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Abstract
Recently many runoff models based on cellular automaton (CA) have been developed to 
simulate floods; however, the existing models cannot be readily applied to complex urban 
environments. This study proposes a novel rainfall-runoff model based on CA (RRCA) to 
simulate inundation. Its main contributions include a fine runoff generation process that 
considers 12 urban scenarios rather than a single land use type and the confluence pro-
cess determined by the new transition rules considering water supply and demand (WS-
WD transition rules). RRCA was compared with another CA based flood model (E2DCA). 
With the benchmark model, the results showed that there was good agreement, with an 
R-squared greater than 0.9, and that RRCA was more sensitive to waterlogging levels than 
E2DCA. Furthermore, the simulated vegetation interception, infiltration and drainage pro-
cesses had varying degrees of impact on waterlogging. Corresponding measures can be 
taken in urban flood management according to the identification of areas experiencing 
drainage difficulties.
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1  Introduction

Urban floods occur frequently as urbanization processes accelerate. Hence, flood-prone cit-
ies are increasingly challenged to mitigate the impact of urban waterlogging (Alves et al. 
2020). Flood models are an effective approach to obtain flood information and provide 
insights into flood management (Jamali et al. 2018).

In general, flood models can be divided into three categories: empirical methods, sim-
plified methods and hydrodynamic models (Teng et al. 2019). Empirical methods obtain 
flood information by processing the observation data, such as evaluating remote sensing 
images for flood mapping (Domeneghetti et al. 2019). Simplified methods simulate floods 
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without involving the hydraulic process of inundation, such as the rapid flood spreading 
method (Lhomme et al. 2008). However, these models are limited by their weak dynamic 
effects. Hydrodynamic models involving hydrologic and hydraulic processes can obtain 
more accurate results based on numerous parameters and high computational demands 
(Teng et  al. 2017). Therefore, the application of the hydrodynamic model is limited in 
complex environments with a low computing capacity (Vu et al. 2019). As a simple 2D 
flood model, a model based on cellular automaton (CA) has recently become of focus 
(Gregorio and Serra 1999). It has fewer parameters and can simulate inundation processes 
with a similar accuracy or a slightly lower accuracy than other hydrodynamic models 
(Manfreda and Samela 2019).

A typical CA-based model is a discrete dynamic system and includes a lattice of cells 
covering the study area. The CA system defines local neighborhoods, cell state attributes, 
and transition rules determining the changes in cell properties (Wolfram 1984). Consid-
ering the confluence process in flood evolution, i.e., the process of runoff concentration 
in a catchment, CA does well when simulating the flow exchange occurring among units. 
Therefore, CA can provide insights into the dynamic development of inundation by com-
bining the physical processes involved in surface runoff production and confluence (Jamali 
et al. 2019). Liu et al. (2015) ensured the stability of the flood simulation by changing the 
calculation method of time step in the model based on CA. Armal and Al-Suhili (2019) 
developed a CA-based model for the inundation extent simulation of flash floods in an 
urban catchment.

CA-based models have the advantages of a high speed and fewer parameter require-
ments and is usually used to simulate floods in river basins (Guidolin et al. 2016). How-
ever, due to the increasing complexity of the urban environment, most CA-based models 
have difficulty simulating the development of urban waterlogging, especially fine simula-
tions with a small range. In addition, CA models only divide the underlying surface into 
pervious and impervious areas for runoff calculations, and the treatment of water circula-
tion is divorced from reality (Liu et al. 2015). In fact, the layout of buildings and drainage 
facilities in cities will have an impact on the waterlogging.

In the case of floods, especially in the absence of hydrological data, the rapid inundation 
analysis can identify key points in time to make effective emergency management deci-
sions (Tyler et al. 2019). The study of surface runoff affected by various land use types is 
useful in the identification of the causes and development of floods (Shang et al. 2019).

