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Abstract
Water use efficiency (WUE) improvements in agricultural production are of great
significance to regional food security and ecological sustainability. Based on modified
water footprint (WF) calculations for corn cultivation in China, WUE indices of water
productivity (WP) and water efficiency (WE) for production capacity and the effective
ratio of water resources were developed and quantified in the current study. Approaches
to achieving national productive and effective improvements concurrently were sought by
determining the spatial-temporal patterns and determinants of WP and WE during 1996–
2015. The results show that the annual crop WF was estimated at 197.3 m³, including
14.1% blue, 62.4% green and 23.4% gray components. WP and WE were calculated as
0.781 kg/m³ and 0.687, respectively, both of which increased over time in all subregions.
Both WP and WE showed obvious spatial differences in the observed period. Low-value
provinces were concentrated in the northwest and on the Huang-Huai-Hai Plain, and most
high-value regions were distributed in the southeastern coastal zone. Agricultural pro-
duction technology improvements contributed to WF reductions in specific areas, while
meteorological elements and planting structure were the main factors affecting the spatial
distribution of WP and WE. WF suppression in northwestern China and expansion of the
production scale in southern China were conducive to increasing productive and effective
agricultural water resource use in corn cultivation nationally. Agricultural production
technology progress and crop spatial arrangement optimization are equally important to
agricultural WUE enhancement in the WF framework.
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1 Introduction

Water shortages and food security are systemic issues currently being faced across the world.
The agricultural system accounts for 70% of the global water supply; this figure is as high as
90 % in some developing countries or regions (FAO 2016). In addition, green water
(precipitation) consumption is twice that of irrigation water consumption in global crop
cultivation (Lovarelli et al. 2016). With population growth and climate change, broader crop
areas will require increased irrigation water withdrawals and extractions of water resources
from natural vegetation (Cao et al. 2017; Sahoo et al. 2020). Agriculture is not only related to
food production but also closely linked to regional water resources and water environmental
sustainability. Evaluating and improving agricultural water use efficiency (WUE) are the basis
for improving regional water resource management (Mehrazar et al. 2020).

Field evapotranspiration (ET) is an indispensable water resource for crop growth and the
critical link among agricultural hydrological processes (Sedghamiz et al. 2018). Therefore,
almost all existing agricultural WUE evaluations have been carried out with field ET as the
core component. Crop water productivity (CWP) and irrigation efficiency (IE) are the indices
most commonly used for WUE evaluation of agricultural production (Exposito and Berbel
2019; Cao et al. 2017). CWP, defined as the crop yield per unit of water consumption, can be
used to measure productiveness. IE, the ratio of water consumption by crops in the form of ET
to total irrigation water withdrawals, is used to describe the effectiveness of water resources
(Wang et al. 2013; Berbel et al. 2018). The former depends on the amount of crop yield and
water input, and the latter is mainly affected by the integrity of water conservation projects and
the standard of field management. These traditional methods do not distinguish between blue
and green water and cannot quantify the impact of agricultural production on water quality,
whereas a water footprint (WF) contains blue, green, and gray components (Hoekstra et al.
2011; Shu et al. 2021). In agricultural systems, the blue and green WFs are irrigation (blue)
water and effective precipitation (green water) consumption, respectively, in the form of field
ET (Hoekstra 2019; Berger et al. 2021), and the gray WF is the amount of water that is
required to assimilate the load of pollutants to meet given environmental standards (Shu et al.
2021). A regional WF reflects the total amount of water resources used during the crop
growing season, and the WF per unit product measures WUE, i.e., crop production capacity
of generalized water resources (Xu et al. 2019; Flach et al. 2020). The gray WF differentiates
between blue and green water and measures the negative impact of agricultural production on
the water environment (Wu et al. 2020). Thus, the concept of the WF framework involves
generalized water resources and actual water consumption in the crop-water relationship. In
addition, in comparison to the traditional CWP indices, the WF is more flexible in terms of
objects and spatial-temporal scales (Sun et al. 2017; Fatemeh and Simunek 2018). Numerous
estimations have demonstrated that agriculture accounts for a large proportion of the world’s
total WF (Marston et al. 2018). Given this large proportion, WF calculations, evaluations and
regulations for crop production are the key to the efficient and sustainable use of regional and
global water resources, and this topic is a popular research direction in the field of water
resource management (Lovarelli et al. 2016; Zhang et al. 2017). Previous studies have used
crop models to calculate and analyze WFs and the proportion of crops in these WFs at multiple
spatial and temporal scales (Lovarelli et al. 2016). In addition, scholars have carried out many
macro-level assessments and drawn conclusions on regional agricultural water resource
utilization efficiency and management mechanisms (Atzori et al. 2019; Kayatz et al. 2019).
Considering hydrological processes in agricultural systems, the regional water stress method
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has also been used in sustainability assessments of crop water use and WFs from blue or
generalized water resource perspectives (Multsch et al. 2020). The interesting studies quoted
above have already illustrated the necessity and feasibility of agricultural evaluations and
improvements based on theWF framework. In fact, it has long been recognized that a crop WF
reduction indicates water management improvements on croplands. Common measures used
to decrease water use in agriculture, such as ameliorating agronomic techniques, improving
field management, and optimizing planting structures, are considered effective ways to reduce
the WF of crops (Chouchane et al. 2019; Mekonnen et al. 2020). Existing studies have
promoted the application of WFs in water management and have provided valuable informa-
tion for agricultural water-saving strategy selection.

