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Abstract
Water distribution networks (WDNs) connect consumers to the source of water. The pri-
mary goal of optimizing WDNs is to minimize the network costs as WDNs entail high con-
struction costs. This paper presents a newly developed parameter-less Rao algorithm for 
optimization of WDNs. The methodology is based on a pressure and discharge dependent 
penalty. It is written in python code by linking to a hydraulic model of WDN implemented 
in EPANET. The algorithm is applied and tested on three benchmark networks, namely 
Two-loop (TL), New York Tunnel (NYT) and Goyang (GY) and a real WDN of School of 
Planning and Architecture (SPA), Bhopal, India. Rao algorithm employs two approaches to 
hydraulic modelling, demand-driven analysis (DDA) and pressure-driven analysis (PDA), 
as the DDA-Rao algorithm and the PDA-Rao algorithm. PDA-Rao algorithm outperforms 
DDA-Rao algorithm in terms of convergence. PDA-Rao algorithm saved 1.7% network 
cost for the NYT network, while the best-known least-cost values were obtained for TL 
and GY networks. It is seen that the Rao algorithms are efficient, easy to apply and do not 
require any parameter tuning, which reduces a large number of computational efforts.

Keywords Water distribution network · Pressure-driven analysis · Optimization · Rao 
algorithm · Evolutionary algorithm

1 Introduction

Every water distribution network (WDN) consists of various elements such as pipes, 
junctions, reservoirs, tanks and valves. The main aim of a WDN is to supply water at 
the required pressure and flow rate. As WDNs involve high construction costs, there 
is a high requirement for a cost-effective network design. The cost of the network 
increases with increasing the size of its elements. Thus, the selection of optimum 
pipe diameters is required for the optimal design of WDN. Even for a small pipe 
network, there are thousands of pipe combinations available. For example, there are 
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 108 pipe size combinations for a small eight-pipe network with ten available pipe 
sizes. Therefore, it is difficult to get the optimum results using classical optimization 
techniques.

The use of stochastic techniques is vastly suggested in the literature for problems 
that have large search spaces. Savic and Walters (1997), Wu and Simpsons (2002), 
and Kadu et al. (2008) are only few of many researchers who used genetic algorithms 
(GA) in this area. An extensive literature is available on application of several other 
evolutionary algorithms (EAs) in WDN optimization. For instance, simulated anneal-
ing (SA) (Cunha and Sousa 1999), ant colony optimization (ACO) (Maier et al. 2003), 
shuffled frog leaping algorithm (SFLA) (Chung and Lansey 2009), harmony search 
(HS) (Geem 2006), particle swarm optimization (PSO) (Suribabu and Neelakantan 
2006), differential evolution (DE) (Suribabu 2010; Dong et al. 2012), developed swarm 
optimizer (DSO) (Sheikholeslami and Talatahari 2016). In recent optimization studies, 
Fallah et  al. (2019) applied improved crow search (ICS) algorithm and Pankaj et  al. 
(2020) used self-adaptive cuckoo search (SACS) algorithm.

Most of these algorithms are evolutionary algorithms or metaphor-based algo-
rithms inspired by the natural phenomenon. In addition to standard parameters (popu-
lation size and number of generations), they require some algorithm-specific param-
eters. For example, mutation, crossover and selection in GA; inertia weight, cognitive 
and social parameter in PSO; cooling factor and elasticity of acceptance in SA; num-
ber of nests, shifting and step size control parameter in cuckoo search (CS). Tuning of 
these algorithm-specific parameters is crucial. Improper tuning either results in local 
optima or increased computational efforts. In addition, they involve a complex work-
ing process that is challenging to understand for new designers and researchers.

Addressing these problems, Rao (2020) recently introduced three algorithms, called 
Rao-1, Rao-2 and Rao-3. These algorithms are algorithm-specific parameter-less, 
metaphor-less and straightforward. In this study, Rao algorithm uses two approaches 
to hydraulic modelling, demand-driven analysis (DDA) and pressure-driven analysis 
(PDA), as DDA-Rao algorithm and PDA-Rao algorithm.

