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Abstract
This paper presents mathematical and algorithmic developments related to general abnormal-
ity (multiple leakages and multiple partial blockages) detection in a simple pipeline system. 
Formulations for leakages and blockages were combined and reformulated to address gen-
eral abnormalities efficiently in the frequency domain. Unsteady friction effects on laminar 
and turbulent flow conditions were considered during formulation development using 2D 
frequency-dependent and 1D acceleration-based models, respectively. The developed for-
mula was tested in terms of model parsimony, computational accuracy, and flexibility for 
superposition in abnormality representation. Based on the proposed formulation, a novel 
multiple abnormality detection algorithm, called the adaptive metaheuristic scheme (AMS), 
was developed by integrating a stepwise genetic algorithm. The application of the developed 
method to a hypothetical pipeline system demonstrated the potential of the AMS for predict-
ing general features of abnormality, even without access to prior information regarding the 
number and distribution of abnormalities. The developed method demonstrated robustness 
for the prediction of abnormality distributions and reliability, even in noise-contaminated sig-
nals. The adaptive predictability of the AMS can be characterized by not only its robustness 
for unknown multiple abnormality features but also its self-diagnostic capabilities during the 
calibration procedure.

Keywords Pipeline systems · Impedance method · Multiple abnormality function · 
Unsteady friction · Adaptive metaheuristic scheme

1 Introduction

Leakages and blockages in pipeline systems can be generated by factors such as high-
pressure fluctuations, corrosion, biofilm development, deterioration of pipe walls, and 
even failures in manufacturing processes. The detection of leakages is important for water 
distribution authorities not only in terms of preventing water loss, but also in terms of 
securing drinking water from intrusion by potential contaminants, including pathogens. 
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As fluid passes through the reduced cross-sectional area near a blockage, the flow energy 
tends to dissipate and flow conveyance can be reduced, which can increase the costs of 
both the management (water quality) and operation (pumping) of pipeline systems.

Considering the serviceability of a continuous water supply and its cost, non-intrusive 
methods for detecting leakages and blockages have been explored using pressure wave analy-
sis associated with abnormal boundary conditions. Many attempts have been made to detect 
leakages or blockages in pipeline systems using transient-based methods in either the time or 
frequency domains, or both (Duan et al. 2014; Nguyen et al. 2018; Ranginkaman et al. 2019; 
Marchis and Milici 2019; Capponi et al. 2020; Gong et al. 2020). Pressure waves can be gen-
erated using various methods, including conventional valve maneuvers, pressure generation 
tanks, and electrical sparks (Brunone et al. 2008; Gong et al. 2018). Most studies on leak-
age detection or blockage detection have been conducted for the diagnosis of a single defect 
boundary condition within a pipeline.

When a water distribution system has deteriorated, the spatial features of abnormalities 
are not necessarily pointwise, but are more likely to be distributed across multiple points 
(Verde 2001). Considering the strength of frequency-domain approaches for defining the 
locations of specific boundary conditions, transfer matrices have been widely used to rep-
resent leakages or blockages (Mohapatra et al. 2006). An efficient formulation for multiple 
leakage representation was proposed for a simple reservoir pipeline system and a linearized 
model for the identification of leak numbers through iterative beamforming has also been 
proposed (Wang and Ghodaui 2018). A detection scheme for one leakage and one blockage 
was proposed based on an analytical derivation for a branched pipeline system through the 
incorporation of a metaheuristic engine (Kim 2016). The generalization of multiple leak-
ages and blockages is required to address general circumstances in field pipeline systems to 
improve the detectability of abnormalities.

The development of a multiple abnormality detection scheme is a critical landmark 
for the diagnosis of pipeline defects for several reasons. The conditions in field pipeline 
systems never provide an indication of either the number or distribution of problematic 
boundary conditions. The dimensions of a problem cannot be determined and its sequence 
and identity are unknown in the context of solution optimization. Therefore, a robust analy-
sis framework is required to address the unknown characteristics associated with multiple 
leakages and blockages. Developing a comprehensive mathematical structure for any com-
bination of leakages and blockages along a pipeline is useful for designing a robust detec-
tion scheme for multiple abnormalities. Existing mathematical expressions of leakages and 
blockages (Mohapatra et al. 2006), namely point matrices, must be further generalized to 
improve the efficiency of representation and implementation flexibility for detection algo-
rithms. As the number of abnormalities increases (to more than a few), the complexity of 
existing formulations tends to increase exponentially, making the identification of a spe-
cific leakage or blockage among multiple abnormalities virtually impossible from either a 
mathematical or signal processing perspective.

The simultaneous detection of leakages and blockages is a challenging engineer-
ing problem because of the distinct wave reflection patterns between two different defect 
boundaries. If the distribution of leakages and blockages is repeated in either triangular or 
intermittent patterns, the flow velocity can increase or decrease along a pipeline under both 
steady and unsteady flow conditions. This means that the existing steady friction model 
(Wylie and Streeter 1993) may not sufficiently represent the flow regime of a pipeline sys-
tem for the representation of multiple abnormalities. Therefore, the proper consideration of 
unsteady friction is important for developing a reliable formulation for multiple abnormal-
ity detection methods (Zielke 1968; Brunone et al. 1991).
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To develop a robust abnormality detection method based on pressure signals, the response 
pattern of an abnormality must be distinguished from those of pipeline system components 
such as the pipeline, reservoir, and valves. A detection algorithm must be carefully designed 
based on an understanding of the combined pressure patterns of leakages and blockages.