Consequently, this study proposes a novel rainfall-runoff model based on CA (RRCA) 
for inundation simulation and analysis. Different runoff generation processes involving veg-
etation interception, roof storage, infiltration, depression storage, drainage or the combina-
tion of the above, are used to determine the submerged depth per unit area. Moreover, new 
WS-WD transition rules in the confluence process are obtained by the relationship between 
the water supply and demand, which simulates the inundation process more accurately.

2 � Model Development

RRCA incorporates runoff generation and confluence processes and considers the complex 
urban environment and water exchange rules to realize the accurate simulation of inunda-
tion processes. The procedure is shown in Fig. 1.
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The RRCA model consists of four parts shown in Fig.  1. Six kinds of data act as 
inputs for RRCA. The runoff generation process depends on the land use types and 
urban scenarios used to determine the submerged state of each cell. The confluence pro-
cess is constrained by transition rules among cells. The submerged depth, submerged 
map and locations with drainage difficulty are the outputs used to provide decision sup-
port for flood management.

Fig. 1   The procedure of urban flood simulation by the rainfall-runoff model based on CA (RRCA)
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2.1 � Division of Water Catchment

Due to the dynamic framework of CA, with its discrete time, space and state processing, 
it can effectively shorten the simulation run time by dividing the area into several catch-
ments and performing parallel simulations (Guidolin et al. 2012). Moreover, the flooding 
simulation is conducted in each catchment, reducing the influence of water outside the area 
flowing into the catchment. Considering the small changes in the terrain slope of urban 
neighborhoods, the catchment division in this study is mainly based on the distribution of 
drainage facilities. The catchments are divided with the Voronoi method based on drainage 
networks (Li et al. 2020). Each catchment includes at least one main drainage outlet, and is 
adjusted slightly according to the terrain elevation and road distribution.

2.2 � Runoff Generation Considering Combination Scenarios

2.2.1 � Runoff Loss on Single Land Use Type

Rainfall interception by vegetation is the first step in the procedure to reduce surface run-
off. Equation (1) is a vegetation interception volume calculation often used for urban rain-
fall interception, and the relationship between the maximum interception and the leaf area 
index is shown in Eq. (2) (Nazari et al. 2020):

where P is the cumulative interception (mm), Pmax is the maximum interception (mm), R is 
the cumulative rainfall (mm), and LAI is the leaf area index.

Rainwater accumulates on the roof when the underlying surface is a building. Water 
exceeding the roof limit will flow to the ground, and the redundant runoff is calculated by 
the runoff coefficient method (Rossman and Huber 2015):

where B is the runoff volume after the roof is filled with rain (m3), c is the runoff coeffi-
cient, i is the amount of rainfall (m), and A is the roof area (m2).

Rainfall infiltration is another cause of runoff loss (Morbidelli et  al. 2018). Horton 
(1940) proposed an infiltration model with a simple structure and fewer parameters to esti-
mate the water infiltration rate (Almeida et al. 2018):

where I is the infiltration rate at time t (mm/h), Ic is the steady infiltration rate (mm/h), I0 
is the initial infiltration rate (mm/h), and k is the decay parameter of the infiltration curve.

When the rainfall intensity is greater than the infiltration capacity, the rainfall beyond 
the infiltration volume forms surface water and accumulates in ground depressions. The 
depression volume is calculated considering ground elevation in the Moore-neighbor-
hood (Uguz et al. 2016). This study uses a simple algorithm to quickly calculate depres-
sion storage. First, a center cell is determined. The height difference between the center 
cell and eight adjacent cells is calculated. Then, whether the water depth accumulated 

(1)P = Pmax[1 − exp(−0.046LAIR∕Pmax)]

(2)Pmax=0.935+0.498LAI+0.00575LAI
2

(3)B = ciA

(4)I = Ic +
(

I0 − Ic
)

exp(−kt)
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on the center cell Dc is greater than the minimum height difference Δhmin is determined. 
If this is true, then the center cell will not have depression storage at the subsequent 
moment. Otherwise, the depression storage DSc will be DSc=Δhmin-Dc.