In the conventional hydraulic analysis called demand-driven analysis (DDA), it is 
assumed that the demands are known functions of time and are independent of pres-
sure. DDA has produced effective solutions in many models under normal conditions. 
Although, it performs inadequately when abnormal conditions are considered. On the 
contrary, pressure-driven analysis (PDA) incorporates a relationship between demand 
and pressure. In PDA, if some pressure is available above the minimum required level, 
it is assumed that a portion of demand will be supplied at the node. Under abnor-
mal conditions, PDA predicts better network performance as it considers both nodal 
requirements and pressure requirements (Babu 2021).

In the present work, a new technique has been applied in the optimization of water 
distribution networks. A newly developed parameter-less Rao algorithm is integrated 
with pressure-driven analysis as well as demand-driven analysis. The results obtained 
using DDA-Rao and PDA-Rao algorithms are compared to those of previously applied 
algorithms for validation purposes. Also, the convergence speed is shown using con-
vergence plots for all case studies. The comparative study based on the modified per-
formance index shows that the PDA-Rao algorithm performs exceptionally well in all 
performance aspects and outperforms many evolutionary algorithms.
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2  Optimization Procedure

This work aims to analyze the applicability of a newly developed Rao algorithm to opti-
mize discrete, non-linear and constrained WDN design problems. The objective func-
tion is to minimize the network cost by meeting all the constraints. The function vari-
ables are the pipe sizes and the head at each node.

2.1  Simulation Model

The hydraulic analysis is carried out using EPANET 2.2 (Rossman et al. 2020) as the 
simulation model. EPANET 2.2 is linked to a Python code using Water Network Tool 
for Resilience (WNTR). WNTR is a Python package, which contains several sub-
packages. Each sub-package contains modules that include classes, methods and func-
tions. These classes are used to generate water network models and run simulations 
(Klise et al. 2017). The hydraulic simulation models are used to analyze the pressure 
at nodes and flow velocity in pipes to satisfy the demand at each node.

2.1.1  Pressure‑demand relationship

The PDA-Rao algorithm uses the pressure-demand relationship proposed by Wagner 
et al. (1988) as shown below:

Qj,avl and  Qj,req are available and required discharge at node j, respectively.  Hj,avl,  Hj,req and 
 Hj,min are the available pressure head, required pressure head (nominal head) and minimum 
pressure head at node j, respectively.

2.1.2  Objective Function

The objective of this work is to minimize the network cost, which is a function of pipe 
diameter and pipe length, as shown below:

C(Di) is the cost per unit length and  Li is the length of pipe i; C is the cost of the network; 
np is the number of pipes in the network. The minimization of the objective function is car-
ried out satisfying the following constraints:

(1)Qj,avl = Qj,req if Hj,avl ≥ Hj,req

(2)Qj,avl = Qj,req ∗
((
Hj,avl − Hj,min

)
∕
(
Hj,req − Hj,min

))(1∕2)
if Hj,min < Hj,avl < Hj,req

(3)Qj,avl = 0 if Hj,avl < Hj,min

(4)C =
∑np

i=0
C(Di) ∗ Li

Application of Parameter‑Less Rao Algorithm in Optimization… 4069
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2.1.3  Conservation of Mass

For each node, continuity of flow must be satisfied:

Q1 is discharge going towards a specific node;  Q2 is discharge coming out from the specific 
node;  Qj is the water demand at node j; nn is the number of nodes.

2.1.4  Conservation of Energy

The loss of head around a closed loop of pipe should be equal to zero or the conserva-
tion of the energy equation for each loop should satisfy the network design as shown in 
Eq. (6).

where  Hf is head loss due to friction in pipe (m), which is calculated using the Hazen-
Williams formula:

where L is the length (m) and D is the diameter (m) of the pipe; Q is the discharge  (m3/s); 
α and β are the exponents; ω is the numerical conversion constant;  Chw is the roughness 
coefficient.

2.1.5  Available Pipe Sizes

The diameter of the pipes should be selected from a set of commercially available sizes and 
are thus discrete:

D1,  D2…,  Dns is the set of commercially available pipe sizes; ns is the number of candidate 
pipe sizes.

