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Abstract
Accurate and consistent annual runoff prediction in a region is a hot topic in management, 
optimization, and monitoring of water resources. A novel prediction model (ESMD-SE-
WPD-LSTM) is presented in this study. Firstly, extreme-point symmetric mode decom-
position (ESMD) is used to produce several intrinsic mode functions (IMF) and a residual 
(Res) by decomposing the original runoff series. Secondly, sample entropy (SE) method 
is employed to measure the complexity of each IMF. Thirdly, wavelet packet decompo-
sition (WPD) is adopted to further decompose the IMF with the maximum SE into sev-
eral appropriate components. Then long short-term memory (LSTM) model, a deep learn-
ing algorithm based recurrent approach, is employed to predict all components. Finally, 
forecasting results of all components are aggregated to generate the final prediction. The 
proposed model, which is applied to seven annual series from different areas in China, is 
evaluated based on four evaluation indexes (R, MAE, MAPE and RMSE). Results indicate 
that ESMD-SE-WPD-LSTM outperforms other benchmark models in terms of four evalu-
ation indexes. Hence the proposed model can provide higher accuracy and consistency for 
annual runoff prediction, rendering it an efficient instrument for scientific management and 
planning of water resources.

Keywords  Annual runoff prediction · Two-phase decomposition · Long short-term 
memory · Extreme-point symmetric mode decomposition · Wavelet packet decomposition · 
Sample entropy

1  Introduction

Long-term runoff forecasting is essential for optimal management of hydro-resources 
(Reddy et al. 2021), ecological restoration (Feng et al. 2020a), flood mitigation (He et al. 
2020), power generation (Feng et al. 2020b), irrigation scheduling (Poul et al. 2019), etc. 
The problem has received extensive attention globally (Xiang et  al. 2020). Numerous 
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models have been applied to the prediction accuracy of annual hydrologic time series (Al-
Juboori 2021), which can be divided into two types (Chau et  al. 2005): physical-based 
and data-driven models. Physical-based models require detailed multi-source information 
and powerful computational tools, while data-driven models are an efficient alternative by 
building direct relationships between input and output data, without involving the complex 
internal physical mechanisms. Recently, many data-driven models (such as LSTM, ANFIS 
(Adaptive Network-based Fuzzy Inference System), ANN (Artificial Neural Network), etc.) 
have been adopted in the field (Parisouj et al. 2020; Sahoo et al. 2019). Hence, this paper 
focuses on developing an appropriate data-driven model for annual runoff prediction.

In the last few decades, deep learning algorithm has been gradually employed for 
hydrological field with fruitful research results (Tao et al. 2017; Yen et al. 2019). Recur-
rent neural network (RNN) is capable of modeling complex temporal dynamics. Numerous 
improvement methods have been undertaken to overcome problems of vanishing gradients 
and gradient explosion of RNN. As a representative of them, LSTM has been used in signal 
recognition and forecast. LSTM model was employed to predict monthly water table depth 
in agricultural field (Zhang et  al. 2018). Kratzert et  al. (2018) investigated the potential 
of LSTM for daily streamflow prediction. Akbari Asanjan et al. (2018) developed a rain-
fall prediction method by extrapolating cloud-top brightness temperature utilizing LSTM. 
Yuan et al. (2018) examined the accuracy of a hybrid method for monthly runoff forecast-
ing by integrating LSTM and ant lion optimizer algorithm. Saeed et al. (2020) proposed 
a method for wind speed prediction by using a bidirectional LSTM model and automatic 
encoder. Bai et al. (2021) proposed a two-level cascade LSTM (C-LSTM) model for daily 
runoff forecasting, and the C-LSTM yielded better performance than single LSTM. These 
studies proved the competitiveness of LSTM hydrological time series prediction.

Recently, many hybrid forecasting models for hydrological time series prediction have 
been developed, which include forecast modeling and data preprocessing. A decomposition 
algorithm can enhance the forecasting ability of a model by decomposing the raw hydro-
logical series into more clean sub-series. The emergence of multi-resolution decomposi-
tion tools, namely singular spectrum analysis (SSA), ESMD, ensemble empirical mode 
decomposition (EEMD), CEEMDAN (complete EEMD with adaptive noise), WPD, wave-
let transform (WT), and variational mode decomposition (VMD), have further stimulated 
researchers to make in-depth research on data preprocessing. Meng et al. (2021) proposed 
a hybrid VMD-SVM (support vector machine) coupling innovative input selection frame-
work and stepwise decomposition sampling strategy for practical hydrological prediction. 
Bojang et al. (2020) examined the reliability of combining SSA with random forest (RF) 
and least-squares support vector regression (LS-SVR) for monthly precipitation prediction. 
However, SSA involved certain subjective factors in the process of noise reduction and was 
subject to the restriction of r matrix perturbation. Yuan et al. (2021) coupled two methods, 
namely group by month (GM) and EEMD, with LSTM to enhance the forecasting accuracy 
of daily runoff. Discrete wavelet transform (DWT) was capable of helping forecasting mod-
els to extract useful information (Tayyab et al. 2019), yet it might suffer from signal loss. 
Zuo et al. (2020) proposed a single-model forecasting (SF) framework, termed SF-VMD-
LSTM, to forecast daily streamflow. However, the drawback of VMD is that the optimal 
parameter combination needs to be artificially set in advance. EEMD lacks accurate math-
ematical theory. To overcome their weaknesses, termed ESMD proposed by Wang and Li 
(2013), was adopted to attain more linear signal. The main idea of ESMD is to identify 
large-scale cycle and nonlinear trend of the data using internal extreme-point symmetry 
interpolation according to the characteristics of data itself. ESMD method replaces tradi-
tional integral transformation with direct interpolation, and the residual is optimized by a 
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least square approach. Therefore, ESMD is capable of reflecting time-varying characteris-
tics of frequency and amplitude of each component. ESMD has been successfully used in 
broad fields(Zhou et al. 2019), few attempts have tended to the latest advance of ESMD for 
hydrological prediction. Therefore, this paper is to explore the efficiency of ESMD in cap-
turing hydrological time series characteristics.