WF regulation is significantly different from conventional water-saving irrigation, even
though the two have the same goal of agricultural WUE promotion. The latter aims to reduce
the water lost or wasted from water intake through the crop absorption process, while the
former focuses on controlling ineffective field water consumption and negative environmental
impacts. Therefore, some scholars have found that it is important to combine traditional
paradigms and WF-related indices to evaluate crop-water relationships (Karandish and
Simunek 2018; Novoa et al. 2019; Wang et al. 2020). Assessing and reducing the crop WF
and providing more comprehensive information for regional agricultural water management
due to advanced indicators are important. However, research on measures to achieve sustain-
able water use based on crop WFs and their reduction potential has rarely been reported. In the
current paper, indices for water resource production capacity (water productivity, WP) and
effective use ratio (water efficiency, WE) were established based on a modified crop WF
calculation method. Taking corn production, one of the three major crops in China, as an
example, the crop WUE indices for 31 provinces in China during 1996–2015 (based on the
availability of data) calculated under a water footprint framework were analyzed. The driving
factors of the spatial distribution of the WUE indices were identified by using the partial least
squares regression (PLSR) model. Water management strategies to achieve productive and
effective improvements in water resource use were discussed from regional and global
perspectives.

2 Methods and Data

2.1 Calculation of Water Use Efficiency indices

This paper measured water use efficiency in crop production systems by combining the water
productivity (WP) and effective utilization degree (WE) indices of the total water footprint
(WF):

WP ¼ Y=WF ð1Þ

WE ¼ ETc=WF ð2Þ
where ETc represents the field crop ET, i.e., water effective consumption, and was estimated
as:

ETc ¼ Kc � ET0 ð3Þ
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where Kc is the crop coefficient for the whole growing period and is dimensionless. P and ET0
are precipitation, in mm, and reference crop evapotranspiration, in mm, respectively, and the
latter was simulated by the Penman-Monteith equation (Allen et al. 1998):

ET0 ¼
0:408 Rn � Gð Þ þ � � 900

Tþ273 � u2 � ðes � eaÞ
þ�ð1þ 0:34u2Þ ð4Þ

whereΔ is the slope of the vapor pressure curve, kPa °C− 1; Rn is net radiation, MJ m− 2 d− 1; G
is the soil heat flux density, MJ m− 2 d− 1; γ is the psychrometric constant, kPa °C− 1; T is
average temperature, °C; u2 is the wind speed measured at a height of 2 m, m s− 1; and es and ea
are the saturation and actual vapor pressure, respectively, kPa. The Penman-Monteith equation
is the most recognized method for ET0 estimation at the macroscale (Allen et al. 1998;
Hoekstra et al. 2011; Cao et al. 2017, 2020). The process of obtaining the variables in
Eq. (4) is explained in detail in the Supplementary Information.

