
Vol.:(0123456789)

https://doi.org/10.1007/s11269-021-03007-x

1 3

Prediction of Seasonal Rainfall with One‑year Lead Time 
Using Climate Indices: A Wavelet Neural Network Scheme

Meysam Ghamariadyan1 · Monzur A. Imteaz1

Received: 15 September 2020 / Accepted: 16 October 2021 / 
© The Author(s), under exclusive licence to Springer Nature B.V. 2021

Abstract
This paper presents the development of the Wavelet Artificial Neural Networks (WANN) model 
to forecast seasonal rainfall in Queensland, Australia, using the Inter-decadal Pacific Oscillation 
(IPO), Southern Oscillation Index (SOI), and Nino3.4 climate indices as predictors. Eight input 
sets with different combinations of predictive variables from 1908 to 2016 were considered to 
develop forecast models for ten selected rainfall stations in Queensland, Australia. The outcomes 
of WANN modeling are compared with Artificial Neural Networks (ANN). Moreover, the skill-
fulness of the WANN in comparison to the current climate prediction system used by the Aus-
tralian Community Climate Earth-System Simulator–Seasonal (ACCESS–S) and climatology 
forecasts are investigated. Besides, the WANN predictions are compared with two other conven-
tional approaches like autoregressive integrated moving average (ARIMA) and multiple linear 
regression (MLR) for further investigations. The comparisons indicated that the WANN achieves 
the lower average root mean square error (RMSE) in all the stations with 112.2mm compared to 
ANN with 178.9mm, ACCESS-S with 281.8mm, climatology prediction with 279.7mm, MLR 
with 195.1mm, and ARIMA with 187.7mm. The WANN seasonal rainfall forecasts are more 
accurate than the ANN, ACCESS-S, Climatology, MLR, and ARIMA by 37%, 60%, 53%, 42%, 
and 40%, respectively. It was also found that the ACCESS-S underestimates the extreme seasonal 
rainfall during the testing period up to 80%, while it is limited to 21% for the WANN among the 
selected stations. The results show that the WANN model outperforms the MLR, ARIMA, cli-
matology, ACCESS-S, and ANN forecasts in all the selected stations.

Keywords Climate indices · Seasonal rainfall forecasting · Wavelet artificial neural 
network

1 Introduction

Forecasting seasonal rainfall a few months in advance is potentially valuable for a vast 
range of decision-makers and users, including irrigators and urban and rural water man-
agers, to devise risk management strategies. It is also essential for the regions with high 
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spatial and temporal rainfall variability. However, forecasting rainfall is complex due to 
participating in many variables such as temperature, pressure, climate drivers, etc. In the 
past decades, Artificial Intelligence (AI) based methods were introduced to overcome the 
complexity of rainfall forecasting. ANNs are one of the AI-based methods that have been 
broadly used for forecasting rainfall (Pakdaman et al. 2020; Poonia and Tiwari 2020; Yadav 
and Sagar 2019). For example, Babel et al. (2015) developed three ANN models with var-
ious explanatory variables for forecasting rainfall in Mumbai, India. ANN was used for 
post-processing the monthly precipitation forecast by Pakdaman et al. (2020). They showed 
that the performance of ANN is superior compared to the multi-model ensemble (NMME) 
models for all months.

However, sometimes, the ANN is integrated with other techniques to improve the results 
and accuracy of the models. There have been many attempts to improve rainfall predic-
tion by developing novel hybrid techniques. For example, recently, a novel post-processing 
technique was proposed by Yazdandoost et  al. (2020) that can improve the conventional 
method’s performance over the monthly and seasonal predictions. There is another suc-
cessful effort in using hybrid techniques in forecasting rainfall. A new hybrid ANN was 
developed to improve the performance of the ANN in forecasting rainfall by Abdel-Kader 
et al. (2021). A Hybrid Adaptive Neuro-Fuzzy Inference System was suggested to evalu-
ate temporal rainfall variability by Farrokhi et al. (2020). Diop et al. (2020) established a 
hybrid Multilayer Perceptron-Whale Optimization Algorithm (MLP-WOA) model for fore-
casting annual rainfall. They found that the proposed method improves the performance of 
the Multilayer Perceptron (MLP).