WPD is another data decomposition technology that has gained numerous attentions. 
WPD, an improvement of DWT, decomposes the approximation value same as details of sig-
nals in each level of decomposition. Whilst DWT only decomposes the approximation coef-
ficient, WPD has the capability of splitting both detail coefficient and approximation coef-
ficient simultaneously; thereby WPD provides more possibilities for hydrological time series. 
Seo et  al. (2016) combined three models, including SVM, ANFIS, and ANN, with WPD 
for daily river stage prediction. Sun et al. (2020) coupled WPD and FS (feature selection) 
with ELM (extreme learning machine) to predict multi-step wind speed. Although WPD has 
achieved fruitful results in many fields, it is of great significance to fill the research gap in 
mid- and long-term runoff forecasting.

Despite the above fruitful results, it should be noted out that single decomposition 
method might be hard to fully mitigate signal nonlinearity. To attain more linear series 
and higher forecasting accuracy, Liu et al. (2018) proposed a wind speed multistep predic-
tion model by combining VMD, SSA, LSTM, and ELM. Sun and Huang (2020) combined 
secondary decomposition (SD) with sequence reconstruction to predict air pollutant con-
centration, and the model had excellent prediction performance. In summary, SD method 
can provide more linear signal and solve the limitation of single decomposition method to 
a certain extent. Therefore, this paper uses a secondary decomposition framework (ESMD-
SE-WPD) to attain more linear series. Then, LSTM model is adopted for annual runoff 
forecasting. Finally, forecasted results of all sub-series are summed to generate the final 
prediction. The performance of the developed model is then compared with several bench-
marking prediction models (LSTM, ANFIS, ANN, ESMD-LSTM, ESMD-SE-SSA-LSTM, 
ESMD-SE-CEEMDAN-LSTM).

The contribution of this paper includes three parts. First, an ESMD-SE-WPD-LSTM 
hybrid model, which can provide reasonable forecasting accuracy for annual runoff fore-
casting practice, is proposed. Second, an data preprocessing method based on secondary 
decomposition technology, which can provide more linear sub-series than single decom-
position method, is proposed. Finally, three machine learning models are investigated with 
applications on seven basins, and LSTM model is combined with four preprocessing meth-
ods for examining the performance of data preprocessing technologies.

The remainder of the paper is arranged as follows: Sect. 2 is literature review. Section 3 
depicts data source and evaluation indexes. Section 4 introduces the empirical forecasting 
experiments and discussion. Finally, Sect. 5 summarizes the paper.

2 � Methodology

2.1 � ESMD

ESMD, proposed by Wang and Li (2013), is a new adaptive data processing method 
and can be applied to analyze non-stationary and nonlinear signal. ESMD uses internal 
extreme-point symmetry interpolation, instead of external envelope interpolation, and opti-
mizes the residual mode using least square approach, which overcomes shortcomings of 
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modal aliasing and screening termination in EMD. Detailed steps of ESMD are shown in 
(Sun et al. 2018).

2.2 � Sample Entropy

Sample entropy (SE), proposed by Alcaraz and Rieta (2010), is a novel approach to 
describe the complexity of series. The computation steps are as follows:

(1) Recombine X = (x(1),x(2),… ,x(n)) into a matrix:

(2) The distance between vector x(j) and x(i) can be defined as d[x(i), x(j)]:

where l = 0, 1, 2,⋯m − 1;
(3) For x(i) , r denotes the threshold. Compute their number meeting the threshold 

d[x(i), x(j)] ≤ r as Bi . Then, compute ratio Bm
i
(r):

(4) Compute the average value Bm(r) of Bm
i
(r):

(5) Increase m by 1 and repeat steps 1 to 3, then compute Bm+1(r):

(6) SE is defined as follows:

2.3 � WPD

WPD is identical to wavelet decomposition, except that the former extends the abilities 
of the latter (Alickovic et  al. 2018). The three-layer binary trees of WPD are illustrated 
in Fig. 1. WPD splits the signal into approximation coefficients and detail coefficients by 
a mother wavelet function. The decomposition levels and mother wavelet function have a 
deep influence on the performance of WPD. WPD includes DWT and CWT (continuous 
wavelet transform). CWT is as follows:

(1)Ẍ =

⎡
⎢⎢⎢⎢⎣

x(1), x(2),⋯ , x(n − m + 1)

x(2), x(3),⋯ , x(n − m + 2)