Therefore, in this study, two main objectives representing important building blocks for 
multiple abnormality detection schemes for a simple pipeline system were defined as follows:

• First, a multiple abnormality function (MAF) was developed for the efficient expression 
and flexible evaluation of impedance, as well as the adaptable calibration of multiple 
abnormalities in a reservoir pipeline system. Unsteady friction models for laminar and tur-
bulent flows are integrated into the MAF in terms of impedance.

• Second, a multiple abnormality detection algorithm was developed for an unknown num-
ber of leakage and blockage distributions. An adaptive metaheuristic scheme (AMS) is 
proposed for the proactive control of metaheuristic operations depending on the distribu-
tion and number of abnormalities.

To demonstrate the potential of the developed techniques in terms of the realization of a 
multiple abnormality detection algorithm, a hypothetical pipeline system is introduced. The 
test results for several multiple abnormality detection methods demonstrate the potential of the 
proposed AMS for different flows and abnormality distributions. The impact of noise on mul-
tiple abnormality detectability was also analyzed to highlight the applicability of the devel-
oped method.

2  Mathematical Development for Analysis

2.1  Governing Equations for Unsteady Flow

The mass and momentum balance equations for a one-dimensional transient flow in a pres-
surized pipeline are approximated under steady friction as follows (Wyile and Streeter 1993):

where x is the distance along the pipeline, t is time, a is the wave speed, g is the acceleration 
due to gravity, A is the cross-sectional area, Q is the discharge, H is the piezometric pressure 
head, and f is the Darcy-Weisbach friction factor.

The relationship between the upstream and downstream head and discharge 
f
(
HU ,QU ,HD,QD

)
 can be expressed in the frequency domain as (Wylie and Streeter 1993; 

Chaudhry 2014)

(1)
a2

gA

�Q

�x
+

�H

�t
= 0,

(2)
�Q

�t
+ gA

�H

�x
+

fQ|Q|
2DA

= 0,

(3)HD = HUcosh�x − QUZcsinh�x,

(4)QD = −
HU

Zc
sinh�x + QUcosh�x,
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where the propagation constant is � =
√

gA

a2
s(

s

gA
+

fQ

gDA2
) , the characteristic impedance is 

ZC =
�a2

gAs
 , and s is the complex frequency.

2.2  Impedance of Multiple Abnormalities in a Simple Pipeline

The relationships between the complex head and discharge between the upstream reser-
voir and downstream valve (Fig. 1) for multiple abnormality conditions can be expressed 
as a transfer matrix of leakages and blockages as follows:

Here, HDV and QDV are the complex head and discharge at the downstream valve, respec-
tively; HUR and QUR are the complex head and discharge at the upstream reservoir, respec-
tively; l is the length between the upstream and downstream; x1, x2,… xn are the distances 
between each abnormality and the downstream valve; Qolk,i is the leak quantity for the ith 
leakage; ΔHj is the pressure head variation caused by the jth blockage; and H0 and Q0 are 
the mean pressure head and discharge, respectively.

Applications of hyperbolic trigonometry to extensions of pipeline components can 
significantly simplify the expression of hydraulic impedance ( Z = HDV∕QDV ) . Nonlinear 
terms with multiple abnormalities can be ignored for very low orders of mathematical 
terms with abnormalities. The hydraulic impedance at a downstream valve for multiple 
abnormality conditions can be expressed as:

where ZA = −Zc ×
(
e�l − e−�l

)
∕
(
e�l + e−�l

)
.

If the number of leakages is n1 , then the terms ZB,i and ZC,i terms in Eq. (6) can be 
expressed as

(5)

�
HDV

QDV

�
=

�
cosh�xn −Zcsinh�xn
−sinh�xn

Zc
cosh�xn

��
1 0

Qolk,i

2Ho

1

��
cosh�

�
xn−1 − xn

�
−Zcsinh�(xn−1 − xn)

−sinh�(xn−1−xn)

Zc
cosh�(xn−1 − xn)

�

…

⎡
⎢
⎢⎣

cosh�
�
x1 − x2

�
−Zcsinh�

�
x1 − x2

�

−sinh�(x1−x2)
Zc

cosh�
�
x1 − x2

�
⎤
⎥
⎥⎦

�
1 −

2ΔHj

Q0

0 1

�⎡
⎢
⎢⎣

cosh�
�
l − x1

�
−Zcsinh�

�
l − x1

�

−sinh�(l−x1)
Zc

cosh�
�
l − x1

�
⎤
⎥
⎥⎦

�
HUR

QUR

�

(6)ZDV = (ZA +
∑n1

i=1
ZB,i +

∑n2

j=1
ZB,j)∕(1 +

∑n1

i=1
ZC,i +

∑n2

j=1
ZC,j)

xn
l

x1

leakage blockage

Fig. 1  Schematic of a reservoir pipeline system with multiple abnormalities
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where xi is the distance from a downstream valve to any upstream ith leakage.
If the number of blockages is n2 , then the terms ZB,j and ZC,j in Eq. (6) can be expressed as

where xj is the distance from a downstream valve to any upstream jth blockage and ΔHj is the 
jth pressure head reduction.