The wavelet transform is one of the techniques that help researchers to investigate cli-
matological events precisely and help them have better insight into these phenomena. This 
technique can capture useful hidden information of weather parameters such as rainfall and 
climate drivers, which cannot be easily seen in the main time series. He et al. (2015) con-
ducted appreciable research to forecast monthly rainfall in Australia using a hybrid wave-
let ANN. Their study included the processing and input selection methodologies. Sharghi 
et al. (2018) applied a wavelet ANN technique for forecasting daily and monthly rainfall in 
two watersheds. They showed that the WANN could enhance the prediction of the simple 
feed-forward neural network up to 50%. A model using the integration of wavelet trans-
form and convolutional neural network (CNN) was developed for forecasting monthly and 
daily rainfall by Chong et al. (2020). They showed that their proposed model captures pat-
terns of the rainfall time series satisfactorily. Recently, Ghamariadyan and Imteaz (2021a) 
developed a wavelet-ANN model for forecasting monthly rainfall in Queensland, Australia, 
with up to twelve-month lead time.

The Australian climate is variable compared to other parts of the world (Bagirov and 
Mahmood 2018). It has been changing in recent decades, and researches indicate that it 
has undergone higher temperature and less rainfall. The El Nino–Southern Oscillation 
(ENSO) and Indian Ocean Dipole (IOD) are the most significant anomalies that cause rain-
fall variability in Australia (Hasan and Dunn 2012). The ENSO is mainly measured using 
the southern oscillation index (SOI) (Abtew and Trimble 2010). In addition, IPO is another 
influential index that is often defined as exhibiting an “ENSO-like” decadal pattern (Power 
et al. 1999). The IPO is measured by variations in the sea surface temperature in the Pacific 
Ocean.

There are few studies on combined and lagged effects of climate indices on rainfall 
(Ghamariadyan and Imteaz 2021b; Mekanik et al. 2013; Schepen et al. 2012). It is note-
worthy that understanding the relationships between rainfall and different climate indices 
can help to have a better insight to predict future rainfall.

M. Ghamariadyan, M. A. Imteaz 5348



1 3

The contribution of this study is to develop a coupled wavelet-ANN for predicting sea-
sonal rainfall in Queensland. Also, results are compared with the conventional methods 
(such as MLR, ARIMA), the current prediction system of the Bureau of Meteorology 
(BOM) of Australia, and climatology forecasts.

2  Methodology

A summary of the procedure used in the study is shown in Fig. 1. A correlation analysis is 
conducted in the first step, and then the best input set is selected according to the correla-
tion analysis. Next, the various models are developed, and the best input set for each model 
is identified based on the RMSE value. In the last step, the performance of WANN is com-
pared with other methods using various evaluation criteria.

The methodology for forecasting seasonal rainfall in this study is mainly based on the 
WANN and ANN methods. To date, seasonal rainfall forecasting in Australia has been 
investigated for some regions (Mekanik et al. 2016; Tozer et al. 2017). Nevertheless, no 
study has been conducted to predict the seasonal rainfall in Queensland. Besides, there 
is no versatile model to forecast the seasonal rainfall one year ahead with reasonable 
accuracy.

2.1  Wavelet Analysis

The concept of the wavelet theorem, primarily, was introduced as a substitute for the Fourier 
transforms (FT). In wavelet analysis, the primary signal is split into various sub-signals with 
lower resolution using shifting and scaling processes. The wavelet is shifted to align with 
the feature we are looking for in the signal. Then, the similarity of the shifted or stretched 
signal through the scaling process is measured using a factor called the wavelet coefficient 
(Mallat 1999).

It is noteworthy that selecting the appropriate wavelet function (mother wavelet) affects 
the precision of the results. The proper wavelet function is acquired through the trial and 

Fig. 1  Schematic diagram of different models development and comparison
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error process (Nourani et al. 2012). In the current study, Dmey (Discrete Meyer) was cho-
sen as the main wavelet function.

In wavelet transform analysis, the signal is converted from the time domain into the 
time/frequency domain. It is mathematically defined as (Mallat 1999):

where, f (t) stands for the main signal, �(t) is wavelet function with length (t), a and b are 
scale factors, and time-like translation variables, correspondingly. In the high-scale band, 
the wavelet is greatly stretched, while the wavelet is immensely compacted in the low-scale 
band.

The approximation and detail components are obtained after decomposition of the main 
signal at different levels (identifying levels number is based on trial and error) and are 
defined by

where, A and D stand for “approximation” and “detail”, respectively. i shows the level of 
decomposition. In this definition, the low-frequency signal ( A ) consists of a high-frequency 
and low-frequency signal. In other words, A1 is a low-frequency signal that can create A2 (a 
low-frequency signal) and D2 (a high-frequency signal).