In addition, the drainage capacity of a rainwater grate has been proposed by Sun 
(1999):

.
where Q is the drainage flow rate (m3/s), i is the rainfall rate (m/s), A is the area of 

rainwater grate (m2), C is the orifice coefficient, g is the gravitational acceleration, h is 
the water depth on the rainwater grate (m), and K is the orifice obstruction coefficient.

2.2.2 � Surface Runoff Generation in Different Scenario Combinations

The evaporation process is negligible in this study, because evaporation loss is small dur-
ing rainfall (Zhang and Pan 2014). According to the water balance equation (Zeng et al. 
2012), the submerged depth D resulting from surface runoff is calculated as follows:

where R is the rainfall, and WL is the water loss in the surface water circulation.
The initial submerged depth obtained from the runoff generation process varies accord-

ing to the land use types. We consider a complex environment, and specifically account for 
the fact that plants usually overlap with other types of underlying surfaces. Therefore, the 
calculation of submerged depth considers not only the land use type, but also the combi-
nation of various water loss processes. There are 12 scenarios included in the submerged 
depth calculation:

Building D=R-B
Impervious surface D=R
Impervious depression D=R-DS
Soil D=R-I
Soil and depression D-R-I-DS
Rainwater grate D=R-Q
Vegetation and building D=R-P-B
Vegetation and impervious surface D=R-P
Vegetation and impervious depression D=R-P-DS
Vegetation and soil D=R-P-I
Vegetation, soil and depression D=R-P-I-D
Vegetation and rainwater grate D=R-P-Q

The runoff generation process occurs in each cell of equal size, so we divide the above 
water volume by the unit cell area to obtain the water depth for calculation. D is the sub-
merged depth of surface runoff, R is the rainfall, B is the runoff depth after the roof is filled 
with rain, DS is the depth of the depression storage, I is the depth of the infiltration vol-
ume, Q is the depth of the drainage volume, and P is the depth of the interception volume.

(5)Q =

�

iA 0 < h ≤ 0.01

AC
√

2ghK h > 0.01

(6)D = R −WL
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2.3 � WS‑WD Transition Rules

After determining the initial submerged depth of each cell by the above processes, the algo-
rithm must determine how water exchange occurs among cells due to the topography and tran-
sition rules considering water supply and demand, thereby changing the submergence state of 
neighborhood, and leading to the confluence process in catchments.

The WS-WD transition rules are depicted as follows:
1: Select center cell. The center cell is selected only when the height difference △hi 

between the center cell and the neighbor cell i is positive.
2: Calculate the water supply of the center cell and the water demand of neighboring 

cells. The water supply of the center cell mainly depends on the flow velocity vf i (Eq. (9)). 
The water demands of neighboring cells Ni and Nc mainly depend on the height difference 
(Eq. (11) and Eq. (12)).

3: Compare vf i , Nc, and the water depth of the center cell to determine the volume of 
water exchange and then update the water depth Dc of the center cell and water depth Di 
of neighboring cell i . Since the unit time steps of all water depth and flow velocity changes 
are consistent, the values of depth and velocity can be directly compared within each time 
step.

When 
∑

vf i ≥ Dc,
if Dc = Nc , then Dc = Dc − Nc , Di = Di + Ni

else, Dc = 0 , Di = Di + Ci ( Ci is shown in Eq. (10))
When 

∑

vf i < Dc,
if 
∑

vf i ≥ Nc , then Dc = Dc − Nc , Di = Di + Ni

else, Dc = Dc −
∑

vf i , Di = Di + vf i

4: Select another center cell in the next time step. The neighboring cell with the smallest 
height is selected as the center cell in the next time step, and the above processes are repeated 
until the final time step.