⋮

x(m), x(m + 1),⋯ , x(n)

⎤⎥⎥⎥⎥⎦

(2)d
[
x(i), x(j)

]
= max(|x(i + l) − x(j + l)|), (1 ≤ l ≤ m − 1;1 ≤ i ≠ j ≤ n − m + 1)

(3)Bm
i
(r) =

Bi

n − m + 1

(4)Bm(r) =
1

n − m

n−m∑
i=1

Bm
i
(r)

(5)Bm + 1(r) =
1

n − m

n−m∑
i−1

Bm+1
i

(r)

(6)SE(m, r) = lim
n→∞

{
− ln

[
Bm(r)

Bm+1(r)

]}
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where x(t) is input, * complex conjugate, b translation parameter, a scale parameter, and 
�(t) mother wavelet function. a and b in DWT are:

where i and j denotes the scale and translation parameters, respectively.

2.4 � LSTM

LSTM model is capable of solving the dependency problems of short-term and long-term time 
series. The memory cell of LSTM is a critical parameter, which contributes to memorize the 
temporal state. Each memory cell encompasses three gates, namely input, output, and forget 
gates. These gates perform as filters in playing different roles, solving exploding and vanishing 
gradient problems of RNN. The framework of LSTM is shown in Fig. 2.

The implementation of cell state update and computation of LSTM output are:

(7)CWTx(a, b) =

�
x(t),�a,b(t)

�
= ∫ x(t)�∗((t − b)∕a)∕

√
adt

(8)
{

a = 2i

b = j2i

(9)ft = �(Wfx ⋅ xt +Wfh ⋅ ht−1 + bf )

(10)it = �(Wix ⋅ xt +Wih ⋅ ht−1 + bi)

(11)ct = tanh(Wcx ⋅ xt +Wch ⋅ ht−1 + bc)

(12)ct = ft ∗ ct−1 + it ∗ ct

A1

AA2 AD2 DA2 DD2

AAA3 AAD3 ADA3 ADD3 DAA3 DAD3 DDA3 DDD3

LPF HPF
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X

LPF HPF

D1

Fig. 1   Sketch map of WPD method
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where x(t) is input, y(t) output, ft forget gate, ot output gate, it input gate, ct cell state at time 
t, W weight matrix, b bias vector, �(x) nonlinear activation function, and ht activation vec-
tors for each memory block.

2.5 � Model Construction

The basic framework of the runoff forecasting system proposed in this paper is shown in 
Fig. 3. The modeling processes are as follows:

Step 1: ESMD. ESMD is adopted to split the observed runoff series into several IMFs and 
a Res.

Step 2: Sample entropy. Compute SE of each subsequence obtained in the previous step.
Step 3: Two-phase decomposition. ESMD-SE-WPD is adopted to attain more linear 

subseries.
Step 4: Normalize all data between [0, 1] by:

(13)ot = �(Wox ⋅ xt +Woh ⋅ ht−1 + bo)

(14)ht = ot ∗ tanh(ct)

(15)yt = �(Wyx ⋅ ht + by)

(16)�(x) =
1

1 + e−x

(17)x
�

i
=

xi − min
1≤i≤n

{
xi
}

max
1≤i≤n

{
xi
}
− min

1≤i≤n
{
xi
}

× ŧ

× 

σ × 

σ σ tanh tanh

ft

it

ot

xt

ht-1

ct-1

yt

ct

ct

Fig. 2   The basic LSTM architecture
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Step 5: Select input variables. PACF (partial autocorrelation function) and precipitation 
knowledge are used to screen the number of input variables.

Step 6: Training and prediction. All model components are input to LSTM for training 
and prediction.

3 � Data Description and Evaluation Indicators

The reliability of data is an important factor affecting the accuracy of mid- and long-term 
runoff prediction. The data in this paper are from seven areas in China, namely Mopanshan 
reservoir, Dahuofang reservoir, Biliuhe reservoir, Changshui hydrological station, Hongji-
adu reservoir, Jiayuguan station and Yingluoxia station. Mopanshan Reservoir is located 
in Heilongjiang Province, Northeast China. The water source area of the reservoir is 
1151 km2 , the average annual precipitation is about 750 mm, and the average annual runoff 