2.2  Artificial Neural Networks

ANNs are computing systems that try to imitate human brain properties by learning and 
training rules. An ANN comprises nodes connected by some weighted synaptic connec-
tions. An MPL neural network contains an input and output layer with one or more hidden 
layers. The hidden nodes’ size is obtained through trial and error, and it relies on the com-
plexity of the problem. An MLP is mathematically defined as (Kim and Valdés 2003):

where, wji is the weights of the hidden layer that links the ith neuron in the input layer with 
the jth neuron in the hidden layer; fo stands for the output layer’s activation function; wjo is 
the bias for the jth hidden neuron; wkj denotes the weight of the output layer that connects 
jth neuron with the kth  neuron in the output layer; wko is the bias for the kth output neuron; 
fh is the activation function of hidden neurons and ŷk is the neural network’s output.

For the hidden layer, the tan-sigmoid transfer function, and for the output layer, the lin-
ear purlin ( g ) is used. The use of sigmoidal and linear form transfer functions for hidden 
and output layers is recommended, respectively (Maier and Dandy 2000).

In this study, the training algorithm is the Levenberg–Marquardt (LM) algorithm. 
The early stop technique is used to eliminate overtraining. In this process, the training is 
stopped when the validation error begins to increase while the training set error is still 
declining. Hence, by using this procedure, overfitting does not happen. Moreover, an out-
of-sample data set is selected to evaluate the performance of the model accurately.

(1)f (a, b) =
1
√

a∫
∞

−∞

f (t)�
�

t − b

a

�

dt

(2)f (t) = D1 + D2 + D3 +⋯ + Di + Ai

(3)ŷk = f0

[

∑M

j=1
wkj.fh

(

∑N

i=1
wjixi + wjo

)

+ wko

]
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2.3  Integrating the Wavelet with ANN

For connecting the ANN with the wavelet, the approximations (A) and details (D) acquired 
through the wavelet analysis at each level are used as inputs of the ANN. That means that the 
time series of the approximation and detail at each level is used as the input of the ANN. For 
instance, through the wavelet analysis, if there is only one time series as input set (model 1) and 
three decomposition levels are used, then the six sub-time series is applied as the network’s input.

Figure 2 shows the process of connecting the wavelet and ANN. In this figure, ‘A’ and 
‘D’ stand for the approximation and detail at each level. Also, ‘m’ and ‘n’ are numbers of 
inputs and levels, correspondingly.

2.4  MLR and ARIMA

In this study, the classical methods of the ARIMA and MLR are also used for further com-
parison. The MLR is a linear method to create a correlation between the dependent and 
independent variables (Brown 2014). In MLR, the stepwise technique is used, and the 
F-test is employed to identify the best-fitted model (Galvao et al. 2008).

The ARIMA comprises autoregressive (AR) and moving average (MA) models (Box 
et  al. 2015). This method is a widely used and popular model in time series prediction. 
However, sometimes identifying the typical inherent parameters [p, d, q] is not straight-
forward (Islam and Imteaz 2020). In addition, The ARIMA cannot be applied directly to 
the non-stationary time series, and it must be converted into a stationary time series by 
using the time series differencing technique. In the current study, since the time series is 
stationary, applying the differencing technique is unnecessary. The ARIMA modeling in 
this study is conducted using the SPSS software. The “expert modeler” is used as a fea-
ture to determining the order of the parameters and the best model. Thereby, the values 
of ARIMA parameters are different for each station. Further background and information 
about ARIMA are available in (Box et al. 2015).

3  Data and Study Area

Queensland, in the northeast of Australia, is the second-largest and third-most-populous  
state of Australia. The location of the study area, along with selected rainfall stations, is 
shown in Fig.  3. The data of rainfall and the SOI are obtained from the Australian BOM 

Fig. 2  A multi-level Wavelet 
ANN architecture with various 
input sets
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website  (http:// www. bom. gov. au/ clima te/ data/). Ten weather stations with a long record of 
data were chosen. The details of the selected weather stations are shown in Table  1. The 
Nino3.4 data is collected from the Royal Netherlands Meteorological Institute (KNMI) Cli-
mate Explorer (http:// clime xp. knmi. nl). Also, the data related to IPO is obtained from Chris 
Folland, Met Office, Hadley Centre, UK (https:// www. metoffi ce. gov. uk).

Queensland’s rainfall is spatially and temporally variable (Knip et al. 2011). However, 
the wet season is considered from November to March in north Queensland (Sumner and 
Bonell 1988). In southeastern and central Queensland, wet and dry seasons are considered 
from October to March and September to April, respectively (Wilson et al. 2013). Moreo-
ver, most of the flood events in Queensland occur in summer. In this study, rainfall of sum-
mer (December to February) as the wet season is considered.

