold-Mariano test revealed that the HD-SKA model possesses a higher predictive 
ability than benchmark models. Overall, the proposed hybrid method can be a successful 

H1 ∶ E[L
(
e1
t
)
]
< E[L

(
e2
t
)
]
,

(18)DM =
d̄√

2𝜋�fd(0)∕m

→ N(0, 1),

Table 4   Diebold-Mariano test of different models in testing phase of S1-S5

*  is at 10%; ** is at 5%; *** is at 1% significance level

Different Models S1 S2 S3 S4 S5

ARIMA –4.2243*** –3.7329*** –2.7271*** –4.1192*** –6.6506***

SVR –5.4130*** –4.5160*** –3.4066*** –4.5478*** –5.6435***

KNN –5.2791*** –4.3066*** –3.9809*** –4.3201*** –6.1030***

EEMD-ARIMA –7.0139*** –8.5430*** –1.3390* –1.8785** –3.3140***

EEMD-KNN –3.7729*** –3.5380*** –1.8044** –3.9566*** –5.8233***

EEMD-SVR –1.9166** –2.0631** –3.5239*** –3.9858*** –1.2024
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tool to predict daily river discharge. The proposed method has greater accuracy when the 
number of components identified at the second decomposition stage is not too large. More-
over, the application of the proposed method may be checked on large data sets in future 
research work.
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