Fig. 3   Framework of the proposed model
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is 5.60 billion m3 . Dahuofang reservoir is located in Fushun City, Northeast China, with 
a watershed area of 5437 km2 , annual average discharge of 52.3 m3/s and annual average 
precipitation of 812 mm. Biliuhe reservoir is located in Liaoning Province of China. The 
drainage area is 2085 km2 , and the average annual precipitation is 742.8 mm. Hongjiadu 
hydropower is located on the main stream of Wujiang River in northwest of Guizhou Prov-
ince, China, with a drainage area of 9900 km2 and an average annual runoff of 4.89 billion 
m3 . Changshui hydrological station is located in Henan Province, China. It is a national 
basic hydrological station with a drainage area of 874 km2 , annual average rainfall of 
530 mm and annual average runoff of 8.17 billion m3 . TaoLai River is a tributary of Heihe 
River system in China’s inland river basin. Jiayuguan hydrological station is a national 
first-class streamflow control station for monitoring changes in TaoLai river regime, with a 
catchment area of 7095 km2 and average runoff of 6.36 billion m3. Yingluoxia hydrologi-
cal station is a control station and boundary section between upper and middle reaches of 
Heihe River, with a catchment area of 10,009 km2 and average annual discharge of 51.5 
m3/s. The observed annual data for seven stations are shown in Fig.  4. Their statistical 
descriptions are listed in Table  1, where data for Mopanshan hydropower, Dahuofang 
hydropower, Biliuhe hydropower Changshui station, Hongjiadu hydropower, Jiayuguan 
station and Yingluoxia station, run from 1952–2004, 1953–2008, 1951–2007, 1961–2016, 
1951–2005, 1956–2009 and 1956–2009, respectively. These data variations of seven sta-
tions are quite different, implying the high modeling difficulty of these regions. For these 
seven stations, approximately 90% of the data are used for training and the remainder are 
used for testing.
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Results of the models are evaluated based on four evaluation indicators. These indexes 
include coefficient of correlation (R), mean absolute percentage error (MAPE), mean abso-
lute error (MAE), and root mean square errors (RMSE). Their equations are as follows:

where ye(i) , yo(i) , ye and yo are estimated, observed, mean estimated, and mean observed 
precipitation values, respectively.

4 � Case Studies

4.1 � Series Decomposition

The first stage of the runoff prediction framework is to decompose the observed data using 
ESMD. Before decomposing the runoff series, the best screening number should be deter-
mined by repeating tests and comparisons. In this paper, the number of iterations is 100, 
and the numbers of remaining extreme points of the seven runoff datasets are 5, 6, 7, 5, 7, 5 
and 5, respectively. The results at Site 1 after the decomposition are shown in Figs. 5, 6 and 
7, whilst the decomposition results of other sites are not presented here. In Fig. 7, A1 and 

(18)RMSE=

√√√√1

n

n∑
i=1

(ye(i) − yo(i))
2

(19)MAPE =
1

N

n∑
i=1

||||
ye(i) − yo(i)

ye(i)

|||| × 100

(20)MAE =
1

n

n∑
i=1

||ye(i) − yo(i)
||

(21)R =

n∑
i=1

(yo(i) − yo)(ye(i) − ye)

�
n∑
i=1

(yo(i) − yo)
2

n∑
i=1

(ye(i) − ye)
2

Table 1   Statistical description of runoff series at seven stations

Where Std is the standard deviation

Data Station Size Max Min Mean Std Skewness

Site1 Mopanshan 53 903.00 281.00 558.70 143.40 7.50
Site2 Dahuofang 56 4043.00 536.30 1501.00 793.90 -7.70
Site3 Biliuhe 57 1466.00 100.50 607.90 328.00 -7.76
Site4 Changshui 56 37.62 1.32 8.17 6.25 -7.70
Site5 Hongjiadu 55 2831.00 1052.00 1778.00 402.10 -7.63
Site6 Jiayuguan 54 344.70 184.80 234.50 34.20 -7.56
Site7 Yingluoxia 54 874.70 387.20 604.60 102.20 -7.56
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F1denote the amplitude and frequency of IMF1, A2 and F2 the amplitude and frequency 
of IMF2, and A3 and F3 the amplitude and frequency of IMF3, respectively. It can be seen 
from Fig. 5 that each IMF split by ESMD is independent, the fluctuation of sub-series from 
IMF1 to Res decreases steadily and the stability becomes stronger gradually. Therefore, 
IMFs are steadier than original data and more conducive to capture signal features and pre-
dict non-linear sequences.

4.2 � Sample Entropy Computation and Two‑Phase Decomposition

SE of each subsequence obtained in the previous step is computed. Three decomposition 
methods are then adopted to further decompose IMF with the maximum SE. As shown 
in Fig. 8, SE of all sub-series present a similar trend, and it can be noted that SE of IMF1 
in each dataset is higher than that of other subseries, which means that it is more diffi-
cult to predict IMF1. To mitigate the complexity of IMF1, three decomposition algorithms, 
namely WPD, CEEMDAN and SSA, are used to decompose IMF1.

The selection of an appropriate wavelet basis function is very important to WPD. Sym-
let wavelet is an improved approximate symmetric wavelet function based on Daubechies 
wavelet, which can avoid signal distortion during decomposition and reconstruction(Yin 
et  al. 2019). Therefore, a three-scale and fourth order Symlet wavelet is adopted as the 
wavelet basis function of WPD.

SSA is a traditional and powerful non-parametric decomposition algorithm for signal 
identification and analysis, which can capture noise component, trend and periodic from 
input signal(Dong et al. 2017). SSA can decompose a time series into some decipherable 
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and simpler components, and contains two steps, namely decomposition and reconstruc-
tion. Decomposition incorporates singular value decomposition (SVD) and embedding 
whilst reconstruction comprises diagonal averaging and grouping. In SSA, window size 
(L) and eigenvalue grouping (EVG) are key parameters. Before decomposing IMF1, the 
best L and EVG value should be determined by repeating tests and comparisons. In this 
paper, L and EVG are set to 12 and 6, respectively.