Total 109 years of data from 1908 to 2016 is used in this study. For training the models, 
data of the first 94 years (1908 to 2001) are used, and the remaining 15 years (2002-2016) 

Fig. 3  Schematic map of Queensland State and weather stations
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are assigned for verifying the models to avoid any potential overfitting. In other words, the 
testing data set are new data that were not used previously during the training process.

In this study, eight different model sets comprising rainfall and climate indices are 
defined to identify the best model for each station (Table 2). Notably, using a single cli-
mate driver might be unsuitable for forecasting rainfall accurately because of the complica-
tions of the relationships between climate drivers and rainfall. Thereby, combined inputs 
comprised of various effective climate indices plus rainfall values are employed. Also, the 
individual input sets (Rainfall, IPO, SOI, and Nino3.4) are defined to investigate better the 
impact of a single predictor on the prediction of summer rainfall in Queensland.

The models’ performances during calibration and testing are evaluated using statisti-
cal parameters such as RMSE, mean absolute error (MAE), refined index of agreement 
( dr ) and correlation coefficient (R). According to Willmott et al. (2012), this index is more 
efficient for evaluating the model’s accuracy than other available statistical parameters. 
Moreover, the Nash-Sutcliffe coefficient of efficiency (NSE) is another practical factor that 
reasonably measures the hydrological models’ prediction capabilities (Nash and Sutcliffe 
1970). It is bounded between −∞ to 1 and is presented to different forms of mathematical 
models (Gupta and Kling 2011).

For further assessment of the models, a statistical score is used to assess the skills of the 
predicted model against a reference forecast like climatology prediction. The skill score, 
which is used for ACCESS-S, WANN, and ANN is as follows (Hawthorne et al. 2013)

Table 1  Geographical location of selected rainfall sites of the study

Region Site Number Site Name Latitude Longitude Summer Mean 
Rainfall (mm)

Tropical East Coast 31036 Cairns 16.82° S 145.64° E 1039.91
39020 Calliope 24.02° S 150.97° E 417.57
33060 Pleystowe 21.14° S 149.04° E 846.99

Central Interior 37001 Ayrshire Downs 21.97° S 142.72° E 229.01
30045 Richmond 20.73° S 143.14° E 299.14
38003 Boulia 22.91° S 139.90° E 125.77
36026 Isisford 24.26° S 144.44° E 193.73

South East 40094 Harrisville 27.81° S 152.67° E 342.02
44026 Cunnamulla 28.07° S 145.68° E 141.06
41082 Pittsworth 27.72° S 151.63° E 266.57

Table 2  The input sets defined 
for each station

NO Model (input set)

1 Rainfall
2 Rainfall+Nino
3 Rainfall+SOI
4 Rainfall+IPO
5 IPO
6 SOI
7 Nino3.4
8 Rainfall+IPO+SOI+Nino

Prediction of Seasonal Rainfall with One‑year Lead Time Using… 5353
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where, RMSEFor. , and RMSERef . stand for score (RMSE) of the model forecast and a refer-
ence model (climatology), respectively. The 100% skill score shows a perfect prediction, 
while a zero skill score indicates that the skills of the forecasted model are the same as the 
climatology (reference forecast). A score skill less than zero denotes that the prediction 
skill score is worse than the climatology.

4  Results and Discussion

The correlation of summer rainfall with each monthly climate index is investigated to 
understand better the influence of an individual climate index on summer rainfall in each 
station. Inputs of the final models are selected based on their correlations with summer 
rainfall. For example, according to the correlation analysis for Cairns station, the sum-
mer rainfall is correlated with Nino3.4 from January to April (Table 3). For the remain-
ing months, the correlation is insignificant. Therefore, the input sets comprised of Nino3.4 
from January to April (four inputs for Nino3.4) are considered input values. It is apparent 
that correlation is insignificant between different monthly Nino3.4 with summer rainfall for 
Ayrshire Downs, Boulia, and Cunnamulla. However, Pitssworth’s summer rainfall correla-
tion with Nino3.4 covers a broader range of months compared to other stations, though the 
correlations are not too strong.

Moreover, the effect of SOI on the summer rainfall of Queensland is investigated in 
Table 3. It is evident that the summer rainfall is correlated with SOI in all stations, at least 
in one of the months. In Cairns, Richmond, Boulia, Isisford, and Cunnamulla, the summer 
rainfalls are correlated with SOI only in February.