The term ZA in Eq. (6) represents the impact of pipeline extension. The structure of this 
equation also indicates that abnormality impacts on hydraulic impedance are nonlinear, but 
can be efficiently expressed by superimposing functions such as ∑n1

i=1
ZB,i

 + ∑n2

j=1
ZB,j

 and 
∑n1

i=1
ZC,i + ∑n2

j=1
ZC,j , which allows each abnormality to be considered independently.

2.3  Impedance of Multiple Abnormalities Using an Unsteady Friction Model Under 
Laminar Flow

The impact of unsteady friction on laminar flow conditions can be considered by modeling the 
radial distribution of velocity, which can be expressed through 2D equations of motion and 
continuity as follows (Suo and Wylie 1989)

Here, � is the density of the fluid, and u and p are the velocity and pressure, respectively, as 
functions of time (t), axial distance (x), and radial distance (r). Equations (11) and (12) are col-
lectively known as the frequency-dependent friction approach for laminar flow (Zielke 1968).

The hydraulic impedance of multiple abnormalities with frequency-dependent friction can 
be expressed as

where ZA� = −Zs ×
(
eΓ(l) − eΓ(−l)

)
∕
(
eΓ(l) + eΓ(−l)

)
.

The propagation constant is expressed as Γ(x) = sx∕(a

�
(1 − 2J

1
(iD

√
s∕�))∕(iD∕2

√
s∕�J

0

(iD
√
s∕�))) and the characteristic impedance is expressed as Z

s
= a∕(gA

�
(1 − 2J1(iD

√
s∕�))

∕(iD∕2
√
s∕�J

0
(iD

√
s∕�))) , where i is an imaginary unit, and J0 and J1 are first-type Bessel func-

tions of the zeroth and first orders, respectively.
The terms for multiple leakages, ZB,i′ and ZC,i′ in Eq. (13), can be expressed as

(7)
∑n1

i=1
ZB,i =

∑n1

i=1

�
−Z2

c
Qolk,i∕

�
2H0

��
∕{1 +

e�l+e−�l+e�(2xi−l)+e�(l−2xi)

e�l+e−�l−e�(2xi−l)−e�(l−2xi)
},

(8)
∑n1

i=1
ZC,i =

∑n1

i=1

�
ZcQolk,i∕

�
2H0

��
∕{

e�xi−e−�xi

e�xi+e−�xi
+

e�(l−xi)+e�(xi−l)

e�(l−xi)−e�(xi−l)
},

(9)
∑n2

j=1
ZB,j =

∑n2

j=1

�
−2ΔHj∕

�
Q0

��
∕{1 +

e�l+e−�l−e
�(2xj−l)−e�(l−2xj)

e�l+e−�l+e
�(2xj−l)+e�(l−2xj)

},

(10)
∑n2

j=1
ZC,j =

∑n2

j=1

�
2ΔHj∕

�
ZcQ0

��
∕{

e
�xj+e

−�xj

e
�xj−e

−�xj
+

e
�(l−xj)−e�(xj−l)

e
�(l−xj)+e�(xj−l)

},

(11)
1

�

�p

�x
+

�u

�t
− �

1

r

�

�r

(
r
�u

�r

)
= 0,

(12)�a2
�u

�x
+

�p

�t
= 0.

(13)ZDV
� = (ZA

� +
∑n1

i=1
ZB,i

� +
∑n2

j=1
ZB,j

�)∕(1 +
∑n1

i=1
ZC,i

� +
∑n2

j=1
ZC,j

�)
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The terms for multiple blockages, namely ZB,j′ and ZC,j′ in Eq. (13), can be expressed as

2.4  Impedance of Multiple Abnormalities Using an Unsteady Friction Model Under 
Turbulent Flow

The impact of unsteady friction on turbulent flow conditions can be evaluated as the dif-
ference between the friction contributions from temporal and convective accelerations, and 
the momentum equation can be expressed as (Ramos et al. 2004)

where V is the one-dimensional velocity, Fs is a steady friction term expressed as F
s
= fV

|V|∕(2gD) , Fu is an unsteady friction term expressed as Fu =
1

g

(
k1

�V

�t
+ ak2Sign(V)

|||
�V

�x

|||
)
 , 

k1 is the unsteady friction coefficient for the temporal acceleration term, and k2 is the 
unsteady friction coefficient for the convective acceleration term.

The impedance formulation for a reservoir pipeline valve (RPV) system with multiple 
abnormalities (MAF-1D) can be expressed as

where ZA� =
(
e−�2l − e�1l

)
∕
(
e�1l∕Zc1 + e−�2l∕Zc2

)
 , the propagation constants �1 and �2 can be 

defined as �1,2 = (�mCs ∓

√
(mCs)2 + 4

(
s2CL + RCs

)
)∕2 , m =

(
ak2

)
∕(2gA) , C = (gA)∕a2 , 

L =
(
1 + k1

)
∕(gA) , and the characteristic impedances are Zc1, Zc2 =

�1

Cs
,
�2

Cs
.