CEEMDAN proposed by Colominas et  al. (2012), is an enhancement on EEMD and 
can attain better separation and accurately reconstruct the raw signal. CEEMDAN obtains 
the modes by adding white Gaussian noise and computing a unique residue to reduce 
EEMD deficiency. The method overcomes the mode mixing problem since the procedure 
of CEEMDAN in decomposition and reconstruction are complete. In CEEMDAN applica-
tion, too many modes may cause extra computational costs and complex training process. 
Hence, five IMFs and a residual are reconstructed in this paper.

All IMF1 are then split by WPD, SSA and CEEMDAN. The re-decomposition results 
of IMF1 at Site 1 are shown in Fig. 9, where y is the reconstructed series by SSA, whilst 
results at other sites are not presented here, and IMF1 with the maximum SE is decom-
posed into 16 subsequences with more regular fluctuation by three methods.

4.3 � Number of Input Variables

The determination of input variables is an important procedure for prediction results. 
In this paper, two methods are utilized to select input combinations: (a) trial-and-error 
method; (b) PACF statistical approach. We conduct twelve ANN models with different 
input combinations. Table 2 lists input variables for Site 1 with respect to PACF and trial-
and-error method, while input variables and PACF value for other sites are not shown here.
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4.4 � Model Development

To verify the proposed model, seven models, namely LSTM, ANN, ANFIS, ESMD-
LSTM, ESMD-SE-WPD-LSTM, ESMD-SE-SSA-LSTM, ESMD-SE-CEEMDAN-LSTM, 
are employed as benchmark for comparison. Detailed information relating to these models 
are presented in the following section.

(1)	 ANN
	   A standard three-layer feed forward ANN is adopted for annual runoff prediction. 

The numbers of input and output layer nodes are equal to that of input variables and 
one, respectively. Levenberg–Marquardt (LM) method, sigmoid function and purelin 
formula are adopted as the training, transfer and output functions, respectively. The 
best number of hidden nodes is determined as eight by trial-and-error method, and the 
training epochs are 500.

(2)	 ANFIS
	   Three methods, namely genfis1, genfis2 and genfis3, are available to initialize the 

data structure of ANFIS. Of three methods, genfis3 provides the most robust results 
in terms of generalization and stability in runoff modeling, and hence is employed 
throughout the processes. The specific parameter settings are shown in Table 3.

(3)	 LSTM
	   The selection of hyper-parameters is a difficult task for LSTM model construction. 

Adaptive moment estimation is to optimize the parameters. The model structure of 
LSTM, i.e., hyper-parameters and the number of hidden units are determined by trial-

Fig. 9   Decomposition results of IMF1 at Site 1
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and-error method. The number of hidden units is 200. The maximum number of epochs 
is 2000. The mini-batch size in each training iteration is 100. The initial learning rate is 
set to 0.01. Other parameters are determined to default values used by adaptive moment 
estimation. RMSE is adopted as the loss function.

(4)	 ESMD-LSTM model
	   For ESMD-LSTM model, the runoff datasets are first decomposed into a certain 

number of sub-series by ESMD. Each component is then modeled using LSTM, and 
the input variables for each composition are shown in Table 2.

(5)	 Two-phase decomposition methods combined with LSTM

Table 2   Input variables for Site 1

Where r(t) represents the estimated value of runoff and r(t−p) is the run-
off at time t-p

Series LSTM ANFIS ANN

Original r(t-1) ~ r(t-3) r(t-1) ~ r(t-6) r(t-1) ~ r(t-3)

ESMD IMF1 r(t-1) ~ r(t-10) / /
IMF2 r(t-1) ~ r(t-4) / /
IMF3 r(t-1) ~ r(t-6) / /
R r(t-1) ~ r(t-6) / /

WPD WPD1 r(t-1) ~ r(t-3) / /
WPD2 r(t-1) ~ r(t-10) / /
WPD3 r(t-1) ~ r(t-7) / /
WPD4 r(t-1) ~ r(t-3) / /
WPD5 r(t-1) ~ r(t-6) / /
WPD6 r(t-1) ~ r(t-6) / /
WPD7 r(t-1) ~ r(t-4) / /
WPD8 r(t-1) ~ r(t-5) / /

SSA Y r(t-1) ~ r(t-4) / /
Res r(t-1) ~ r(t-7) / /

CEEMDAN IMF1 r(t-1) ~ r(t-10) / /
IMF2 r(t-1) ~ r(t-6) / /
IMF3 r(t-1) ~ r(t-6) / /
IMF4 r(t-1) ~ r(t-6) / /
IMF5 r(t-1) ~ r(t-6) / /
Res r(t-1) ~ r(t-6) / /

Table 3   Parameters of ANFIS Parameter Value Parameter Value

Number of clusters 10 Maximum epochs 100
Partition matrix index 2 Expected error 0
Maximum iteration 500 Initial Step Size default
Minimum improvement 1.00E-05 Step decrease rate default

Step increase rate default
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For ESMD-SE-WPD-LSTM, ESMD-SE-SSA-LSTM and ESMD-SE-CEEMDAN-
LSTM, ESMD is adopted to decompose the raw data into several IMFs and a Res. Then 
SE method is employed to measure the complexity of each composition. Three decom-
position algorithms, namely WPD, SSA and CEEMDAN, are adopted to further decom-
pose the IMF with the maximum SE. Then, LSTM model is employed to predict each 
subseries obtained in the previous step.