WF is the modified water footprint, is calculated from a comprehensive perspective and is
the total amount of water resources used and affected in the crop production process:

WF ¼ WFAblue þWFgreen þWFgrey ð5Þ
where WFAblue is the applied blue water footprint and includes field irrigation water evapo-
transpiration and indirect water losses (González et al. 2016). WFAblue for a specific crop is
related to the product of the irrigated cropland area (Ai) and the actual irrigation water applied:

WFAblue ¼ Ai � RIS � IWR
IE

ð6Þ

where IE is the irrigation efficiency and dimensionless. RIS is the relative irrigation supply,
which indicates how irrigation matches theoretical requirements. Regional RIS was estimated
from the irrigation water withdrawal (IWW, mm) and irrigation water requirement (IWR) for
all crops:

RIS ¼ IE � IWW
PðETc � PeÞ ð7Þ

where Pe is the crop effective precipitation during the crop growth period, in mm, and was
estimated according to the empirical formula (Cao et al. 2017, 2020):

Pe ¼ P � 4:17�0:02�P
4:17

� �
;P

� ð8Þ

WFgreen is defined as the total precipitation consumed in the form of field evapotranspiration,

regardless of irrigation facilities utilized in the cropland. In the current study, the amount of Pe
exceeding the crop water requirement was not considered as part of the WF (Hoekstra et al.
2011):

WFgreen ¼ A�MinðETc;PeÞ ð9Þ
where A is the crop planting area in ha.

WFgrey was estimated based on the water footprint assessment manual:

WFgrey ¼ �� AR
cmax � cmin

ð10Þ
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where� is the leaching-runoff fraction; AR is the rate of chemical application, kg/ha; cmaxis the
maximum acceptable concentration (10 mg/L for T-N); and cmin is the concentration in natural
water (0 mg/L).

2.2 Partial Least Squares Regression (PLSR)

PLSR is an alternative method to ordinary regression for processing highly correlated noise-
corrupted data sets by explicitly assuming dependency among the variables and estimating the
underlying structures (Huang et al. 2016). A total of 11 factors were extracted for each
province in the statistical analysis that were considered to be driving factors of WP and WE
(Table 1). Considering covarying driving factors (Figure S1), the PLSR models were con-
structed to identify how the WP and WE of the 31 provinces were related to the 11 selected
variables. We used SIMCA-P + 14.0 (Huang et al. 2016) to perform the PLSR. To address
overfitting, cross-validation was used to determine an appropriate number of components. An
optimal balance between the explained variation (R2) and the model’s predictive ability
(goodness of prediction: Q2) needed to be achieved; when Q2 is greater than 0.5, the PLSR
model can be considered a good model (Huang et al. 2016). In PLSR modeling, the variable
importance in the projection (VIP) value is calculated to indicate the importance of a predictor.
Large VIP values, especially greater than 1, are the most important variables for explaining the
response variable. The regression coefficients (RC) can indicate the direction and strength of
the impact of each variable in the PLSR model. Prior to using the PLSR, a preliminary analysis
showed that many of the factors were colinear (Figure S1).

2.3 Data Resource

The region of the current study contained the 31 provinces (Figure S2) in China, and the study
occurred in 1996–2015. Provincial total water use, agricultural water use and irritation
efficiency (IE) were obtained from the China Water Resources Bulletins 1996–2015. Provin-
cial arable land, sown area, chemical application to the field and corn production in the
observed years were collected from the China Statistical Yearbook 1997–2016. Finally, the
meteorological data from 443 weather stations (Figure S2) in China that were used for the

Table 1 Abbreviations and descriptions of the selected variables

Variables Abbreviation Unit Description

Relative humidity RH % Average annual relative humidity
Temperature T Average annual temperature
Precipitation P mm Average annual precipitation
Sunshine duration SSD hr Yearly sunshine time
Fertilizer application amount FAA kg/ha Fertilizer application per unit cropland
Pesticide application amount PAA kg/ha Pesticide application per unit cropland
Agricultural machinery power AM W/ha Agricultural machinery power per unit cropland
Irrigation rate IR % Ratio of irrigated cropland to total cropland
Irrigation efficiency IE / Proportion of irrigation water consumption

in total withdrawal
Grain crops ratio GCR / Ratio of grain crop area to total cultivated area
Gross Domestic Product GDP 104 CNY Per capita GDP
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Penman-Monteith equation and the PLSR were downloaded from the Climatic Data Center,
China Meteorological Administration.