According to Manning’s formula (Hergarten and Neugebauer 1997), the water flow veloc-
ity from the center cell to the neighboring cell i is calculated by Eq. (7). The flow time is cal-
culated by Eq. (8).

 where �i is the flow velocity (m/s), n is Manning’s roughness coefficient, hi is the water 
depth of cell i (m), s is the surface slope, ti is the flow time (s), and TD is the flow travel 
distance (m). Since the neighborhood is defined as a Moore neighborhood, the distance 
between the center cell and its four adjacent cells in the up, down, left and right directions 
is l which equals the cell side length, and the distance from the diagonal directions is 

√

2l.
The actual water supply volume needs to be modified by altering the flow velocity (Shao 

et al. 2015).

(7)vi =
1

n
hi

2

3 s
1

2

(8)ti = TD∕vi

(9)vfi =

{

vi
viT∕ti

ti ≤ T

ti > T
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When the accumulated water of the center cell is insufficient to act as a supply, the 
exchanged water Ci between the center cell and the neighboring cell i is affected by the 
flow velocity:

The water demand Ni of neighboring cell i is determined by the positive height differ-
ence Δhi between the center cell and each neighboring cell:

3 � Case Study

3.1 � Study Area

The city of Wuhan is located in the eastern part of China and in the middle reaches of the 
Yangtze River. It has a northern subtropical monsoon climate referring to climate region-
alization in China, with abundant rainfall and sufficient heat. The most severe waterlogging 
event caused by a rainfall accumulation of 676.1 mm in Wuhan occurred in July of 2016. 
We selected a region (Fig. 2) in Wuhan as the study area.

The study area is located in the Qiaokou district of Wuhan, near the intersection of the 
Han River and the Yangtze River. Due to its large impervious surface area and inadequate 
drainage facilities, heavy rainfall frequently causes urban waterlogging.

3.2 � Data Used

Land use type and ground elevation (DEM) data were provided by the Wuhan Surveying 
and Mapping Bureau. The slope data were derived based on a DEM using ArcGIS10.2.2. 
Leaf area index (LAI) and soil data were obtained from the Geographical Information 
Monitoring Cloud Platform (http://​www.​dsac.​cn/). Rainfall, drainage system and histori-
cal waterlogging data were provided by the Institute of Water Science Research in Wuhan.

The land use type, DEM, slope and LAI were preprocessed to unify the spatial resolu-
tion to one meter. Each cell formed a square with a side length of one meter. Rainfall data 
from 20:00 on July 5, 2016 to 1:00 on July 6, 2016 were selected as input. The temporal 
resolution of the rainfall data was one minute, as was the simulation time step. The Man-
ning coefficients of impervious surfaces, roads, vegetation and soil are 0.03, 0.012, 0.24, 
and 0.05, respectively (Engman 1986; McCuen et al. 1996), and the runoff coefficient of 
building roofs is 0.95 (Fassman-Beck et al. 2016). Based on the soil properties of the study 
area, the values of the parameters Ic , I0 , and k in the Horton formula refer to the research of 
Mishra et al. (2003).

(10)Ci =
vi

∑

vi
Dc

(11)Ni =
Δhi

∑

Δhi+Δhmin

Δhmin

(12)Nc =

∑

Δhi
∑

Δhi+Δhmin

Δhmin
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3.3 � Model Validation and Comparison

Infoworks Integrated Catchment Management (Infoworks ICM) is a widely used 2D 
hydraulic commercial software (Innovyze 2012). The urban flood model of Infoworks 
ICM can fully simulate the urban rainfall runoff process (Bertsch et al. 2017). The results 
of RRCA which has been calibrated and Infoworks ICM were compared to evaluate our 
model quantitatively. Moreover, the E2DCA model proposed by Liu et al. (2015) was used 
as a comparison.

According to the obstruction degree of stagnant water to traffic, the Wuhan Water 
Affairs Bureau divides water depth into four levels. The first level is “no water” when 
the water depth is 0 mm; the second level is “a little water” when the depth is less than 
150 mm; 150 mm-400 mm is the third level with slight waterlogging; and water depths 
greater than 400 mm constitute the fourth level with severe waterlogging.