4.5 � Results and Discussion

Forecasting results of different methods for seven runoff datasets are presented in this 
section. Tables 4, 5, 6, 7, 8, 9 and 10 show error estimation results of different methods 
for seven runoff time series. Table 11 presents forecasting results of ESMD-LSTM of 
different sites. Figures 10, 11, 12, 13, 14, 15 and 16 present forecasting results of seven 
stations. The following should be noted before analyzing the results. The forecasting 
results of the testing phase play a greater role than those of the training phase. It is 
because the training period is utilized to train the model, and its performance is meas-
ured by data related to modeling. Since the testing dataset does not participate in mod-
eling, its performance can truly reflect the model application efficiency.
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Fig. 10   Forecasting results of Mopanshan Hydropower
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4.5.1 � Experiment 1: Comparison of Several Single Prediction Models

In this section, we analyze prediction results of three single models at seven sites. As seen 
from Tables 4, 5, 6, 7, 8, 9 and 10, in the testing period, LSTM obtain the best average R in 
seven sites, the lowest average MAE, RMSE, MAPE in Hongjiadu station and Yingluoxia 
station, and similar MAE, RMSE, and MAPE with ANN in Biliuhe and Changshui station. 
Meanwhile, the differences between the best and worst value of four evaluation indicators 
of ANN and ANFIS are significantly higher than those of LSTM model. Besides, results of 
LSTM and ANFIS in the training period are clearly better than those in the testing period. 
ANN is in the lower level during the training period but can provide middle level result 
during the testing period.

Overall, LSTM model can provide optimal results for seven datasets in terms of four 
evaluation indexes. This analysis also demonstrates that there is still room to improve the 
forecasting accuracy of LSTM.

4.5.2 � Experiment 2: Comparison of LSTM and ESMD‑LSTM

This section compared the performance between single LSTM model and ESMD-LSTM 
hybrid model. Taking Site 1 as an example, ESMD-LSTM significantly improves the fore-
casting accuracy of LSTM model. In the testing period, ESMD-LSTM model improves 
LSTM model with 50.02%, 53.31% and 48.58% reduction in average MAE, RMSE and 
MAPE, respectively, and the improvement of prediction accuracy regarding average R is 

1963 1968 1973 1978 1983 1988 1993 1998 2003 2008

Year

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

5500
A
n
n
u
al
ru
n
o
ff
(1
0
6
m

3
)

Observed

ANN

ANFIS

LSTM

ESMD-LSTM

ESMD-SE-SSA-LSTM

ESMD-SE-CEEMDAN-LSTM

ESMD-SE-WPD-LSTM

TestingTraining

Fig. 11   Forecasting results of Dahuofang Hydropower
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21.24%. According to results in Tables 5, 6, 7, 8, 9 and 10, ESMD-LSTM model is able 
to provide better results than LSTM model with substantial improvement in terms of four 
evaluation indexes. Table 11 lists the prediction results of different subseries obtained by 
ESMD-LSTM for seven datasets, the forecasting results of IMF1 are inferior to those of the 
other subseries. For IMF1, in the testing phase, the average R value of Sites 1–7 are 0.841, 
0.654, 0.795, 0.573, 0.841, and 0.828, respectively, with an average of 0.735. However, in 
the testing period, the average R value of IMF2, IMF3 and Res are 0.904, 0.972 and 0.996, 
respectively. These results demonstrate that there is still room for improvement in the pre-
diction performance of IMF1.

In general, this analysis illustrates that ESMD is suitable to decompose the annual 
runoff series and can improve forecasting accuracy. In addition, it can be confirmed from 
Table 11 that results of IMF1 are inferior to those of other subsequences. These analyses 
also illustrate that single decomposition method may have difficulty in fully capturing the 
frequency characteristics of the original data. The secondary decomposition method is then 
attempted to attain more linear sub-series and overcome the limitation of the single decom-
position method to a certain extent.