2.1.6  Required Pressure Head

The available pressure head at each node should be greater than the required pressure head.

2.2  Optimization Model

The optimization model is constructed using Rao algorithm in Python. Rao algorithms are 
recently introduced by Rao (2020). ‘The key advantage of Rao algorithms is that the algorithm-
specific parameters do not need to be tuned to search for the optimal solution of design problems. 
Its working procedure is easy to understand and execute’ (Rao and Pawar 2020).

(5)
∑

Q1 −
∑

Q2 = Qj,∀ j � nn

(6)
∑

Hf = 0

(7)Hf = �LQ�∕Chw
�D�

(8)Di � {D1,D2 … , Dns},∀ i � ns

(9)Hj,avl ≥ Hj,req,∀ j � nn
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2.2.1  Rao Algorithm

The Rao algorithm works by moving closer to the best solution and away from the worst. 
With random interactions, the solution moves throughout the population. The basic proce-
dure of Rao algorithm in optimization of WDN is shown in Fig. 1.

Fig. 1  Flowchart of Rao algorithm in optimization of water distribution networks
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At first, initial population of the diameters is generated using random numbers consider-
ing upper and lower bound values. These diameters are used to find the value of the objec-
tive function, C. The minimum (best) and maximum (worst) cost candidates are selected 
from the range of solutions. The diameters corresponding to the best and worst solutions 
are used to generate a new population using one of the three equations of the Rao algo-
rithms. ’In the Rao algorithms, the Rao-1 algorithm improves the result by considering the 
difference between the best and worst solutions; the Rao-2 and Rao-3 algorithms improve 
the result by considering not only the difference between the best and worst solutions but 
also the random interactions of the candidate solutions. The difference between Rao-2 and 
Rao–3 algorithms lies in considering the absolute values of the variables in the respective 
equations’ (Rao and Pawar 2020). Rao-2 algorithm promotes more diversity because of the 
random interactions. Also, absolute values of variables should be considered to find the 
resilient solution as the value of pipe diameter is bound to be a real number. Therefore, the 
Rao-2 algorithm is applied in the present work, as shown in Eq. (10).

Dnew is the diameter for new population;  Dold is the diameter for old population;  Dbest, 
 Dworst and  Drand are the diameters corresponding to the best, worst and random solutions, 
respectively; r1 and r2 are random numbers.

2.2.2  Pressure and Discharge Dependent Penalty

After calculating the cost, the feasibility of the solution is checked. The feasibility criterion 
is the fulfilment of the required pressure head at each node. If the solution found is infea-
sible, then a penalty is applied to the cost function. Using DDA, the deficiencies in pres-
sure heads are measured assuming full supply at nodes. In contrast to actual values, this 
approach results in higher deficiencies. Whereas in PDA, both nodal and pressure require-
ments are considered to provide better performance (Abdy  Sayyed et  al. 2019). Thus, a 
pressure and discharge dependent penalty based on equivalent energy costs (Kadu et  al. 
2008) is used in this study, as shown below:

where, p is the penalty coefficient, measured to pump a unit quantity of water into a unit 
head, as suggested by Kadu et al. (2008).

2.3  Modified Performance Index (MPI)

A performance index (PI) suggested by Deep and Thakur (2007) is used to measure 
the effectiveness of the successful run for the given objective function. A modification 
is made to obtain a better comparison following the parameters provided by previous 
researchers. The modified performance index (MPI) illustrates the algorithm’s degree 
of reliability, efficiency and accuracy. The reliability of PDA-Rao algorithm is defined 
as the frequency with which it converges to the near-optimal solution, which is meas-
ured by calculating the success rate. If the optimum cost obtained in a run is within 1% 
accuracy of the best-known value for that problem, then a run is considered a success-
ful run (Deep and Bansal 2009).