Nonetheless, the correlation coefficients are significant for most of the months for Calliope 
and Pittsworth. The highest correlation value can be found in Pittsworth in April with 0.33. 
Similarly, the correlation analysis is done for IPO and summer rainfall in Table 3. It is evident 
that the correlations cover a broader range of months compared to Nino3.4 and SOI. It is seen 
that only in one station (Boulia), the summer rainfall is not correlated with IPO. However, for 
other stations, correlations are significant at least at three months. The observed summer rain-
fall with a one-year lead time is allocated to forecast the next year’s seasonal rainfall for target 
values. In other words, the target values are considered as the next year’s observed summer 
rainfall time series in the calibration process.

Various input sets are applied to the models to assess their performance. Table 4 com-
pares the input matrix for ANN and WANN for Cairns station as a sample. The structure 
of each input set for each station depends on the correlation analysis and the number of 
levels in the WANN method. As in this study, one lag time is considered; two time series 
are generated (one main time series plus one lagged time series). After considering the 
lagged time series, the total number of time series applied to the network would be 12, 
with 93 values for each one during the calibration process. For instance, in model 8, 108 
time series are generated through the wavelet analysis, while only 18 time series is applied 
to the ANN model. This technique provides very meticulous information for training the 
network, which is not identifiable by ANN solely.

(4)Skillscore =
RMSERef . − RMSEFor.

RMSERef .

∗ 100%
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4.1  Comparisons of WANN with ANN

The prediction skills of the ANN and WANN models during the calibration and testing peri-
ods are presented in Table  5. It is found that compared to the other stations, Cairns and 
Pleystowe show high RMSE values for both the ANN and WANN methods. However, the 
lower RMSEs are observed for Cunnamulla, Boulia, and Isisford through ANN and WANN, 
respectively. During the testing process, the RMSE values through the ANN are 78.8mm 
and 95.6mm for Cunnamulla and Boulia, while the RMSE values for the Cunnamulla and 
Isisford stations are 55.3mm and 54.6mm for WANN. It is evident that RMSE values are 
remarkably higher for the tropical east coast region (Cairns, Calliope, and Pleystowe weather 
stations), resulting from a high magnitude of summer mean rainfall. The average RMSE val-
ues through the ten stations are obtained 169.5mm and 178.9mm using ANN during calibra-
tion and testing periods, respectively. Nonetheless, the corresponding average RMSE values 
are 108.7mm and 112.2mm, using the WANN during calibration and testing periods. The 
WANN improves the prediction accuracy of the ANN by 37% over the ten selected stations 
in terms of RMSE values. Moreover, it is worthwhile noting that the average MAE through 
ANN during the testing period is 141.7mm, while it is 90.5mm through the WANN.

The correlation coefficients (R) through the WANN are not less than 0.72 (Boulia sta-
tion), whereas those values range between 0.14 and 0.61 through the ANN. It can be seen 
that for Calliope, the forecasted rainfall using WANN is well correlated with observed val-
ues for the fourth model (R=0.91). It is evident that the best model through the WANN is 
developed using the IPO index, which is applicable in all the stations except Pleystowe and 
Boulia. It is evident that the IPO is a determinative factor in predicting the summer rainfall 
in this region. However, the ANN does not follow a specific trend regarding the suitable 
input set for each station.

It is observed that the values of dr for WANN are relatively higher (average dr=0.68) 
than the values for ANN (average dr=0.51) in all stations. According to the RMSE and 
MAE values, the superior performance of the WANN compared to the ANN is notable 
in all districts of Queensland.

Figure 4 shows the comparisons between WANN, ANN, and observed summer rainfall 
for the selected three regions of Queensland through testing sets. It is observed that the 
WANN models can predict the summer rainfall accurately, while the ANN is unable to 
forecast the observed values with the same accuracy. In Pleystowe station, the predicted 

Table 4  Input structure of WANN and ANN for Cairns station during the calibration