4.5.3 � Experiment 3: Comparison of Several Re‑decomposition Hybrid Models

In this section, composite methods including ESMD-LSTM, ESMD-SE-WPD-LSTM, 
ESMD-SE-SSA-LSTM, ESMD-SE-CEEMDAN-LSTM, and ESMD-LSTM are treated 
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Fig. 12   Forecasting results of Biliuhe Hydropower
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as the benchmark methods. Tables  4, 5, 6, 7, 8, 9 and 10 list the composite results 
for Sites 1–7. When forecasting annual runoff in seven stations, ESMD-SE-WPD-
LSTM model exhibits the best results in terms of all evaluation indexes. Table 5 lists 
the forecasting results of Dahuofang reservoir in the testing period and average R val-
ues of ESMD-LSTM, ESMD-SE-SSA-LSTM, ESMD-SE-CEEMDAN-LSTM, and 
ESMD-SE-WPD-LSTM are 0.620, 0.838, 0.821, and 0.954, respectively. For Dahuo-
fang reservoir in the testing period, compared with average R value of ESMD-LSTM 
model, ESMD-SE-SSA-LSTM, ESMD-SE-CEEMDAN-LSTM and ESMD-SE-WPD-
LSTM yield improvements of 32.25%, 32.48% and 93.55%, respectively. Compared 
with average RMSE value of ESMD-LSTM, the three two-phase decomposition pre-
diction methods yield reductions of 8.48%, 35.61% and 48.90% in the testing period, 
respectively. Compared to ESMD-LSTM, the three two-phase decomposition predic-
tion methods exhibit average MAE value reductions of 14.02%, 27.86% and 41.42% 
in the testing period, respectively. Compared to ESMD-LSTM, the three two-phase 
decomposition prediction methods exhibit average MAPE value reductions of 16.41%, 
37.03% and 50.52% in the testing period, respectively. To verify the performance of 
the presented model, seven datasets are used to test the model. The forecasting results 
of remainder stations reaffirm the superior performance of ESMD-SE-WPD-LSTM 
model for annual runoff forecasting. It can be seen from Tables 4, 5, 6, 7, 8, 9 and 10 
that forecasting performances of seven prediction methods (except ANN) have little 
difference. The running time of the LSTM-based models is significantly longer than 
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Fig. 13   Forecasting results of Changshui station

 W. Wang et al.4712



1 3

Fig. 14   Forecasting results of Hongjiadu Hydropower
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those of ANN and ANFIS models. In addition, in the testing period, compared to three 
two-phase decomposition prediction methods, the deviation between the best and worst 
value of four indexes of ESMD-LSTM is clearer. Therefore, the following conclusions 
can be drawn:

(1)	 IMF1 is highly nonlinear and difficult to forecast, which can affect the overall predic-
tion accuracy of models.

(2)	 The two-phase decomposition can capture important features better than the conven-
tional single decomposition method. Besides, when comparing ESMD-SE-WPD-LSTM 
model with ESMD-SE-SSA-LSTM, and ESMD-SE-CEEMDAN-LSTM, the proposed 
model exhibits the best performance for all forecasting sites because the results in test-
ing period are better. From Tables 4, 5, 6, 7, 8, 9 and 10 indicate that the prediction 
performance of ESMD-SE-SSA-LSTM is not stable, and the forecasting accuracy of 
ESMD-SE-CEEMDAN-LSTM is slightly inferior to the proposed model. Therefore, 
compared with SSA and CEEMDAN methods, WPD is more suitable to extract the sig-
nificant features of IMF1. Overall, ESMD-SE-WPD-LSTM model outperforms all other 
methods. The reason may be that the model can make full use of the time–frequency 
positioning ability of WPD, the auto-adapted feature extraction properties of ESMD 
and the long-term memory function of LSTM.
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4.5.4 � Comparison of All Investigated Models

The performances of all investigated models developed in this study are shown in Figs. 10, 
11, 12, 13, 14, 15 and 16, which imply that forecasting performances of six models (except 
ANN) in the training phase are slightly overestimated. Meanwhile, in the testing phase, the 
forecasting accuracy of all sites can be significantly improved, and performances of differ-
ent models are uneven. The proposed hybrid prediction model with the secondary decom-
position provides the best performance as the trend line is very close to observed data line, 
and the method can capture abrupt changes in annual runoff series.

Table 11   Errors of ESMD-LSTM for seven stations

Station Subseries Training Testing

MAE RMSE MAPE R MAE RMSE MAPE R

Mopanshan IMF1 0.204 0.256 0.455 1.000 59.573 63.459 76.187 0.841
IMF2 1.012 1.782 26.685 0.995 3.768 5.822 16.644 0.974
IMF3 0.572 0.728 2.323 0.999 4.145 4.732 37.538 0.983
Res 0.521 0.599 0.097 1.000 1.612 2.183 0.275 0.993

Dahuofang IMF1 7.147 10.183 2.599 0.999 631.850 796.257 60.806 0.654
IMF2 2.528 3.498 4.539 1.000 173.223 189.550 240.329 0.893
IMF3 5.544 8.306 20.035 0.998 86.861 114.943 12.776 0.879
IMF4 0.338 0.430 2.291 0.999 6.629 7.448 17.662 0.997
Res 0.594 0.729 0.039 0.999 3.179 3.792 0.204 0.999

Biliuhe IMF1 4.223 1.020 0.654 1.000 163.895 184.833 145.505 0.795
IMF2 0.513 0.671 0.848 1.000 24.531 28.420 136.722 0.874
IMF3 4.056 6.123 6.955 0.999 12.658 13.031 23.025 0.975
IMF4 0.575 0.734 4.251 0.999 7.522 9.037 14.813 0.997
IMF5 0.499 0.676 2.603 0.999 2.841 3.993 11.780 0.994
Res 0.858 1.094 0.146 1.000 4.223 4.516 1.156 0.999

Changshui IMF1 0.031 0.031 1.911 1.000 1.557 1.672 225.483 0.573
IMF2 0.041 0.041 7.268 0.999 0.453 0.275 223.104 0.810
IMF3 0.054 0.054 8.518 0.992 0.147 0.158 17.122 0.996
Res 0.042 0.042 0.391 0.999 0.056 0.095 2.346 1.000