(10)Dnew = Dold + r1
(
Dbest − Dworst

)
+ r2(||Dold or Drand

|| − |Drand or Dold|)

(11)Penalty = p ∗ Qj,avl ∗ (max (0, (Hj,req − Hj,avl)))
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The relative performance of an algorithm using MPI can be calculated as:

where, α1 =  (Sri/Tri); α2 =  (LAfi/Afi); α3 =  (LAti/Ati); α4 =  (LMfi/Mfi); α5 =  (LMti/Mti).
Sri = Number of successful runs of  ith problem.
Tri = Total number of runs of  ith problem.
The following terms in the calculation of the MPI are defined for the successful runs of 

the  ith problem:
LAfi = Least of average function evaluation (AFE) numbers documented for the entire 

range of applied algorithms.
Afi = AFE number of the current algorithm.
LAti = Least of average computational time of an entire range of applied algorithms.
Ati = Average computational time of the current algorithm.
LMfi = Least of minimum function evaluation (MFE) numbers documented for the 

entire range of applied algorithms.
Mfi = MFE numbers of the current algorithm.
LMti = Least of minimum computational time of an entire range of applied algorithms.
Mti = Minimum computational time of the current algorithm.
Np = Total number of problems analyzed.
k1,  k2,  k3,  k4 and  k5 are weights such that, 

∑5

i=1
ki = 1

3  Case Studies

The TL, NYT and GY benchmark networks are used to evaluate the performance of PDA-
Rao algorithm. Further, this algorithm is used to solve a real WDN of School of Planning 
and Architecture (SPA) located in Bhopal region of India. Figure 2 depicts the schematic 
diagrams of all of the network cases.

The Two-loop network is a gravity-fed network firstly used by Alperovits and Shamir 
(1977). Later, it has been widely used by researchers (e.g., Savic and Walters 1997; Cunha 
and Sousa 1999; Babu and Vijayalakshmi 2013) in the field of optimization. The New York 
Tunnel network was initially presented by Schaake and Lai (1969). As Suribabu (2010) 
reiterated, the problem aims to determine the installation of new pipes parallel to the exist-
ing network to fulfil the pressure head requirement at critical nodes (node 16—20). The 
Goyang network is a pumped network presented by Kim et al. (1994) in South Korea. The 
hydraulic data for this network are taken from Geem (2006). The School of Planning and 
Architecture (SPA) network is a gravity-fed network with a total pipeline length of 1890 m. 
Demand at each location is measured using 2  h of supply per day, taking into account 
acceptable requirements. The available pipe diameters and the corresponding rates for SPA 
network are taken following CPWD GOI (2019).

The available pipe diameters for all case study networks are given in Table  1. The 
Hazen–William’s constants (ω = 10.667, α = 1.852 and β = 4.871) are identical for all net-
works and equal to the values used by EPANET 2.2. The developed module was run on an 
Intel (R) Core (TM) i5-8250U CPU @ 1.60 GHz with 8.00 GB RAM, using the Python 
programming language.

(12)MPI =
1

Np

∑Np

i=1
(k1�1 + k2�2 + k3�3 + k4�4 + k5�5)i

Application of Parameter‑Less Rao Algorithm in Optimization… 4073
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4  Results and Discussions

A simple procedure to find the minimum cost of a given water distribution network is sug-
gested in this paper using a newly developed Rao algorithm while satisfying constraints. 
The solutions obtained using DDA-Rao and PDA-Rao algorithms are compared with those 

Fig. 2  Schematic diagram of case study networks: a Two-loop network, b New York Tunnel network, c 
Goyang network, and d School of Planning and Architecture (SPA) network
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of other optimization algorithms based on minimum cost achieved and AFE numbers. For 
both techniques, the population size is fixed to 20, and the number of iterations differs 
based on the network size and search space.