Model Input set WANN ANN Output

Input matrix Level Input matrix

Model 1 (Summer Rain)
t

12×93 3 2×93 (Summer Rain)
t+1

Model 2 (Summer Rain + Nino 3.4Jan. to Apr.) t
60×93 3 10×93 (Summer Rain)

t+1

Model 3 (Summer Rain + SOIFeb)t 24×93 3 4×93 (Summer Rain)
t+1

Model 4 (Summer Rain + IPOFeb. to Apr.)t
48×93 3 8×93 (Summer Rain)

t+1

Model 5 (IPOFeb. to Apr.)t
24×93 2 6×93 (Summer Rain)

t+1

Model 6 (SOIFeb.)t 8×93 2 2×93 (Summer Rain)
t+1

Model 7 (Nino 3.4Jan. to Apr.)t
48×93 3 8×93 (Summer Rain)

t+1

Model 8 (Summer Rain + Nino 3.4Jan. to Apr.+

SOIFeb. + IPOFeb. to Apr.)t

108×93 3 18×93 (Summer Rain)
t+1
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rainfall through ANN shows a smooth trend, and it is hardly able to predict the seasonal 
rainfall values correctly. Nonetheless, the results obtained by WANN ascertain that this 
method can calculate extreme summer rainfall with excellent accuracy. The extreme sum-
mer rainfall throughout the testing period for Ayrshire station is obtained as 302.6mm 
through the ANN, while it is acquired as 423.9mm by WANN when the observed value 
was 572.6mm. Such accuracy benefits researchers and water resources managers to plan 
appropriate solutions before the occurrence of extreme seasonal rainfall.

4.2  Comparisons of WANN’s Forecast Accuracy with ACCESS‑S, Climatology, ARIMA, 
and MLR Predictions

The accuracy of the WANN, ACCESS-S, and climatology are presented in Table 6. It is 
evident that ACCESS-S and climatology forecasts produce much higher RMSE and MAE 
values for all the stations. The highest RMSE value among all stations is related to Cairns 

Table 5  Best ANN and WANN models performance

ANN

Station Model Calibration Testing

RMSE MAE �
�

R RMSE MAE �
�

R

Cairns 8 383.8 262.9 0.64 0.70 398.6 317.4 0.54 0.36
Calliope 6 180.3 133.5 0.57 0.57 230.7 185.2 0.61 0.61
Pleystowe 5 400.6 295.5 0.58 0.46 418.4 343.7 0.47 0.14
Ayrshire Downs 8 107.2 82.9 0.62 0.66 100.1 69.82 0.53 0.53
Richmond 4 124.4 99.0 0.58 0.62 130.8 115.5 0.52 0.36
Boulia 3 101.2 77.0 0.51 0.37 95.6 88.7 0.3 0.23
Isisford 8 88.3 70.8 0.60 0.58 98.4 73.6 0.49 0.35
Harrisville 7 135.7 102.4 0.55 0.37 131.3 96.2 0.55 0.20
Cunnamulla 3 81.9 68.2 0.49 0.40 78.8 55.2 0.60 0.56
Pittsworth 6 91.2 44.3 0.70 0.64 106.4 71.5 0.57 0.41
Average – 169.5 123.6 0.58 0.53 178.9 141.7 0.51 0.37
WANN
Station Model Calibration Testing

RMSE MAE �
�

R RMSE MAE �
�

R
Cairns 4 321.4 217.4 0.70 0.77 307.9 255.4 0.63 0.75
Calliope 4 110.2 60.2 0.80 0.85 130.0 96.0 0.76 0.91
Pleystowe 1 219.5 170.1 0.76 0.88 215.1 174.9 0.73 0.87
Ayrshire Downs 8 49.4 21.9 0.89 0.93 67.7 51.6 0.66 0.84
Richmond 4 68.1 34.8 0.85 0.89 85.8 62.9 0.74 0.87
Boulia 1 53.7 42.1 0.73 0.88 52.7 44.6 0.64 0.72
Isisford 4 51.9 31.0 0.82 0.87 54.6 46.4 0.67 0.84
Harrisville 4 74.3 34.0 0.85 0.86 85.4 72.3 0.66 0.76
Cunnamulla 8 71.5 58.8 0.56 0.63 55.3 46.5 0.70 0.80
Pittsworth 4 67.3 50.8 0.66 0.73 67.8 54.6 0.67 0.80
Average - 108.7 72.1 0.76 0.82 112.2 90.5 0.68 0.81
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Fig. 4  Observed and modeled rainfall using ANN and WNN during the verification period at one-year lead 
time
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for WANN (RMSE=307.9mm), whereas the highest values of 564.5mm and 932.3mm are 
acquired for the same station through ACCESS-S and climatology models, respectively. It 
can be seen that the WANN outperforms the ACCESS-S in forecasting the seasonal rainfall 
by 60% over the ten selected stations in terms of RMSE values.