3 Results

3.1 Water Use and Efficiency in Corn Production

The annual corn production and water resource exploitation in China was 154.19 Mt and 197.3
Gm³ during 1996 to 2015, respectively. The proportions of the blue, green, and gray compo-
nents in the WF were calculated at 14.1 %, 62.4 and 23.4 %, respectively. Provincial corn
production and the water footprint components during 1996–2015 are listed in Table 2.

Corn production, WFgreen, WFgrey and total WF displayed similar spatial distribution
patterns, showing that high-value provinces were concentrated on the Huang-Huai-Hai Plain
(HHH) and Northeast China (NE), while low-value provinces were mainly located in the
subregions in South China (SC), the middle and lower Reaches of the Yangtze River (MLY)

Table 2 Provincial corn production and water footprint in during 1996–2015

Subregion PAMs Corn production (Mt) WFAblue

(Gm³)
WFgreen

(Gm³)
WFgrey

(Gm³)
WF
(Gm³)

North China (NC) Beijing 0.75 0.21 0.59 0.23 1.03
Tianjin 0.80 0.20 0.65 0.24 1.09
Shanxi 6.19 1.12 4.95 1.89 7.96

Huang-Huai-Hai Plain (HHH) Hebei 13.21 4.28 10.57 3.94 18.79
Anhui 3.13 0.06 2.79 0.91 3.77
Shandong 17.04 2.08 14.76 4.99 21.84
Henan 13.68 1.53 11.07 3.98 16.59

Northeast (NE) Liaoning 10.81 0.40 9.18 3.21 12.79
Jilin 19.32 0.70 16.23 5.83 22.76
Heilongjiang 17.47 0.99 13.87 5.21 20.07

Northwest (NW) Neimenggu 12.27 7.04 8.97 3.84 19.85
Shaanxi 4.66 0.19 3.36 1.38 4.92
Gansu 3.17 1.31 1.89 0.99 4.20
Qinghai 0.06 0.01 0.04 0.02 0.07
Ningxia 1.39 1.16 0.80 0.43 2.39
Xinjiang 4.12 6.28 1.88 1.51 9.67

South China (SC) Guangdong 0.66 <0.01 0.58 0.19 0.77
Guangxi 2.03 <0.01 1.76 0.59 2.36
Hainan 0.06 <0.01 0.04 0.02 0.06

Middle and Lower Reaches
of the Yangtze River (MLY)

Jiangsu 2.30 0.05 2.12 0.67 2.84
Jiangxi 0.08 0.01 0.07 0.02 0.11
Hubei 2.23 0.02 1.77 0.65 2.45
Hunan 1.37 <0.01 1.07 0.40 1.48

Southeast (SE) Shanghai 0.03 <0.01 0.03 0.01 0.04
Zhejiang 0.20 0.02 0.1 0.06 0.26
Fujian 0.14 <0.01 0.12 0.04 0.16

Southwest (SW) Chongqing 2.25 0.02 1.85 0.66 2.53
Sichuan 6.24 0.07 4.70 1.82 6.59
Guizhou 3.30 <0.01 2.83 0.96 3.80
Yunnan 5.23 0.08 4.45 1.56 6.09
Xizang 0.02 <0.01 0.02 0.01 0.02

China 154.19 27.87 123.20 46.27 197.33
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and Southeast China (SE). The greatest corn production and water use occurred in Jilin,
followed by in Heilongjiang and Shandong. These three provinces jointly accounted for
approximately one-third of China’s corn production (34.9 %) and WF (32.8%). In contrast,
there were 4 provinces, Qinghai, Hainan, Shanghai and Xizang, with corn production that had
a WF less than 0.10 Gm³. The WFAblue in Neimenggu exceeded 7.00 Gm³, ranking as the
largest in the country. This component in most of the remaining provinces was less than 1.00
Gm³ and no more than 0.01 Gm³ in 8 provinces. The annual WP and WE in corn cultivation
were estimated as 0.781 kg/m³ and 0.687, respectively, for the country. Agricultural water use
efficiency has substantial potential to improve, e.g., reducing the inappropriate water uses that
account for 40% of the WF, when connecting the paradigms water use and water footprint.
The yearly crop output, WF, WP and WE for the country in the studied period are shown in
Figs. 1 and 2.