The impact of the multiple leakage terms ZB,i′′ and ZC,j′′ is expressed as follows:

(14)
∑n1

i=1
ZB,i

� =
∑n1

i=1

�
−Z2

s
Qolk,i∕

�
2H0

��
∕{1 +

eΓ(l)+eΓ(−l)+eΓ(2xi−l)+eΓ(l−2xi)

eΓ(l)+eΓ(−l)−eΓ(2xi−l)−eΓ(l−2xi)
}

(15)
∑n1

i=1
ZC,i

� =
∑n1

i=1

�
ZsQolk,i∕

�
2H0

��
∕{

eΓ(xi)−eΓ(−xi)

eΓ(xi)+eΓ(−xi)
+

eΓ(l−xi)+eΓ(xi−l)

eΓ(l−xi)−eΓ(xi−l)
}

(16)
∑n2

j=1
ZB,j

� =
∑n2

j=1

�
−2ΔHj∕

�
Q0

��
∕{1 +

eΓ(l)+eΓ(−l)−e
Γ(2xj−l)−eΓ(l−2xj)

eΓ(l)+eΓ(−l)+e
Γ(2xj−l)+eΓ(l−2xj)

},

(17)
∑n2

j=1
ZC,j

� =
∑n2

j=1

�
2ΔHj∕

�
ZsQ0

��
∕{

e
Γ(xj)+eΓ(−xj)

e
Γ(xj)−eΓ(−xj)

+
e
Γ(l−xj)−eΓ(xj−l)

e
Γ(l−xj)+eΓ(xj−l)

}.

(18)
1

g

�V

�t
+

�H

�x
+ Fs + Fu = 0,

(19)
a2

g

�V

�x
+

�H

�t
= 0,

(20)ZDV
�� = (ZA

� +
∑n1

i=1
ZB,i

� +
∑n2

j=1
ZB,j

�)∕(1 +
∑n1

i=1
ZC,i

� +
∑n2

j=1
ZC,j

�)

(21)

n1�

i=1

ZB,i
�� =

�
−1∕

�
2H0

�∑n1

i=1
Qolk,iZc1Zc2(e

�1l + e−�2l − e�1xi−�2(l−xi) − e−�2xi+�1(l−xi))
�

∕{
e�1l

�
Zc1 + Zc2

�

Zc1
+

e−�2l
�
Zc1 + Zc2

�

Zc2
},
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The impact of the multiple blockage terms ZB,j′′ and ZC,j′′ is expressed as follows:

3  Adaptive Metaheuristic Scheme

If the number of abnormalities is unknown before optimization, then the dimensions of a 
problem for the application of a metaheuristic engine cannot be determined. In other words, 
the conventional scheme of inverse transient analysis cannot handle multiple abnormality 
problems. The other source of uncertainty in optimization is the distribution of abnormali-
ties. Depending on the sequence of abnormality boundary conditions (either leakages or 
blockages), an appropriate calibration scheme should be adopted.

The AMS is introduced for the proactive control of metaheuristic operations depending 
on the number of abnormalities and their distribution. To relax the undetermined num-
ber of parameters, the conventional structure of a genetic algorithm (GA) was modified 
to implement a stepwise search structure for each abnormality. A GA is a powerful search 
tool that uses evolution-based principles to find optimal solutions (Goldberg 1989).

Depending on the sign of the local pressure head gradient (Δh∕Δt)i , where i is the time 
step, the feature of each abnormality can be determined (either a leakage or blockage). Once 
the calibration for a predetermined bound is completed, the stepwise abnormality detection 
procedure is repeated until a transient signal bounces back from an upstream reservoir to the 
pressure sensor, which is assumed to be located at the downstream valve. Figure 2 illustrates 
the flowchart of the proposed AMS for detecting multiple abnormalities. The bound of a 
potential abnormality is determined by considering that the time-domain reflectometry prin-
ciple primarily stems from the reflection of a pressure wave in the case of an abnormality 
condition. Depending on the candidate solutions for abnormality locations and quantities, 
the pressure variation of the transient can be calculated to fit the objective function and the 
optimal parameters can be derived.

The identification of the pressure variation features for an abnormality is important, 
but other relatively low-frequency pressure responses can be considered redundant. The 

(22)

n�

i=1

ZC,i
�� =

�
−1∕

�
2H0

�∑n1

i=1
Qolk,i(Zc1

�
e−�2l − e−�2xi+�1(l−xi)

�
+ Zc2

�
e�1xi−�2(l−xi) − e�1l

�
)
�

∕{
e�1l

�
Zc1 + Zc2

�

Zc1
+

e−�2l
�
Zc1 + Zc2

�

Zc2
}.

(23)

n2∑

j=1

ZB,j
�� =

n2∑

j=1

{−2ΔH0,j∕
(
Q0

)
(e�1l + e−�2l + Zc1∕Zc2e

�1xj−�2(l−xj) − Zc2∕Zc1e
−�2xj+�1(l−xj))}

∕{
e�1l

(
Zc1 + Zc2

)

Zc1
+

e−�2l
(
Zc1 + Zc2

)

Zc2
},

(24)

n2∑

j=1

ZC,j
�� =

n∑

i=1

{−2ΔH0,j∕
(
Q0

)
(Zc1

(
e−�2l − e�1xj−�2(l−xj)