The NSE values are negative through ACCESS-S and climatology for all the stations. 
For the WANN model, the NSE values are positive (from 0.45 to 0.79), which denotes 
the perfect fit of predicted and observed values. In other words, the NSE values of WANN 
indicate that WANN is an effective method to predict rainfall with lower errors. Figure 5 
illustrates the time series values of WANN and ACCESS-S rainfall predictions along with 
the observed rainfalls. It is evident that the WANN prediction results are remarkably accu-
rate than the ACCESS-S forecast results. Also, the WANN performs better in predicting 
the extreme seasonal rainfall, while ACCESS-S is incapable of generating exact peak 
values. For example, the ACCESS-S underestimates the extreme rainfall over the testing 
period by 73% in the Ayrshire Downs station. Also, its performances for different stations 
can be summarised as 62% overestimation for Calliope, 77% underestimation for Cunnam-
ulla, 80% underestimation for Isisford, and 66% underestimation for Richmond in regards 
to the extreme seasonal rainfall.

Table 7 shows the prediction accuracies of the ARIMA and MLR in terms of RMSE, 
MAE, dr , and R are presented. It is evident that the values of RMSE through WANN 
modeling are much lower than the RMSEs’ by ARIMA and MLR models. The per-
centages of RMSE improvements by WANN are remarkably high; for Ayrshire Downs, 
68% and 47% compared to MLR and ARIMA, respectively. The lowest improvements 
through WANN are 24% and 27% compared to MLR and ARIMA for Cairns, respec-
tively. For all the stations, the WANN provides better results compared to the MLR and 
ARIMA.

The skill score values for the ACCESS-S, WANN, ANN, MLR, and ARIMA predic-
tions are shown in Table 8. The skills of all three models for Cairns and Richmond have 
positive values, which means that those models’ RMSE values are lower than the cli-
matology forecast’s values. However, for all the stations (except Cairns and Richmond 

Table 6  Comparison of predictions of WANN with ACCESS-S, and climatology during the testing period

Station WANN ACCESS-S Climatology

RMSE MAE NSE RMSE MAE NSE RMSE MAE NSE

Cairns 307.9 255.4 0.45 564.5 443.7 –0.78 932.3 804.4 –2.75
Calliope 130.0 96.0 0.79 368.1 280.5 –2.24 277.6 201.1 –0.99
Pleystowe 215.1 174.9 0.73 685.7 520.5 –1.14 653.6 469.6 –0.99
Ayrshire Downs 67.7 51.6 0.67 215.0 171.0 –1.71 149.8 105.5 –0.29
Richmond 85.8 62.9 0.60 171.4 133.3 –0.63 202.6 154.7 –0.93
Boulia 52.7 44.6 0.48 110.8 93.1 –0.33 110.0 80.5 –0.33
Isisford 54.6 46.4 0.63 150.4 122.6 –1.75 101.9 80.0 –0.18
Harrisville 85.4 72.3 0.51 276.0 222.6 –8.13 141.0 105.7 –0.07
Cunnamulla 55.3 46.5 0.65 118.8 93.1 –0.63 121.0 89.2 –0.68
Pittsworth 67.8 54.6 0.62 156.8 116.5 –0.80 107.6 82.4 –0.01
Average 112.2 90.5 0.61 281.8 219.7 –1.8 279.7 217.3 –0.72
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Fig. 5  Comparison of WANN and ACCESS-S predictions with observed rainfall at one-year lead time dur-
ing the verification period
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with 39% and 15%, respectively), the skill scores are negative through the ACCESS-S. 
This indicates that the RMSEs of the ACCESS-S are higher than the RMSE values of 
climatology prediction, and the prediction skill of the ACCESS-S is worse than the cli-
matology. However, the prediction capability of the WANN is higher than the climatol-
ogy forecast (lower RMSE values) for all the stations. The ANN, MLR, and ARIMA 
prediction skills are very close to the climatology skill for Pittsworth with 1%, 2%, and 
1% of skill scores, respectively. In general, the WANN renders an excellent accuracy in 
terms of the average skill score for all the stations with a value of 53%, and ACCESS-S 
provides worse prediction compared to the climatology forecast with an average skill 
score of -22%. Overall, the achieved average skill scores through the ANN, ARIMA, 
and MLR are 24%, 20%, and 15%, respectively.