Fig. 1 Location and regional delimitation of the 31 provinces in China
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As illustrated in Fig. 2, before 2000, neither the corn output nor the WF showed noticeable
changes over time. However, both increased obviously after 2000, and the crop output
changed from 106.0 Gkg in 2000 to 224.6 Gkg in 2015; similarly, the WF changed from
137.3 to 280.4 Gm3 during the same period. The change in crop planting scale was the main
reason for the change in crop production and water use. The initial sowing area of corn was
24.5 Mha, which dropped to its lowest value of 23.1 Mha in 2000, and then, it increased with
time. The crop area was as large as 38.1 Mha in 2015, ranking as the largest size in the
observed period. With an increase of more than three quarters, the national corn output
increased from 127.5 Mt in 1996 to 224.6 Mt in 2015. The increase in crop output may have
helped improve the water use efficiency. Figure 2 shows that WP showed a trend of growth
over time, while the WE did not show a clear increase during the research period. The WP
increased from 0.759 kg/m³ in 2000 to 0.801 kg/m³ at the end of the period. The increase in
this indicator was mainly reflected from 2005 to 2011. WP increased and decreased but was
not greater than 0.765 kg/m³ before 2004 and remained at 0.800 kg/m³ in the last five years.
The maximum and minimum values of WE appeared in 1997 (0.674) and 2010 (0.696),
respectively. WP was jointly affected by water resource demand and crop yield. The WF per
unit area changed little, and the crop yield increased with time, which was the direct reason
why WP increased with time. WE is the characterization of the water consumption structure
and field management level. Because of the abundant precipitation during the corn growing
season in China, green water accounted for the largest proportion (> 90%) of crop field crop
evapotranspiration (ET) in all years; at the same time, the gray water footprint in the current
paper was estimated using the standard method of Tier 1 (Hoekstra et al. 2011), which also led
to the minimal time variation in the results. These factors lead to a stable pattern of water
resource utilization effectiveness over time.

Fig. 2 National corn output, water footprint (WF), water productivity (WP) and water efficiency (WE) from
1996 to 2015
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3.2 Distribution of Water Use Efficiency Indices

Provincial water use efficiency indicators during the observed period are mapped in Fig. 3. The
results show that both WP and WE exert obvious spatial variability in China. PAMs with high
WP was found in the subregions SW, SC and MLY, and high WE PAMs were located in the
HHH, SW and SC. The arid provinces in northern China, e.g., Ningxia, Xinjiang and
Neimenggu, had both low WP and WE.

Specifically, the highest WP was 0.973 kg/m³ and calculated in Hainan, followed by
0.947 kg/m³ in Sichuan and 0.945 kg/m³ in Shaanxi. In contrast, the WP in 10 provinces
was lower than the national value of 0.781 kg/m³, and almost all these provinces were located
in the SW and NC subregions. The corn product per unit water resource exploitation in
Xinjiang was only 0.426 kg, which was the lowest in China, and Xinjiang was the only
province with a WP of no more than 0.500 kg/m³. High WE values were found in Shanghai,
Jiangsu and Guangdong, all of which exceeded 0.750. The WE in another 18 provinces was
above 0.700, including all the provinces located in the SW, SC, SE and NE. The WP
(0.782 kg/m³) and WE (0.693) values in Jiangxi were both equivalent to the national values
and lower than those of other southern provinces. The WEs in Neimenggu, Ningxia and
Xinjiang were below 0.600, accounting for a low amount within the country. These were the
provinces with the lowest WUEs in corn production observed from the water footprint
framework. The spatial performance of WP and WE is largely determined by the regional
climate and agricultural system characteristics. The southern subregions are rich in green water
resources, and only minimal irrigation is needed to meet the growth of corn; thus, the WF per
unit area was lower, while the WP and WE were higher than the PAMs in the northern part of
the country. NE China is an irrigated agricultural region with a lack of precipitation, and most
of the crop water consumption is from irrigation water, which also causes a large amount of
WFAblue during water transmission and distribution processes, making WP and WE lower in
NE China than in other regions. The precipitation in North China and the Huang-Huai-Hai

Fig. 3 Spatial distribution of annual (a) WP and (b) WE in China in 1996–2015
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region suitable for wheat-maize rotations was slightly higher than that in the NE, which
resulted in a low WF per unit area and high WUE indices.