)
+ Zc2

(
e−�2xj+�1(l−xj) − e�1l

)
)}

∕
{
Zc2

(
Zc1 + Zc2

)
e�1l + Zc1

(
Zc1 + Zc2

)
e−�2l

}
.
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objective function for abnormality detection does not necessarily address all time series 
for the theoretical period of a pipeline system (Wylie and Streeter 1993). The proposed 
optimization scheme counts several pressure points for a specific abnormality calibra-
tion. To designate the search range for each abnormality, two arrays called ITT1(k) 
and ITT2(k) are introduced (k is the number of multiple abnormalities). A sequential 
comparison of adjacent pressure gradients to the tolerance of the pressure sensor error 
(TOL) is performed, and ITT1(k) and ITT2(k) can be determined as follows:

where DIFF1 = ABS
[
{h(i) − h(i − 1)}∕dt

]
 , DIFF2 = ABS

[
{h(i + 1) − h(i)}∕dt

]
 , and h(i) is 

the pressure head at time step i, which iterates between two and nf. The symbol nf is an 
integer representing 2 l / a, where l is the pipeline length and a is the wave speed. In this 
study, the normalized pressure head for a steady-state pressure head was used for h(i), and 
a value of one was adopted for the TOL.

Based on the identification of the calibration interval using Eq.  (25), the objective 
function (OF) for the simultaneous detection of multiple leakages can be simply defined 
as

where m is the number of multiple abnormalities, and hobs(i) and hcal(i) are the observed 
and calculated pressure heads at time step i, respectively.

if (DIFF1 > TOL.&.DIFF2 < TOL)then

(25)ITT1(k) = i − 2;ITT2(k) = i + 2;k = k + 1,

(26)OF = min[
∑m

k=1
{
∑ITT2(k)

i=ITT1(k)

�
hobs(i) − hcal(i)

�2
}],

Fig. 2  Flowchart for the pro-
posed AMS for the stepwise 
detection of multiple abnormali-
ties
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To improve the predictability of abnormalities, three enhanced schemes were imple-
mented to concentrate the calibration potential of the metaheuristic engine.

3.1  Enhanced Adaptive Scheme 1

To minimize the impact of pressure noise on the abnormality detection process, enhanced 
adaptive scheme  1 was implemented in the AMS. Noise can be generated by the error 
bounds associated with a measurement device such as a pressure transducer, one or more 
residuals of a preexisting transient impact, or signal contamination during the information 
transformation procedure. If noise statistics are unbiased and the distribution of a pres-
sure signal is temporally uniform, then the presence of such noise is not always detrimen-
tal to the prediction of leakages (Lee et al. 2013). However, the residual transitional pres-
sure head disturbances introduced by a water hammer can be an obstacle to the detection 
of leakages with small leakage discharges. Consequently, the impact of noise on the first 
abnormality detection procedure can affect the next search for additional abnormalities.

Therefore, a stepwise abnormality detection scheme must be refined to minimize the 
impact of disturbances from previous abnormalities. The objective function of the pressure 
signal from the first wave reflection ( OF1 ) is defined as

The objective function for the pressure signal from the second to the mth wave reflec-
tion (OFj) is defined as

where, Cuthobs and Cuthcal are equal to hobs(ITT1(j)) and hcal(ITT1(j)) , respectively.

3.2  Enhanced Adaptive Scheme 2

The prediction of abnormality locations is the most important factor for the practical man-
agement of water distribution systems. The potential locations of multiple abnormalities 
are not necessarily defined according to the total length of a pipeline and the bounds for 
multiple abnormalities can be defined on much finer scales.

Defining different search ranges for each abnormality facilitates enhanced parameter 
convergence compared to the conventional case. Enhanced adaptive scheme  2 imple-
ments distinct bounds for abnormality locations through the sequential optimization of 
abnormalities.

The maximum and minimum bounds, MaxB and MinB , for the location of the first 
abnormality and the other abnormality locations are defined as

where i = 1,.., m, and m is the total number of abnormalities. The bounds defined by 
Eq. (29) are the ranges of the leak location in m.

(27)OF1 = min[
∑ITT2(1)

i=ITT1(1)

�
hobs(i) − hcal(i)

�2
].

(28)OFj = min[
∑ITT2(j)

i=ITT1(j)
{(hobs(i) − Cuthobs) − (hcal(i) − Cuthcal)}

2],

(29)
MinB = 0, i = 1; MinB = a × ITT2(i − 1)∕2, i > 1; MaxB = a × ITT2(i)∕2, i ≥ 1,
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3.3  Enhanced Adaptive Scheme 3

Inverse transient analysis frequently uses pressure time series during multiples of the theoreti-
cal period of an RPV system (e.g.,4l∕a , …). This can be useful for calibrating additional pipe-
line parameters (e.g., friction and system characteristics) over leakages. However, the ASM 
focuses on the prediction of abnormalities and the impact of other pipeline components such 
as the length and wave speed can be redundant. Therefore, it is more effective to exclude addi-
tional impacts such as the pipeline structure in the formulation of the multiple abnormality 
function. This means that the proposed method only considers the impact of abnormalities 
stemming from external valve actions and their associations with the frictional impact on the 
pipeline system. Enhanced adaptive scheme 3 implements exclusive hydraulic impedances for 
multiple abnormalities under unsteady friction conditions.

By using hydraulic impedances for the 2D unsteady friction models, the identified exclu-
sive impedance for multiple abnormalities in an RPV system, namely the identical multiple 
abnormality function for laminar flow, can be expressed as

The leakage number ( n1 ) and blockage number ( n2 ) can be varied as the calibration 
scheme identifies additional abnormalities.