The minimum feasible cost of the Two-loop network is stated as $419,000 by various 
researchers (Savic and Walters 1997; Geem 2006; Babu and Vijayalakshmi 2013). PDA-
Rao algorithm converged to the minimum cost within 33 iterations in only 33 s. Thus, the 
MFEs for the PDA-Rao algorithm is 660 compared to 6,500 for GA (Savic and Walters 
1997) and 5,000 for SA (Cunha and Sousa 1999). Comparative results of PDA-Rao algo-
rithm are presented in Table 2, which are obtained over 30 runs. Both DDA-Rao and PDA-
Rao algorithms got the best-known value of network cost in 4,000 and 840 AFE numbers, 
respectively. However, AFE numbers for the same network were reported as 65,000 using 

Table 2  Comparison of optimal results

Reference Algorithm Cost Average 
function 
evaluations

Optimal diameters (mm)

Two-loop network
Alperovits and Shamir 

(1977)
LP $497,525 25,000 [508—457.2, 203.2—152.4, 457.2—203.2, 

152.4—406.4, 304.8—254, 152.4, 
152.4—101.6]

Savic and Walters 
(1997)

GA $419,000 65,000 [457.2, 254, 406.4, 101.6, 406.4, 254, 254, 
25.4]

Cunha and Sousa 
(1999)

SA $419,000 25,000 [457.2, 254, 406.4, 101.6, 406.4, 254, 254, 
25.4]

Babu and Vijayalakshmi 
(2013)

PSO-GA $419,000 1,300 [457.2, 254, 406.4, 101.6, 406.4, 254, 254, 
25.4]

Pankaj et al. (2020) SACS $419,000 3,600 [457.2, 254, 406.4, 101.6, 406.4, 254, 254, 
25.4]

Present work DDA-Rao $419,000 4,000 [457.2, 254, 406.4, 101.6, 406.4, 254, 254, 
25.4]

PDA-Rao $419,000 840 [457.2, 254, 406.4, 101.6, 406.4, 254, 254, 
25.4]

New York Tunnel network
Dandy et al. (1996) GA $38.80 million 200,000 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3048, 

2133.6, 2438.4, 2133.6, 1828.8, 0, 
1828.8]

Savic and Walters 
(1997)

GA $37.13 million 100,000 [0, 0, 0, 0, 0, 0, 2743.2, 0, 0, 0, 0, 0, 0, 0, 
0, 2438.4, 2438.4, 2133.6, 1828.8, 0, 
1828.8]

Lippai et al. (1999) GA $38.13 million 100,000 [0, 0, 0, 0, 0, 0, 3352.8, 0, 0, 0, 0, 0, 0, 0, 
0, 2438.4, 2438.4, 2133.6, 1828.8, 0, 
1828.8]

Wu and Simpson 
(2002)

GA $38.80 million 30,000 [0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 3048, 
2133.6, 2438.4, 2133.6, 1828.8, 0, 
1828.8]

Geem (2006) HS $36.66 million 6,000 [0, 0, 0, 0, 0, 0, 2438.4, 0, 0, 0, 0, 0, 0, 0, 
0, 2438.4, 2438.4, 2133.6, 1828.8, 0, 
1828.8]

Present work DDA-Rao $36.33 million 3,000 [0, 0, 0, 0, 0, 0, 2438.4, 0, 0, 0, 0, 0, 0, 0, 0, 
2133.6, 2743.2, 1828.8, 1524, 0, 2133.6]

PDA-Rao $36.03 million 1,920 [0, 0, 0, 0, 0, 0, 3352.8, 0, 0, 0, 0, 0, 0, 0, 
0, 1828.8, 2743.2, 1828.8, 1828.8, 0, 
1828.8]

P. Jain, R. Khare4076
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GA (Savic and Walters 1997), 25,000 using SA (Cunha and Sousa 1999) and 1,300 using 
PSO-GA (Babu and Vijayalakshmi 2013). Therefore, a 35.38% reduction in computational 
cost is achieved in solving the TL network problem.

In the existing design of New York Tunnel network, the pressure head value does not 
satisfy the requirement of pressure for multiple nodes. Thus, various algorithms are applied 
to extend the existing network considering new pipes parallel to the existing pipes. As 
reported by Geem (2006), the optimum cost is $36.66 million for this network. DDA-Rao 
algorithm converged to an upgraded solution ($36.33 million) in only 40 iterations. How-
ever, PDA-Rao algorithm converged to $36.03 million, which is the least-cost among the 
results shown in Table 2 for NYT network. It is obtained in only 64 iterations and 1,280 
MFEs. As a result, the PDA-Rao algorithm outperformed all other algorithms in terms of 
convergence as well as cost, with a 68% reduction in computational cost and a 1.7% reduc-
tion in network cost. The pressure head values at critical nodes for the optimum solutions 
of DDA-Rao and PDA-Rao algorithms are shown in Table 3.