There are usually four metrics to characterize model performance: root mean square 
error (RMSE, Eq.  (13)), R-squared (R2, Eq.  (1)), true positive rate (TPR, Eq.  (15)) and 
false discovery rate (FDR, Eq.  (16)) (Bennett et al. 2013). Db

i
 is the submerged depth of 

cell i simulated by Infoworks ICM, Dt
i
 is the submerged depth of cell i simulated by the test 

Fig. 2   The location map of the study area
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models, i.e., RRCA and E2DCA, and n is the number of cells. Db is the mean submerged 
depth of all cells simulated by Infoworks ICM.

TPR and FDR were calculated for four waterlogging levels by cell number. True posi-
tive (TP) represents the number of cells that both the test model and the Infoworks ICM 
identified as having the same level. False negative (FN) represents the number of cells that 
the Infoworks ICM identified as a certain level while the test model identified them as 
being of other levels. False Positive (FP) is the opposite of FN. One hundred cells were 
selected after running the simulation for 300 min. Table 1 shows the comparison between 
test models (RRCA and E2DCA) and Infoworks ICM at six time points.

For the RMSE in Table 1, the error of RRCA is much smaller than that of E2DCA. In 
the case of R2, the values from the comparison of RRCA and Infoworks ICM all exceed 
0.9, while the best value from the comparison of E2DCA and Infoworks ICM is 0.87, indi-
cating that there is a better agreement between RRCA and Infoworks ICM. TPR and FDR 
are used to assess the sensitivity to waterlogging levels. From the comparison of RRCA 
and Infoworks ICM, all TPRs are greater than 0.85, showing that RRCA can effectively 
identify different waterlogging levels; the FDR values decrease with time, showing that 
the simulation of RRCA becomes more accurate with the gradual waterlogging. However, 
E2DCA has a high error rate for the identification of waterlogging levels.

Although the Infoworks ICM has a high accuracy for simulating inundation, it is dif-
ficult to use by ordinary users because of the large number of parameter calibrations. 
Infoworks ICM can only simulate inundation every five minutes, while RRCA can simulate 

(13)RMSE =

�

∑n

i=1

�

Db
i
− Dt

i

�2

n

(14)R2 = 1 −

∑n

i=1

�

Db
i
− Dt

i

�2

∑n

i=1

�

Db
i
− Db

�2

(15)TPR = TP∕(TP + FN)

(16)FDR = FP∕(TP + FP)

Table 1   The metrics for comparison between test models (RRCA and E2DCA) and Infoworks ICM at six 
time points

Simulated time 
instants

Infoworks ICM-RRCA​ Infoworks ICM-E2DCA

RMSE R2 TPR FDR RMSE R2 TPR FDR

5 min 0 mm / 1 0 0 mm / 1 0
95 min 0.12 mm 0.9 0.88 0.27 1.51 mm 0.82 0.72 0.36
110 min 0.56 mm 0.91 0.89 0.18 4.96 mm 0.84 0.83 0.25
120 min 0.82 mm 0.95 0.93 0.11 7.43 mm 0.87 0.8 0.23
230 min 2.45 mm 0.92 0.93 0.08 31.05 mm 0.79 0.79 0.24
00 min 7.29 mm 0.94 0.94 0.09 62.19 mm 0.85 0.83 0.19
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inundation every minute. Moreover, the running time of Infoworks ICM is much longer 
than that of RRCA when taking in the experimental data. Therefore, RRCA performs better 
in terms of efficiency and accuracy in neighborhood-scale inundation simulations.

4 � Results and Discussions

4.1 � Inundation Results

Figure 3 shows the distribution of waterlogging levels at six time points when the areas of 
different waterlogging levels change significantly.

In Fig. 3b, the areas without stagnant water obviously decreased at 94 min. Slight water-
logging occurred at 109 min in Fig. 3c, and the areas of slight waterlogging increased after 
118 min in Fig. 3d. Figure 3e shows that severe waterlogging occurred at 229 min, and 
the inundated areas greatly increased. At 300 min, the water depth of the original slightly 
waterlogged areas increased, and almost all of these regions became severely waterlogged, 
as shown in Fig. 3f. The area changes of the four waterlogging levels indicate that once 
there is continuous and heavy rainfall, waterlogging will gradually occur in the study area, 
which will eventually result in severe waterlogging.