Based on the 1D unsteady friction model, the identified multiple abnormality function for 
turbulent flow, which is the sole hydraulic impedance at a downstream valve for an RPV sys-
tem, can be expressed as

(30)
ZIDV

� = (
∑n1

i=1
ZAC,i

� +
∑n2

j=1
ZAC,j

� −
∑n1

i=1
ZB,i

� −
∑n2

j=1
ZB,j

�)∕(1 +
∑n1

i=1
ZC,i

� +
∑n2

j=1
ZC,j

�),

(31)
∑n1

i=1
ZAC,i

� =
Z2
s

2H0

×
eΓ(l)−eΓ(−l)

eΓ(l)+eΓ(−l)
×
∑n1

i=1
[Qolk,i∕{

eΓ(xi)−eΓ(−xi)

eΓ(xi)+eΓ(−xi)
+

eΓ(l−xi)+eΓ(xi−l)

eΓ(l−xi)−eΓ(xi−l)
}]

(32)
∑n2

j=1
ZAC,j

� = −
2

2H0

×
eΓ(l)−eΓ(−l)

eΓ(l)+eΓ(−l)
×
∑n2

j=1
[ΔHj∕{

e
Γ(xj)+eΓ(−xj)

e
Γ(xj)−eΓ(−xj)

+
e
Γ(l−xj)−eΓ(xj−l)

eΓ(l−j)+e
Γ(xj−l)

}].

(33)
ZIDV

�� = (
∑n1

i=1
Z��
AC,i

+
∑n2

j=1
Z��
AC,j

−
∑n1

i=1
Z��
B,i

−
∑n2

j=1
Z��
B,j
)∕(1 +

∑n1

i=1
ZC,i

�� +
∑n2

j=1
ZC,j

��),

n1∑

i=1

ZAC,i
�� = −

1

2H0

Z2

c1
Z2

c2

(
e�1l − e−�2l

)

(
Zc1 + Zc2

)(
Zc2e

�1l + Zc1e
−�2l

)2

(34)
∑n1

i=1
Qolk,i

�
Zc1

�
e−�2l − e−�2xi+�1(l−xi)

�
+ Zc2

�
e�1xi−�2(l−xi) − e�1l

��
,

n2∑

j=1

ZAC,j
�� =

2

Q0

Zc1Zc2
(
e�1l − e−�2l

)

(
Zc1 + Zc2

)(
Zc2e

�1l + Zc1e
−�2l

)2

(35)
∑n2

j=1
ΔHo,j

�
Zc1

�
e−�2l − e�1xj−�2(l−xj)

�
+ Zc2

�
e−�2xj+�1(l−xj) − e�1l

��
.
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4  Results

4.1  An RPV System with Multiple Abnormalities

Multiple abnormalities were considered in an RPV system to test the performance of 
the developed method for detecting multiple leakages and blockages. The target RPV 
system has been used in several experimental studies (Kim 2011, 2016). A distribution 
of 10 abnormalities was considered, as shown in Fig. 1. The length of the pipeline is 
87.22 m, its internal diameter is 0.02 m, and the wave propagation speed is assumed to 
be 1395 m/s. The steady-state discharge is 4.71 ×  10–5  m3/s and the steady pressure head 
is 23.2 m. The leak quantity is 4.71 ×  10−6  m3/s and the coefficient for blockage (Ck) 
is 225, which represents one-third of the areal ratio of the cross section. The distance 
between different abnormalities is 7.93  m. The unsteady friction coefficients for the 
1D model k1 and k2 are 0.0345. This value was calibrated in an experimental study by 
Kim (2011, 2016). A water hammer is introduced by instant valve closure downstream. 
Considering a flow velocity of 0.15 m/s, the Joukowski pressure is 21.32 m, indicating 
pressure oscillation between 44.52 and 1.88 m during a water hammer event. To com-
pute the pressure responses through frequency-domain formulations, the maximum and 
minimum frequencies of impedance-based analysis should be specified. In this study, 
the frequencies ranged from 0 to 325 rad/s. The number of samples for the fast Fourier 
transform was 32,768, meaning the interval of frequency analysis was 0.00014  rad/s. 
Fine-resolution analysis in the frequency domain indicated that the computational inter-
val was 0.00105 s.

4.2  Comparisons Between a Conventional Transfer Matrix and MAF

4.2.1  Hydraulic Impedances in a Downstream Valve

Hydraulic impedances were computed using the conventional transfer matrix and the 
MAF under the assumption of steady friction for two distinct abnormality distributions, 
as shown in Fig.  1. Figure  3 presents the amplitude differences between the hydrau-
lic impedances at a downstream valve for two different formulations of abnormalities 
using the conventional transfer matrix and MAF under the steady friction model. The 
impedance comparisons between the conventional transfer matrix and MAF under the 
two unsteady friction models are well matched. The maximum difference between the 
conventional transfer matrix and MAF is approximately 4% and the frequency distribu-
tions of the different friction models are similar. Hydraulic impedance calculations for 
another abnormality distribution (e.g., five leakages in a row next to five blockages) 
also exhibited small differences between the conventional transfer matrix and MAF for 
unsteady friction models (not presented). Therefore, the evaluation of hydraulic imped-
ance using the MAF can be considered as an alternative to the conventional transfer 
matrix for multiple abnormality representation in RPV systems.