Table 2  (continued)

* Data not available

Table 3  Pressure head at critical nodes of New York Tunnel network

Node Demand (m3/s) Existing head
(m)

Required head
(m)

Available head
(m)

DDA-Rao PDA-Rao

16 4.81 59.265 79.244 79.866 79.506
17 1.63 74.901 82.902 83.020 82.917
18 3.32 44.901 77.720 81.143 81.219
19 3.32 25.194 77.720 78.226 78.299
20 4.81 61.862 77.720 78.866 79.698

Reference Algorithm Cost Average 
function 
evaluations

Optimal diameters (mm)

Goyang network
Kim et al. (1994) NLP 179,142,700 

Won
* [200, 200, 125, 125, 100, 100, 80, 80, 80, 

80, 80, 80, 80, 80, 80, 80, 80, 100, 125, 
80, 80, 80, 80, 80, 80, 80, 80, 80, 100, 
80]

Geem (2006) HS 177,135,800 
Won

10,000 [150, 150, 125, 150, 100, 100, 80, 100, 80, 
80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 
80, 80, 80, 80, 80, 80, 80, 80, 80, 80]

Present work DDA-Rao 177,010,359 
Won

1,400 [200, 125, 125, 100, 80, 80, 80, 80, 80, 80, 
80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 
80, 80, 80, 80, 80, 80, 80, 80, 80]

PDA-Rao 177,010,359 
Won

890 [200, 125, 125, 100, 80, 80, 80, 80, 80, 80, 
80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 80, 
80, 80, 80, 80, 80, 80, 80, 80, 80]
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According to Kim et al. (1994), the original and optimum network cost of the Goyang 
network is 179,428,600 Won and 179,142,700 Won, respectively. PDA-Rao algorithm con-
verged to 177,010,359 Won as the minimum cost of this network in only 39 iterations. PDA-
Rao algorithm shows 0.71% reduction in network cost with 8.9% computational cost com-
pared to HS algorithm (Geem 2006), as shown in Table 2.

Convergence curves for DDA-Rao and PDA-Rao algorithms are plotted for the best 
value over 30 runs for all benchmark networks, as shown in Fig. 3. They demonstrate that 
the PDA-Rao algorithm converges faster than the DDA-Rao algorithm.

The statistical results for the TL, NYT and GY networks are shown in Table 4, which 
include minimum, maximum and average values of the cost obtained in 30 runs. As per the 
results, median of the cost is very close to the optimum cost, which shows the accuracy of 
PDA-Rao algorithm. The AFE number, MFE number and computation time required by 
PDA-Rao algorithm demonstrate the requirement of less computational efforts and good 
efficiency.

The MPI is used to observe the consolidated effect of success rate, function evalu-
ation numbers and computation time on the PDA-Rao algorithm. Table  5 provides a 
review of studies related to the application of evolutionary algorithms in the minimum 
cost calculation of one or more of the three benchmark WDNs. The PI and MPI are plot-
ted by reviewing and comparing the results of these studies to the proposed PDA-Rao 
algorithm. Firstly, these studies are compared to get the least of the MFE numbers, AFE 

Fig. 3  Convergence of Rao algorithm: a Two-loop network, b New York Tunnel network, c Goyang net-
work, and d School of Planning and Architecture (SPA) network
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numbers and computation times. Then the ratio of these least values to that of PDA-Rao 
algorithm are measured to calculate MPI using Eq. (12).

For a clear visualization of performance, a method is adopted as suggested by Deep 
and Thakur (2007). In this method, equal weights are assigned to all the terms except 
for one term. Hence, PI or MPI becomes a function of one variable. A geometric graph 
is obtained by drawing the MPI and PI on ten scaled bars, as shown in Fig. 4. The prox-
imity of this graph to the best-performance value is an indicator of the performance 
of the algorithm. The graph suggests that, compared to HS (Geem 2006), the PDA-
Rao algorithm consistently outperforms other optimization algorithms in solving WDN 
problems.