4.2 � Submerged Depth of Different Land Use Types

The Manning coefficient depending on the land use type affects the velocity of flow, and 
then influences the water volume. Figure 4 shows the submerged depth variations at every 
five points for each land use type.

The submerged depths of impervious surfaces, road, vegetation and soil had similar 
trends depending on the amount of accumulated rainfall. Figure 4 shows that the changes 

Fig. 3   Distribution map of waterlogging levels at six time points
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in the submerged depth with each land use type were generally consistent. In general, the 
average submerged depth of impervious surfaces was greater than that of the other sur-
faces. Point 5 on the impervious surface had the maximum submerged depth due to the 
relatively low terrain at this location, as shown in Fig. 4a. There was also an abundance of 
water on the road, as shown in Fig. 4b. The curve change at point 3 obviously differed from 
that of other road points, and the water depth was at its minimum. The reason for this is 
that there is a rainwater gate not far from point 3, and most of the water was drained away.

Fig. 4   The submerged depth variation of different land use types. There are five points of each land use 
type, and the average describes the overall change tendency of submerged depth at every five points
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When there was no surface runoff, the submerged depth was negative, as shown in 
Fig. 4c and Fig. 4d to analyze whether the accumulated rainfall was less than the water 
loss. For the vegetation and soil, interception and infiltration took place first and inunda-
tion occurred later. In Fig. 4c, the curve changed from declining to rising at approximately 
50 min because the total rainfall was greater than the sum of interception and infiltration 
losses. Stagnant water occurred at approximately 100 min in Fig. 4c. The water volume of 
vegetation interception mainly depends on the LAI. Due to the sparse vegetation coverage 
of the study area, vegetation interception had a lesser effect on water loss. The bare soil 
type encompasses a small area; therefore, the changes in the submerged depth at the five 
points in Fig. 4d are similar.

There was an upper limit to the water volume carried by the building roof in Fig. 4e, 
and the limit was determined by the roof structure. This finding supports the feasibility of 
green roofs in water regulation and storage. In Fig. 4f, we mainly focus on the points with 
obvious water accumulation. The submerged depth was 0 mm at points 2 and 4 in Fig. 4f, 
indicating that the drainage capacity of these sites matched the rainfall that accumulated 
throughout the whole process. The submergence depths changed at points 1, 3 and 5, and 
we can accurately locate them to help solve the drainage problem in time.

According to the above analysis, we marked the locations of rainwater gates that experi-
ences drainage difficulties, as shown in Fig. 5.

The accumulated water running over the rainwater gates in Fig. 5 existed for at least one 
hour during this rainfall event, and the final submerged depths are shown in Fig. 5. Most 
of the rainwater gates that experiences drainage difficulties in the northwest and southeast 
corners of the study area, which caused regional waterlogging. According to the simulation 
results, corresponding drainage measures could be taken to alleviate waterlogging.

Section  2.2 shows that different land use types and scenarios correspond to differ-
ent surface runoff generation processes. Six cells involved in at least three processes in 

Fig. 5   The submerged depths over the rainwater gates when they had difficulty in drainage
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runoff generation are selected; their submerged depths over time are recorded as shown 
in Table 2.

The terrain and LAI of the selected cells in Table 2 are relatively similar for compari-
son. Comparing the submerged depths of scenarios III and IV, the depression storage 
had a limited effect on reducing the amount of stagnant water. During heavy rain, areas 
with depressions will induce stagnant water or even faster waterlogging. The submerged 
depth of scenario VI shows that drainage facilities greatly alleviated the flooding situa-
tion. In summary, all processes in Table 2 indicate that vegetation interception and the 
infiltration of soil delayed the generation of accumulated water, and the final submerged 
depths were effectively reduced. Therefore, this discussion concludes that greening 
measures have a positive effect on urban flood alleviation.