4.2.2  Model Parsimony and Flexibility

One distinctive strength of the MAF compared to the conventional matrix is the parsi-
mony of the representation of multiple abnormalities in an RPV system. Two distinct 
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wave propagation characteristics of the acceleration-based unsteady friction model 
introduce substantial complexity into formulations of pressure and discharge in the 
frequency domain (Kim 2011). This makes the consideration of multiple leakages and 
multiple blockages extremely complicated. For example, the numbers of terms for three 
abnormalities in an RPV system (within the traditional transfer function matrix) are 
128 and 32 for the acceleration-based unsteady friction model and frequency-dependent 
unsteady friction model, respectively.

Figure 4 presents the number of mathematical terms required for hydraulic impedances 
for various numbers of abnormality conditions at a downstream valve in an RPV system 
using a traditional formulation (impedance method) and the MAF for the acceleration-
based unsteady model. The traditional formulations exhibit substantial incremental patterns 
as the number of abnormalities increases and the complexity of the MAF is much smaller 
than that of the traditional impedance formulation. The improvement of model parsimony 
in the mathematical expressions for 11 abnormality conditions between the two different 
approaches is on the order of six for the acceleration-based unsteady friction model. The 
difference in the number of required mathematical terms between the conventional formu-
lation and MAF for the frequency-dependent model is on the order of five under laminar 
flow conditions.

4.3  Multiple Abnormality Detection

To test the performance of the proposed AMS (Fig. 2), transients for the 10 abnormalities 
presented in Fig. 1 were considered for both laminar and turbulent flow conditions. The 

Fig. 3  Differences in hydraulic impedance as percentages [(Conventional Matrix−MAF)/(Conventional 
Matrix) × 100] under steady friction (SF), acceleration-based unsteady friction (AUSF), and frequency-
dependent friction-based unsteady friction (FUS) for the abnormality distribution in Fig.  1 at the down-
stream valve
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leakage quantities for leakages located at 79.24 m, 64.43 m, and 15.86 m from the down-
stream valve were 1.42 ×  10–6  m3/s (10% of the mean flowrate), and those for the leak-
ages located at 47.57 m and 31.72 m were 2.82 ×  10−6  m3/s (20% of the mean flow rate). 
The coefficients (Ck) for partial blockages located at 71.36 m, 55.5 m, 39.65 m, 23.79 m, 
and 7.93 m from the downstream valve were 225, representing flow through 33.3% of the 
cross-sectional area. The calibration bounds of the abnormality locations were between 
the upstream reservoir and downstream valve (0–87.22  m). The search ranges for leak 
quantities and the blockage coefficient (Ck) were defined to be between 1 ×  10−6  m3/s and 
1 ×  10−5  m3/s, and between 25 and 250, respectively. The best parameters for either leakage 
or blockage were delineated through 1275 iterations of the GA. The crossover probability 
and creep mutation probability for the GA were set to 0.5 and 0.04, respectively. The TOL 
for DIFF1 and DIFF2 for the AMS was set to 1.0.

Table  1 presents the abnormality prediction results when using the AMS with a 
frequency-dependent friction model under laminar flow conditions for the abnormal-
ity distribution presented in Fig.  1. The predicted distribution, number, and locations 
of abnormalities are in good agreement with the correct values. The maximum error in 
location is 1.76 m for the ninth leakage, representing a prediction accuracy of greater 
than 97.9%. The predictions of the blockage coefficient (Ck) also generally match well 
with the correct values, but the values for leak quantity are low depending on the loca-
tion. Generally, the sensitivity of the leak quantity value is lower than those of the other 
parameters (Lee et  al. 2013). This is because the order of the leakage term, namely 
Qolk∕2H0 , is on the order of −7.

Table  2 presents the abnormality predictions when using the acceleration-based 
unsteady friction model for the same abnormality conditions represented in Table 1. Both 

Fig. 4  Number of terms required for the impedances of the conventional formulation and MAF under a 1D 
unsteady friction model of turbulent flow
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the distribution and locations of the abnormalities exhibit good agreement with the cor-
rect locations. The predictability of the leakage quantity and relative opening of partial 
blockages is better than that in Table 1, which can be attributed with the greater number of 
unsteady friction parameters used in the acceleration-based model.

5  Discussion

5.1  Parameters for the AMS

The predictive power of the AMS depends on the parameters used to identify abnormali-
ties. The time interval dt strongly affects the TOL (Eq. 25), which is one of the most impor-
tant parameters for successful abnormality prediction. If the TOL is above an appropriate 
range, the AMS can miss relatively small leakages and blockages, resulting in fewer abnor-
malities being predicted compared to the actual number. If the TOL is lower than an appro-
priate range, excessive abnormalities may be predicted, which typically appear as multiple 
concentrated abnormalities near a specific defect boundary condition. The time interval 
between ITT1(k) and ITT2(k) can be adjusted based on dt . If dt is too large or small, it 
can result in either missing abnormalities or a reduction in accuracy. The determination of 
appropriate values for the TOL and time interval between ITT1(k) and ITT2(k) can be per-
formed using a heuristic method. Based on a preliminary visual inspection of the identified 
pressure values, the TOL parameters were determined to be one and nine for laminar and 
turbulent flow conditions, respectively. Several iterative tests using different TOLs between 
5 and 11 provided almost identical results to those listed in Tables 1 and 2, indicating the 
robustness of the TOL as a parameter for different abnormalities.