Hongjiadu IMF1 2.276 2.835 3.419 1.000 106.845 167.810 263.110 0.841
IMF2 1.244 2.632 1.878 0.999 25.535 32.088 8.222 0.973
IMF3 1.720 2.331 7.123 0.997 13.307 15.248 17.712 0.999
IMF4 0.899 2.646 11.965 0.994 3.501 4.691 6.942 0.998
Res 0.608 0.821 0.035 0.999 0.650 0.653 0.039 1.000

Jiayuguan IMF1 0.048 0.060 0.259 1.000 10.431 12.385 57.132 0.828
IMF2 0.069 0.090 1.986 1.000 5.795 6.675 304.374 0.868
IMF3 0.095 0.123 4.587 0.999 1.438 1.765 28.024 0.989
Res 0.178 0.230 0.075 0.999 0.751 0.850 0.344 0.982

Yingluoxia IMF1 0.556 0.675 1.217 1.000 43.375 51.254 144.202 0.616
IMF2 0.374 0.621 2.457 0.999 5.906 8.227 61.913 0.938
IMF3 0.411 0.583 4.060 0.998 3.080 3.576 38.698 0.983
Res 0.379 0.465 0.063 1.000 7.578 8.842 1.024 0.996

 W. Wang et al.4722



1 3

4.6 � Discussion of Results

Experimental results demonstrate these differences between LSTM, ANFIS and ANN, 
indicating the importance of choosing an appropriate forecasting method. ANFIS 
is greatly affected by the clustering parameters, which limits the performance of the 
model. The gradient-based training strategy of the traditional ANN may suffer from 
dimensionality and overfitting issues. LSTM discards or retains information to the 
cell state using unique gate structure. If information at a certain time is more impor-
tant, the forget gate can keep the information transmission, which is one of the reasons 
why LSTM can process long sequences. The gate structure of LSTM overcomes the 
weaknesses of ANFIS and ANN to some extent and attains relatively better prediction 
results. However, runoff contains different frequency components due to influencing cli-
mate, underlying surface characteristic of river basin, human activities, etc. Therefore, 
it is difficult for a single prediction model to fully reflect the formation mechanism of 
runoff since only one resolution component is used to construct the forecasting model. 
In this paper, data preprocessing technologies are utilized to identify the resolution sub-
components. The characteristics of each component can be separated, which reduces the 
difficulty of modeling. Therefore, the modified LSTM models can provide better perfor-
mance than standard LSTM model.

The followings are an analysis of possible reasons why the proposed hybrid model 
(ESMD-SE-WPD-LSTM) can improve the forecasting accuracy. Firstly, ESMD-SE-
WPD decomposes the original data into several more linear sub-series, facilitating 
comprehensive identification of frequency features in original data. Secondly, LSTM is 
employed to model complex relationships of input–output variables in each subseries. 
Through specially designed model architecture, LSTM overcomes the shortcoming 
of RNN and provides an avenue for deeply exploring internal features of runoff time 
series. Finally, ESMD-SE-WPD-LSTM hybrid model overcomes shortcomings of a sin-
gle LSTM method by generating synergistic effect in the prediction. Overall, the incor-
poration of data preprocessing and sample entropy into LSTM model can provide more 
accurate and reliable results for long-term runoff prediction.

5 � Conclusion

Long-term runoff forecasting plays a critical role in the management and monitoring of 
water resources. To attain more accurate prediction of annual runoff, this paper presents a 
hybrid model for long-term runoff prediction, which couples two-phase decomposition and 
LSTM (ESMD-SE-WPD-LSTM). Firstly, ESMD is used to decompose the original time 
series, and SE (sample entropy) of all sub-series is computed. Secondly, the sub-series 
with the maximum SE is adopted for secondary decomposition using WPD method, which 
can provide more linear subseries. Next, LSTM model is employed to train and forecast 
the data. Finally, the forecasting accuracy of the proposed model is compared with ANN, 
ANFIS, ESMD-LSTM, ESMD-SE-SSA-LSTM, and ESMD-SE-CEEMDAN-LSTM. The 
forecasting errors of all investigated models are evaluated based on four evaluation indexes. 
According to the results, the following conclusions can be drawn:

Firstly, the proposed hybrid model with secondary decomposition provides the most 
robust performance and excellent forecasting accuracy among all investigated models. 
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This demonstrates that the proposed model can significantly improve the prediction 
accuracy of long-term runoff time series.

Secondly, the forecasting accuracies of hybrid methods (ESMD-LSTM, ESMD-SE-
SSA-LSTM, ESMD-SE-CEEMDAN-LSTM, and ESMD-SE-WPD-LSTM) preprocessed 
by decomposition method are superior to those of ANN, ANFIS, and LSTM models, dem-
onstrating high efficiency of data preprocessing technology in reducing non-linearity of 
runoff series.

Thirdly, EMSD and WPD, as two signal processing methods with high efficiency, can 
complement each other. After screening by sample entropy, the original single time series 
is re-decomposed by two-phase decomposition mode to attain a more linear annual time 
series, which reduces the complexity of forecasting, and mitigate the limitation of conven-
tional single-phase decomposition method.

The hybrid model presented in this paper combines data preprocessing technology, sam-
ple entropy, and forecasting model to develop runoff forecasting model, which is more con-
ducive to be a useful and efficient soft computing model to forecast runoff time series.
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