Since the corn output and water utilization parameter showed the characteristics of spatial
aggregation (Table 2), the spatial-temporal patterns of corn production and WUE were
analyzed taking the subregion as a geographical unit. The proportions of corn yield and WF
from eight subregions during different periods are shown in Fig. 4.

Crop outputs and WFs had similar spatial distribution patterns in all periods. Figure 4
shows that of the regions, the HHH, NE and NW accounted for most of the corn production
and required the most water in China. Both corn production and the WFs in the HHH and SW
declined over the study periods, while they increased obviously in the NE and NW over time.
Neither of these parameters changed significantly over time for the other areas. Specifically,
the corn production andWF proportion of the national total in the SE was approximately 0.2 %
in each period, which was the lowest proportion in China. Both crop output and water
exploitation in NC, SC and MLY accounted for less than 5.0% of the national amount. The
SW area produced 10.8 % of the corn and used 9.4 % of the water resources during the
observed period. The corn production in the NE and arid NW accounted for 24.3 and 11.9 %

Fig. 4 Proportions of (a) corn output and (b) total water footprint in eight subregions during different periods
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of the total production in 1996–2000 and increased to 33.9 and 18.5%, respectively, in the last
five years of the study. The share of water resources jointly used by these two regions
increased from 37.4% in 1996–2000 to 54.0% in 2011–2015. The HHH accounted for
43.8% of the corn production and 44.6 % of the WF of the country in the first five years.
Subsequently, both amounts have fallen to approximately 28% in the last 5 years. The
dominance of the HHH in corn production and water use in China has been replaced by that
of the NE. Agricultural the WUE evaluation indices WP and WE in each subregion over the
study years were calculated by using provincial crop yield and water exploitation data, as
shown in Fig. 5.

The eight subregions were divided into three categories according to the WP and WE
values: high (including the NE, the MLY, the SW and SC), middle (including the HHH, NC
and the SE) and low (including NW). The highest WP and WE were found in the SW
(0.895 kg/m³) and SC (0.749), respectively. The WP and WE in the high-value subregions
were above 0.800 kg/m³ and 0.700, respectively, and did not show a perceptible trend over
time. The average WP and WE of the low-value region (NW) in 1996–2015 were only
0.574 kg/m³ and 0.618, respectively, both of which were much lower than those of the other

Fig. 5 Yearly (a) WP and (b) WE in eight subregions during 1996–2015
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7 subregions. The WUE indices showed an obvious increasing trend with time in this region.
The annual WE in the SE was estimated to be 0.735, just below the values in SC and the MLY.
However, the WP of this area was significantly lower than that of the other high-value
subregions. The WUE also improved over time in the HHH and NC during the study period.
The WP and WE in HHH were 0.736 kg/m³ and 0.686 in the beginning and increased to
0.801 kg/m³ and 0.716, respectively, in 2015. The amelioration of the crop-water relationship
in the HHH and NW was the main reason for the improvement in agricultural water use
efficiency in corn production in China (Fig. 2). Improvements in irrigation systems and the
adoption of water-saving technologies contributed to the increase in WP and WE. As the main
corn production area in China, the total irrigated area of the HHH increased, and the irrigation
system improved significantly. The water-saving irrigated area expanded from less than 5.0
Mha to 8.2 Mha during the study period. NC is the most economically developed region in
northern China. Although the change in irrigation scale was not obvious here, the IE improved
from 0.432 to 0.624 due to the adoption of advanced water-saving technology. These factors
resulted in a higher growth rate of the WUE indices in the HHH and NC than in the other
subregions.

3.3 Driving Factors of Water Use Efficiency

A summary of the two PLSR models constructed for WP and WE is provided in Table 3. The
optimal model for WP and WE extracts two components to reach the Q2 maximum. A further
increase in the number of components in the PLSR models could improve the explanation but
decrease the predictive ability. The optimal PLSR models explained 81% of the variation for
WP and explained 82% of the variation for WE (Table 3).