The value of the performance index for PDA-Rao algorithm varies between 0.69 to 
0.94. It demonstrates the competence of the PDA-Rao algorithm compared to conventional 
high-performance algorithms (genetic algorithms, particle swarm optimization algorithm, 
harmony search algorithm and simulated annealing algorithm) used by various researchers 
to optimize WDN.

After validating the approach using three benchmark networks, PDA-Rao algorithm was 
applied to a real WDN of School of Planning and Architecture (SPA). The hydraulic results 

Table 4  Statistical results of PDA-Rao algorithm

Benchmark Network Two-loop New York Tunnel Goyang

Reference Alperovits and 
Shamir (1977)

(Schaake and Lai 1969) (Geem 2006)

No. of decision variables 8 34 30
No. of available diameters 14 15 8
Size of total search space 1.475 *  109 1.934 *  1025 1.238 *  1027

No. of runs 30 30 30
No. of successful runs 23 18 29
Success rate 77% 60% 94%
Minimum cost $419,000 $36,036,869 177,010,359 

Won
Maximum cost $441,000 $38,301,655 180,284,765 

Won
Average cost $421,500 $36,855,324 177,388,497 

Won
Median cost $420,000 $36,627,206 177,204,977 

Won
Standard deviation 4507.4 544,126.1 627,083.6
Population size 20 20 20
Maximum allowed iterations 1000 1000 1000
Minimum function evaluations 660 1280 340
Average function evaluations 840 1920 890
Minimum computational time (s) 33 69 31
Average computational time (s) 83 121 98
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for this network for the best of 5 test runs are given in Table 6. The population size and 
the maximum number of iterations are 15 and 1000, respectively. In PDA, the nominal 
head shall be provided at the demand nodes for the total supply. The required pressure 
head is taken as the nominal head, which is 13 m, and the minimum pressure head for the 
flow through pipes is 0 m. PDA-Rao algorithm converged to a minimum cost solution of 
Rs.15,40,519 for SPA network. The number of function evaluations and computation time 
to achieve the minimum cost solution were 7785 MFEs and 651 s, respectively.

Table 5  Review of various studies and evolutionary algorithms used for the optimization of water distribu-
tion networks

NLP non-linear programming, GA genetic algorithm, SA simulated annealing, fmGA fast messy GA, SFLA 
shuffled frog leaping algorithm, ACO ant colony optimization, SCE shuffled complex evolution, PSO parti-
cle swarm optimization, HS harmony search, HD-DDS hybrid discrete dynamically dimension search, DE 
differential evolution, SLC soccer league competition, IMBA improved mine blast algorithm, DSO devel-
oped swarm optimizer, GSA gravitational search algorithm, SADE self-adaptive differential evolution, DP 
dynamic programming

Reference Algorithm Benchmark WDN

Kim et al. (1994) NLP GY
Dandy et al. (1996) GA NYT
Savic and Walters (1997) GA TL, NYT
Cunha and Sousa (1999) SA TL
Wu and Simpson (2002)  fmGA NYT
Maier et al. (2003) ACO NYT
Liong and Atiquzzaman (2004) SCE TL
Suribabu and Neelakantan (2006) PSO TL
Suribabu and Neelakantan (2006) GA TL
Geem (2006) HS TL, NYT, GY
Tolson et al. (2009) HD-DDS NYT
Suribabu (2010) DE NYT
Dong et al. (2012) DE TL, NYT, GY
Dong et al. (2012) GA TL, NYT, GY
Sedki and Ouazar (2012) PSO TL, NYT
Sedki and Ouazar (2012) PSO-DE TL, NYT
Babu and Vijayalakshmi (2013) PSO-GA TL
Moosavian and Roodsari (2014) SLC NYT
Sadollah et al. (2015) IMBA NYT
Sheikholeslami and Talatahari (2016) DSO GY
Reca et al. (2017) GA TL
Fallah et al. (2019) GSA NYT
Abdy Sayyed et al. (2019) GA TL
Sirsant and Reddy (2021) SADE-DP TL, NYT
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Fig. 4  Modified performance index (MPI) and performance index (PI) plotted using various weight combi-
nations for PDA-Rao algorithm and Harmony search algorithm