4.3 � Reduction of Surface Accumulated Water

Vegetation interception, infiltration and depression storage all have certain effects on 
water accumulation. We selected 20 sites with plants, where the processes of runoff 
generation involve rainfall, interception, infiltration and depression storage, to analyze 
the water storage capacity of different processes (Fig. 6).

When the total rainfall was 25 mm in Fig. 6a and 50 mm in Fig. 6b, the stagnated 
water resulting from vegetation interception and infiltration each accounted for approxi-
mately half of the total rainfall loss. With the increased rainfall shown in Fig. 6c and 
Fig. 6d, the effect of vegetation interception decreased, and the amount of depression 
storage increased. The stagnant water of the infiltration accounted for the largest propor-
tion of rainfall loss. This shows that vegetation interception and infiltration are the main 
processes that reduce surface runoff during light or moderate rain; the effect of vegeta-
tion interception is limited during heavy rain, while the depression storage plays a grad-
ual role, and infiltration always has a positive effect on runoff loss. To some extent, the 
results in Fig. 6 confirm the effectiveness of sponge city measures, such as the installa-
tion of permeable bricks and concave-down greenbelts.

4.4 � Model Deficiency

This study focused on accurate inundation analysis under various land uses, and did not 
discuss the sensitivity of RRCA to different parameters, such as the time step.

Table 2   The submerged depth changes with time in six cells, where the runoff generation involves in at 
least three processes

Underlying surface types Submerged depth (mm)

47 min 94 min 109 min 118 min 229 min 300 min

I Soil and depression 0 20.7710 43.1249 58.9906 137.963 210.076
II Vegetation and impervious depression 0 22.2987 44.2526 60.0183 138.890 210.903
III Vegetation and soil 0 0.6984 19.2524 32.9781 86.6908 142.6375
IV Vegetation, soil and depression 0 0 8.7801 22.5058 76.2185 132.1652
V Vegetation and building 0 18.5810 19.1410 19.1410 19.1410 19.1410
VI Vegetation and rainwater grate 0 0 0 0 0 0
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In addition, RRCA is more suitable for the simulation of fine runoff processes at the 
neighborhood-scale, as the accuracy and efficiency can be guaranteed simultaneously in a 
small range. However, for large-scale flooding simulations, the efficiency of RRCA in this 
study is relatively limited by the lack of efficiency enhancement methods, such as cloud 
computing and edge computing.

5 � Conclusion

It is difficult to simulate floods accurately in complex urban environments. To tackle 
this problem, this study proposes a new rainfall-runoff model based on CA (RRCA) for 
simulating the spatial and temporal evolution of inundation effectively. The simulation of 
RRCA considers multiple processes of runoff generation under various land uses and sce-
narios. The transition rules for water exchange are innovatively defined by the relationship 
between the water supply from center cell and the water demand of neighboring cells.

The comparison of RRCA and E2DCA shows that RRCA can identify stagnant water 
with a high accuracy and is more sensitive to the recognition of different waterlogging 
levels. The outputs include the distribution map of four waterlogging levels, the submerged 
depths with time and the locations experiencing drainage difficulties. This shows that once 
there is a continuous and heavy rain, the water-prone area will eventually cause severe 
flooding.

Fig. 6   The proportion of stagnated water in interception, infiltration and depression storage processes to the 
total rainfall loss when the rainfall is (a) 25 mm, (b) 50 mm, (c) 100 mm, and (d) 250 mm in one hour

2004



A Cellular Automata Based Rainfall‑Runoff Model for Urban…

1 3

The submerged depths of various land use types and scenarios were analyzed based on 
multiple simulations. The results show that vegetation interception and infiltration have an 
effect on waterlogging prevention. In addition, accurate flood simulation can identify the 
key locations with drainage problems. The fine simulation of surface runoff and conflu-
ence processes can help researchers understand flood development, and RRCA will provide 
quantitative suggestions for urban greening and drainage system construction in waterlog-
ging management.
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