Figure 6 illustrates the VIP values for WP and WE with the RCs plotted against the
predictors. The VIP value and the RC are convenient and comprehensive expressions of the
relative importance of the selected variables. For WP, climate factors, including RH, SSD and
P, were key variables; RH and P were positively correlated with the WP, while SSD was
negatively correlated with the WP. For the WE model, all climate-related variables (SSD, RH,
P and T) were important driving factors, and the higher RH, P and T were correlated with the
higher WE. In addition, for WE, GCR also played a vital role in the WE. It should be noted
that all selected variables were to some extent related to both WP and WE but that variables
with VIP < 1 were considered of minor importance (Huang et al. 2016). The VIP of all
agricultural production technology- and management-level-related elements, FAA, PAA,
AM, IR and IE, was lower than 1.0. In comparison to natural elements, anthropic factors
were not the main driving force of the WUE indices when combined with water quantity and
quality.

Table 3 Summary of the PLSR models for WP and WE

Response
variable Y

R2 Q2 Component Explained variability in
Y (%)

Cumulative explained variability
in Y (%)

Q2
cum

WP 0.81 0.51 1 0.707 0.707 0.563
2 0.107 0.814 0.665

WE 0.82 0.68 1 0.660 0.660 0.564
2 0.163 0.823 0.688
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Relative humidity (RH) and precipitation (P) are the main positive factors of the WUE
indices. RH is directly affected by rainfall, and its spatial distribution patterns are similar. P is
an important source for crop water consumption. Where P is high, there are sufficient green
water resources for crops to absorb and use, which makes irrigation water demand low. Low
field irrigation water demand directly reduces the amount of irrigation water loss, thus
reducing the total WF. The lower the water resource input item is, the higher the WP. WE
increased with a high effective field ET proportion in the WF in the areas with a small amount
of irrigation water loss. However, SSD had a negative impact on the two WUE evaluation
indices. Rain reduces the sunshine duration, which is the main reason that SSD became the
dominant factor (VIP > 1.0 and RC < 0) of the WUE indices. In contrast, the VIPs of the
fertilizer application amount (FAA), pesticide application amount (PAA) and agricultural
machinery power (AM) were significantly lower than 1.0. In addition, the RC values of these
elements were close to 0. This result may have mainly been determined by the small spatial
differences in these inputs in China. This result also showed that the spatial distribution of the
WUE indices for corn production was almost unaffected by agricultural resource inputs. IR

Fig. 6 Variable importance for the projection (bars) and regression coefficients (lines) of the 11 selected
variables. (a) the WP; (b) the WE. The important predictors with VIP > 1 are consecutively numbered to show
their relative importance. The straight dashed line indicates a threshold above which the predictors are considered
to be important for predictive purposes. The abbreviations for the selected variables are listed in Table 1
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and IE, the representative elements of irrigation development, did not show a noticeable
importance in terms of WUE, which may have been related to the low irrigation water demand
in the corn growth period. In addition, agricultural planting structure had a certain impact on
WP and WE. A high GCR can promote both indices, especially WE. The regions with high
GCR values are the main grain producing areas and commodity grain supply bases in China
and carry out the main grain production tasks for the whole country. These areas are required
to attach importance to agricultural production. The populations in these areas have shown
enthusiasm for introducing new crop varieties and adopting advanced agronomic measures.
Therefore, it is justifiable that high water footprint efficiency occurred in these areas with a
high planting proportion of grain crops.