Table 6  Hydraulic results of the School of Planning and Architecture (SPA) network using the PDA-Rao 
algorithm

Pipe Length (m) Diameter (mm) Node Elevation (m) Demand (L/s) Available 
head (m)

1 64.5 150 1 522.55 0 17.2
2 38 100 2 521.80 1.11 16.9
3 29 150 3 520.80 1.11 17.9
4 48 100 4 520.86 1.11 17.4
5 52 50 5 521.95 2.22 14.6
6 20 50 6 522.08 0 15.2
7 15 25 7 522.08 0.14 15.1
8 15 50 8 522.32 0 14.0
9 12 50 9 521.95 0 13.5
10 22.5 300 10 521.95 3.33 13.5
11 18 25 11 522.30 0 17.3
12 22.5 25 12 523.55 0 15.4
13 61.5 20 13 522.80 0 14.8
14 60 32 14 522.30 0.56 13.7
15 93 40 15 522.98 2.77 15.1
16 93 40 16 523.50 0 10.9
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5  Conclusions

The present work deals with the application of a metaphor-less and algorithm-specific-
parameter-less Rao algorithm in optimization of WDNs. The results obtained using GA, 
SA and Rao algorithms were identical and optimum for the TL network. For the GY 
network, best-known values were obtained and a 0.71% reduction in cost was observed 
using PDA-Rao compared to HS (Geem 2006). At the same time, results were signifi-
cantly improved for the NYT network with a 1.7% reduction in best-known network 
cost. Moreover, the minimum cost solution for the real-world SPA network was found 
in 7785 function evaluations, which is negligible compared to the size of search space 
(7.17 *1056).

In conclusion, the PDA-Rao algorithm was computationally inexpensive in solving 
problems with large search spaces. Significantly, the methodology is straightforward to 
understand and execute, shows better convergence and gives more accurate results with 
less computational effort. It can therefore be easily applied to other extensive WDN 

Pipe Length (m) Diameter (mm) Node Elevation (m) Demand (L/s) Available 
head (m)

17 36 200 17 521.68 0 12.4
18 36 200 18 521.58 0 12.3
19 39 150 19 521.58 0 12.1
20 38 200 20 524.05 0 14.9
21 39 100 21 523.80 0 15.1
22 42 100 22 524.30 0 14.5
23 33 100 23 524.60 0 14.2
24 44 200 24 524.55 0 13.4
25 47 250 25 523.05 6.4 14.6
26 36 150 26 524.30 0 13.7
27 68 100 27 524.10 0 13.9
28 47 40 28 523.55 0 14.4
29 60 100 29 524.85 0 13.1
30 56 50 30 524.00 0.5 13.9
31 23 350 31 523.55 0.75 13.8
32 99 100 32 524.85 0 13.1
33 39 15 33 524.85 0.07 13.1
34 39 50 34 524.80 0.28 13.2
35 69 200 35 523.28 0 14.8
36 9 150 36 520.00 0.28 13.7
37 18 250 37 523.25 0 16.4
38 21 50 38 522.05 0 17.6
39 54 200 39 523.25 1.11 16.2
40 27 250 40 523.12 0 16.5
41 28.5 100 41 522.50 0.83 15.6
42 88.5 40 42 523.00 0.83 16.1
43 90 50

Table 6  (continued)
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optimization problems. From the statistical analysis, the probability of getting acceptable 
results using PDA-Rao algorithm is 0.77, 0.60, and 0.97 for TL, NYT and GY networks, 
respectively. It suggests that the probability of achieving the global best solution using 
PDA-Rao algorithm is extremely high. Further, this algorithmic rule can also be applied in 
multi-objective optimization of WDNs with slight modifications.
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