Table 7  Comparison of predictions of WANN with MLR, and ARIMA during the testing period

Station WNN MLR ARIMA

RMSE MAE �
�

R RMSE MAE �
�

R RMSE MAE �
�

R

Cairns 307.9 255.4 0.63 0.75 405.7 353.0 0.49 0.11 423.5 361.2 0.48 0.01
Calliope 130.0 96.0 0.76 0.91 297.0 190.9 0.54 0.15 316.0 209.7 0.50 0.12
Pleystowe 215.1 174.9 0.73 0.87 404.3 292.7 0.46 0.54 370.4 282.4 0.56 0.45
Ayrshire Downs 67.7 51.6 0.66 0.84 212.7 199.7 -0.24 0.07 128.0 88.2 0.41 0.04
Richmond 85.8 62.9 0.74 0.87 133.6 117.8 0.50 0.10 141.4 122.8 0.48 0.10
Boulia 52.7 44.6 0.64 0.72 77.1 70.6 0.47 0.06 76.3 70.1 0.47 0.09
Isisford 54.6 46.4 0.67 0.84 90.1 70.3 0.50 0.12 90.6 70.5 0.49 0.07
Harrisville 85.4 72.3 0.66 0.76 127.5 110.1 0.50 0.39 129.0 11.0 0.49 0.41
Cunnamulla 55.3 46.5 0.70 0.80 96.9 76.8 0.49 0.02 96.2 77.1 0.49 0.05
Pittsworth 67.8 54.6 0.67 0.80 105.7 78.8 0.51 0.16 106.1 78.9 0.51 0.16
Average 112.2 90.5 0.68 0.81 195.1 156.1 0.4 0.2 187.7 137.2 0.5 0.2

Table 8  Percentage of forecast 
skill score for ACCESS-S, 
WANN, ANN, MLR, and 
ARIMA during the testing period

Station ACCESS-S WANN ANN MLR ARIMA

Cairns 39% 67% 57% 56% 55%
Calliope -33% 53% 17% -7% -14%
Pleystowe -5% 67% 36% 38% 43%
Ayrshire Downs -43% 55% 33% -42% 15%
Richmond 15% 58% 35% 34% 30%
Boulia -1% 52% 13% 30% 31%
Isisford -48% 46% 3% 12% 11%
Harrisville -96% 39% 7% 10% 9%
Cunnamulla -2% 54% 35% 20% 20%
Pittsworth -46% 37% 1% 2% 1%
Average -22% 53% 24% 15% 20%
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5  Conclusion

In this study, a model called WANN was developed to forecast Queensland’s seasonal 
rainfall one year in advance. The results were compared with the conventional ANN, 
MLR, ARIMA, and the current prediction system of the BOM (ACCESS-S) and cli-
matology forecasts. It was found that the WANN improves the ANN and ACCESS-S 
prediction results in terms of RMSE over the ten selected stations by 37% and 60%, 
respectively. However, the WANN could improve the predictions by ARIMA and MLR 
by 40% and 42%, correspondingly. In terms of skill score, the WANN with 53% outper-
forms ANN, ACCESS-S, ARIMA, and MLR with 24%, -22%, 20%, and 15%, respec-
tively. It was also found that ACCESS-S’s performance is not satisfactory regarding the 
average NSE (-1.8), compared to the average NSE value of 0.61 achieved by WANN. 
While the skill score values are negative for ACCESS-S for most stations, they are posi-
tive (higher than 0.37) through the WANN.

Since the MLR and ARIMA are linear methods, they are incapable of properly cap-
turing the non-linear characteristic of the rainfall time series, and they are unable to 
accurately replicate a great range of data. Nonetheless, the WANN exceptionally outper-
forms the MLR and ARIMA because it can appropriately capture the non-linearity of 
the subject time series. It should be noted that the ANN cannot improve the prediction 
skills of the ARIMA and MLR. Thereby, it is seen that combining the wavelet analysis 
with ANN should be taken into account for the prediction of the seasonal rainfall with 
a low number of available data. However, in WANN implementation, the mother wave-
let must be carefully selected through the trial and error process as it highly impacts 
the model’s performance. Also, selecting the appropriate decomposition level in wavelet 
analysis affects the performance of the model. Therefore, careful steps must be taken in 
determining the number of levels and type of wavelet function in wavelet analysis.

To the best of our knowledge, no model can predict the seasonal rainfall one year in 
advance with such a level of accuracy. Thus, this capability can be beneficial for better 
management of unusual events such as flooding and drought, especially for regions with 
extreme weather conditions. This study opened an opportunity to predict seasonal rain-
fall one year ahead with excellent precision using various effective climate indices. It 
should be noted that the outcomes of this study show that this technique can be applied 
to forecast rainfalls of other seasons, and application of this method in longer lead times 
could be attempted for those seasons.
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