4 Discussion

WUE evaluation and promotion in agricultural production is a systematic issue at a large scale.
Crop-water relationship measurements should not only consider field evapotranspiration but
also include the real impact of agricultural production on water resources from the perspective
of water quantity and quality. National (global) agricultural WUE improvements should not be
limited to reducing diversion irrigation supply (water-saving irrigation) and increasing fields
but should be based on assessing regional production capacity and efficient utilization of water
resources simultaneously (González et al. 2016). The comprehensiveness of the water footprint
makes it a reliable tool to describe the relationship between agricultural production and water
resource utilization. At the same time, the modified crop WF helps to evaluate agricultural
WUE from the above perspective because the water loss in the irrigation process is critical to
agricultural water management (Berbel et al. 2018). Based on the overall process of agricul-
tural production observations, the current study combined WP and WE to conduct a regional
agricultural WUE investigation. This study represents progress compared with the previous
single indicator because no indicator could provide comprehensive information for agricultural
water management decision-making from local and global perspectives. WP is an intuitive
revelation of agricultural WUE. Reducing a crop WF and improving WP are the pursuit of
agricultural producers and water resource allocation departments. However, it is difficult to
determine the potential for water footprint reduction and propose countermeasures focusing on
WP alone (Cao et al. 2017, 2020). The index WE is a supplement to this. Moreover, the spatial
differences in WE can provide visual evidence for a water-saving layout. Therefore, it provides
a foothold for regional water resource management based on the water footprint when
analyzing the two simultaneously.

In China, the WF per unit of corn exceeded 1.25 m³/kg, of which the gray water footprint
and applied irrigation water loss jointly accounted for 31.8%, indicating that there was great
potential for WUE improvement. For specific districts, measures that previously involved
improving agricultural WUE and reducing nonpoint source pollution, such as crop variety
amelioration, irrigation technique exploitation, fertilization practice improvement, irrigation
facility renovation, and planting structure optimization, remained effective within the water
footprint framework in the current study. The spatial distribution pattern of WP and WE has
not changed over time, and each region may be unique in terms of its urgency for crop WF
reduction and WUE improvement. Although increases have occurred with time, the NW has
always had a decreased WUE in corn production. Productive and effective improvement are
urgently needed in the northwestern compared with other regions. In addition, the HHH and
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some southern provinces, such as Jiangxi and Fujian, also need to strengthen agricultural water
management and improve their WUE. Corn outputs and WFs varied greatly among regions
in China. At the same time, the spatial patterns of these two parameters changed during
the study period. For example, the NE replaced the HHH as the region with the largest
WF in recent years. Therefore, it is of great policy significance to determine the driving
mechanism of two WUE indices from a spatial perspective. Our study found that climatic
conditions, especially precipitation, were the main driving factors of water footprint
efficiency. Their impacts on WP and WE were more significant than those of agricultural
technology and socioeconomic conditions. In terms of space, deciding products accord-
ing to water resources is more important than technological progress. In other words,
optimizing crop layout is an effective way to improve national agricultural WP and WE.
Obviously, the corn cultivation pattern in China during the observed period was not an
optimal allocation. Northwestern China should limit the further increase of its crop WF
as much as possible, while southwestern and southern China could expand crop cultiva-
tion to jointly promote the sustainability of water use in corn production. Corn was
selected as the object of this paper, and the WUE of other food crops, such as wheat and
rice, may be affected by different factors. In addition, the WP and WE calculations and
driving mechanism exploration were carried out at the provincial scale, and the spatial
variability in the WUE indices, driving factors and efficiency improvement measures
within the province were ignored in the current study. Therefore, a comparative analysis
of the water use efficiency of various crops and scales could provide more comprehen-
sive information for local and national agricultural water management decision.

5 Conclusions

Temporal-spatial patterns and influencing factors of the WUE index evaluation provide
decision-making information for local and global water management improvement. The blue,
green and gray water footprint method is a new opportunity in the development of agricultural
water management theory. The modified water footprint calculation is helpful to bridge the gap
between the new method (WF) and the traditional agricultural water use assessment para-
digms. Corn cultivation in China needs 197.3 Gm³ water resources per year, most of which
were effective precipitation soaked into the soil. More than one-third of the corn WF does not
serve field evapotranspiration even without heavy reliance on irrigation. WUE can be com-
prehensively measured by WP and WE based on the crop WF of the whole agricultural
production process. Irrigation technology, fertilizer utilization, water supply facilities, and
main factors driving the spatial distribution of WUE indices have a positive effect on local crop
WF reduction. The role of plants in terms of water resource use cannot be ignored in water
management decision-making under the framework of the water footprint. In addition to
improving agronomic techniques and water allocation, optimizing the spatial distribution of
crops is a reliable way to achieve global productive and effective improvements
simultaneously.

Supplementary Information The online version contains supplementary material available at https://doi.org/
10.1007/s11269-021-02845-z.
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