The AMS enforces the reduction of residuals when an additional abnormality is identi-
fied. This means that the time series of residual pressure heads can demonstrate the perfor-
mance of the AMS in terms of mean error skewness and accuracy for the particular abnor-
mality conditions in Tables  1 and 2. In other words, the AMS facilitates the diagnostic 
evaluation of the accuracy of a specific abnormality parameter in the time scale of the cor-
responding response. This feature provides substantial support for predicting the degree of 
calibration for any specific parameter. The time series of residuals in the AMS can be use-
ful for determining an appropriate TOL value. If an absolute residual pressure time series 
is not apparently reduced (compared to the identified pressure) for a specific defect bound-
ary, then the TOL should be reduced to successfully identify the abnormality. The TOL 
should be increased if the AMS exhibits idle iterations with minimal improvement during 
the residual minimization process.

5.2  Impact of Noise in Pressure Signals

For the AMS, noise can affect abnormality predictability and can be generated from the 
error bound of a pressure transducer or oscillatory computational behavior in frequency-
domain computations. Equations  (30) and (33) deliberately exclude oscillatory features 
from the frequency-domain approach by removing abrupt variations in pressure, such as 
those caused by water hammer.

4595Adaptive Metaheuristic Scheme for Generalized Multiple…
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To address possible errors in the pressure transducer and its data acquisition process, two 
types of systematic errors and random noise were considered to test the robustness of the pro-
posed multiple abnormality detection scheme. One type is a zero-offset error that shifts the 
entire scale up or down by a zero-offset value. Considering the error bound of the pressure 
sensor used, the zero offset was specified to 0.05% of the measurement. The other type is a 
span error, which indicates that the distance from the zero point to the full-scale value may 
be incorrect, which magnifies the error at the upper end of the scale. This study assumed a 
0.1% span error. Additionally, white noise was added to the pressure signal with two system-
atic errors, resulting in an error bound of ±0.05 % (from a commercially available pressure 
transducer).

The TOL parameters for DIFF1 and DIFF2 for the AMS were identical to those 
represented in Table  2. Table  3 presents the AMS predictions of the 10 intermit-
tent abnormalities for noise-contaminated pressure values. Both the distribution of 
abnormalities and locations exhibit similar values to those listed in Table  2. The 
predictability for leakage quantities and the Ck values of blockages exhibits similar 
accuracy to the case without noise (Table 2). The robustness of multiple abnormality 
prediction in terms of various types of noise can be explained by the concentrated 
calibration approach of the AMS, including the objective functions in enhanced 
adaptive schemes 1 and 2 and the leak isolated impact function defined in enhanced 
adaptive scheme 3.

5.3  Features of the AMS

The AMS has several distinctive features compared to previous transient-based leakage 
and blockage detection algorithms. First, the MAF comprehensively addresses both 
leakages and blockages under the conditions of unsteady friction and either laminar or 
turbulent flow, which facilitate the adaptable identification of abnormalities under the 
unknown circumstances of field pipeline systems. The proposed MAF plays an impor-
tant role in the computation of transients in the AMS. Another notable strength of the 
AMS approach is that there is no limitation on the number of abnormalities if the time 
scale of the data is sufficiently small. As illustrated in Fig. 2, the loop for new abnor-
mality searching in the AMS can be iterated as long as any meaningful residual is left, 
even if the number and distribution of abnormalities are unknown. The other distinct 
advantage over previous algorithms is the self-diagnosing feature of the AMS, which 
is associated with enhanced adaptive scheme 3. This provides robustness to the cali-
bration parameter for converging the AMS to a global optimal solution. An additional 
iterative test for an important optimization parameter, namely the TOL, indicated that 
a wide range of TOL values yielded solutions identical to those listed in Tables 1 and 
2, which significantly reduces the uncertainty of abnormality prediction. In particu-
lar, the AMS was designed to concentrate its calibration potential on the designated 
interval (enhanced adaptive scheme 2) and minimize noise from previous calibrations 
(enhanced adaptive scheme 1). This significantly improves its prediction capability for 
abnormality locations (Tables 1 and 2), even in the presence of different types of noise, 
as shown in Table 3.
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6  Conclusion

Efficient and comprehensive formulations of multiple abnormalities (multiple leakages and 
multiple partial blockages) were proposed for a reservoir pipeline valve system. Unsteady 
friction impacts under laminar and turbulent flow conditions were considered using a 2D 
frequency-dependent model and 1D acceleration-based model. The validity of the pro-
posed formula was verified by comparing its impedance distributions to those of existing 
approaches. The proposed formula exhibited significant improvements in terms of model 
parsimony and flexibility in the representation of abnormality distributions with almost 
identical accuracy compared to existing approaches.

The MAF was implemented and the AMS was developed to predict multiple abnor-
malities in RPV systems. Three enhanced schemes were proposed to improve the perfor-
mance of the proposed algorithm. The performance of the developed algorithm was tested 
on several hypothetical examples (for laminar and turbulent models) with 10 abnormali-
ties. The results demonstrated that it provides reliable prediction capabilities, even without 
prior information regarding the dimensions, identities, or distributions of abnormalities. 
The residual elimination procedure not only provides a unique opportunity to evaluate the 
performance of each abnormality prediction, but also adaptively identifies sensitive param-
eters for enhanced prediction. In future work, experimental validations of the proposed 
method will be required to prove its applicability for both laboratory and field pipeline 
systems.
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