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Abstract
Climate and land-use changes can alter the dynamics of hydro-climatic extremes by modifying 
the flow regimes. Here, we have attempted to disentangle the relationship between changing 
environmental conditions and hydro-climatic extremes considering associated uncertainties for 
the Subarnarekha, a flood prone-basin of India. A comprehensive, integrated modelling sys-
tem was developed that incorporates a spatially explicit land-use model, a hydrological model, 
and an ensemble of regional climate models (RCMs). MIKE SHE/MIKE HYDRO RIVER was 
used to simulate the hydrological processes. The uncertainties associated with model param-
eters, model inputs, and model structures are analysed collectively using ‘quantile regression.’ 
A transferable framework was developed for the analysis of hydro-climatic extremes that deal 
with numerous aspects like sensitivity, occurrences, severity, and persistence for four-time hori-
zons: baseline (1976–2005) and early (2020s), mid (2050s), end-centuries (2080s). ANOVA 
is used for partitioning uncertainty due to different sources. The results obtained from numer-
ous analysis of the developed framework suggests that low, high, and medium flows will prob-
ably increase in the future (20%-85% increase), indicating a higher risk of floods, especially in 
the 2050s and 2080s. Partitioning of uncertainty suggests RCMs contribute 40%-62% to the 
uncertainty in streamflow projections. The developed modelling systems incorporates a flex-
ible framework so update any other water sustainability issue in the future. These findings will 
help better meet the challenges associated with the possible risk of increasing high flows in the 
future by ceding references to the decision-makers for framing better prevention measures asso-
ciated with land-use and climate changes.
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1 Introduction

Land and water resources are the two intricate systems existing on the planet that is often 
taken for granted by humanity (Wijesekara 2013). From a hydrological perspective, rapidly 
changing climate and continuous evolution in land use and land cover (LULC) are promi-
nent factors that are thoroughly intertwined for pressurising these systems (Goyal and 
Surampalli 2018). Moreover, over-exploitation of land and water resources at various spa-
tial and temporal scales has far-reaching implications on the environment, economy, and 
society. Therefore, these systems must be understood and managed as coherent dynamic 
entities to warrant their integrity.

In light of the above, the combined investigation of climate and LULC changes is essen-
tial to ensure land and water resources for the upcoming generations. The most deteriorat-
ing extreme impacts of climate and LULC change are the increasing dichotomy of drought 
and floods. Specifically, the most worrisome trend is no rain for a longer duration followed 
by sudden bout in rainfall intensities, causing flash floods, which leads to substantial rev-
enue losses. Hence, understanding the dynamics of hydro-climatic extremes along with cli-
mate and LULC change holds tremendous interest.

In the recent past, numerous studies have focused on the isolated impacts of LULC and 
climate change; however, relatively fewer studies have considered the combined changes 
in projecting future water availability. The prime concern of these studies is to predict the 
streamflow as it has a vital role in water resources management and planning (Kim et al. 
2020; Mohammadi et al. 2020a, b). Furthermore, integrated modelling systems are desira-
ble to unravel the dynamics of such changes to understand the hydrological process. Such 
systems considered so far in the literature have limitations in addressing the complexity of 
major physical processes. In this regard, a physically-based, fully distributed hydrological 
model generates potentially more precise results than a model operated at a lumped scale 
(Farjad et al. 2017).

Consideration of uncertainty framework in the hydrological impact analysis is essential for the 
quantifying future water availability (Beven and Feyen 2002; Tabari 2015; Norouzi Khatiri et al. 
2020; Anaraki et al. 2021). Projecting hydrological responses of combined climate and LULC 
changes is usually subjected to substantial uncertainties. These uncertainties may be due to rep-
resentative concentration pathways (RCPs), climatic projections by general circulation models 
(GCMs)/regional climate models (RCMs), internal variability of hydrological processes, and 
hydrological model, and may get propagated through complex modelling chain (Pechlivanidis 
et al. 2017). The sources mentioned, however, do not contribute equally to the total uncertainty in 
streamflow projections. Therefore, it is essential to segregate the contribution of each uncertainty 
source to the total uncertainty. Furthermore, the uncertainty in model inputs and model param-
eters also propagated to modelling outcomes (Kundzewicz et al. 2018).

The analysis of hydro-climatic extremes performed through the combination of climate and 
hydrological models often lag in terms of well-defined methodologies. Key research activities 
of such studies are limited to the analysis of historical trends in hydro-meteorological vari-
ables and the projection of future hydrological states. Gaur et al. (2020a) studied the impacts 
of climate change on the Subarnarekha basin. However, the study has several limitations, e.g., 
only isolated impacts of climate change were considered without considering LULC changes, 
appropriate selection of ensemble members and uncertainty associated with selecting a hydro-
logical model. Accordingly, more study is needed to deal with systematic methodologies for 
analysis and prediction of hydro-climatic extremes. The present study addresses this research 
gap and contributes to the comprehensive understanding of the projection of hydro-climatic 
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extremes under changing environmental conditions while considering the associated uncer-
tainties for the Subarnarekha basin.

Subarnarekha is abundant in natural resources. However, anthropogenic activities like 
deforestation, urbanisation, large-scale mining, and industrialisation, in combination with cli-
mate change, have significantly impacted the hydrological processes in the basin. These con-
sequences have resulted in severe soil degradation in the upper catchments and increasing sus-
ceptibility to flash floods (Singh and Giri 2018).

We have used an integrated modelling system (details in Sect. 2.3) that consists of a unique 
combination of MIKE SHE/MIKE HYDRO, Multilayer-perceptron Markov model (MLP-M) 
and an ensemble of RCMs to simulate the combined surface water and groundwater interac-
tion in the basin. Here, we have incorporated the changes in the land surface’s physical prop-
erties in the simulation of future hydrological processes. All kinds of model uncertainties are 
answered through Quantile Regression. The segregation of uncertainty due to each source is 
performed through ANOVA.

The study attempts to develop a novel transferable methodology that helps develop a better 
understanding of hydro-climatic extremes’ prediction through the integrated modelling sys-
tem. The developed framework may also capture sensitivities of streamflows towards chang-
ing variability, relative stabilities of future streamflows with respect to the baseline period 
(i.e., dispersivity) and shifting in timing (date of occurrence) and uniformity (persistence) of 
extreme events. To investigate further whether floods (or droughts) over Subarnarekha will be 
more frequent in the future, we have formulated the following set of research questions to be 
answered through the framework:

1. What will be the trends and abrupt changes in extreme flow across Subarnarekha during 
the 2020s, 2050s, and 2080s?
2. How will the Subarnarekha basins’ sensitivity towards climate change vary during the 
2020s, 2050s, and 2080s?
3. How will the stability of future streamflow vary during the 2020s, 2050s, and 2080s with 
respect to the baseline period?
4. Will there be any shift in the occurrence and persistence of extreme events during the 
2020s, 2050s, and 2080s with respect to the baseline period?
5. What will be the significant contributing sources to uncertainty in streamflow projec-
tions in the basin?

The novelty of the study lies in developing a comprehensive, integrating modelling system 
that combines the land-use, hydrology and regional climate models, and leads to developing a 
transferable methodology to better understand the dynamics of hydro-climatic extremes under 
changing environment.

The developed integrated modelling system will better understand the past, ongoing, and 
future climate and land-use changes that may help the environmentalists, hydrologists, and 
policymakers in water management and better policy intervention.
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2  Method

2.1  Study Area

The Subarnarekha basin (Fig. 1) passes through three Indian states Jharkhand, Odisha, and 
West Bengal, and drains a catchment area of 19,296  km2 spanning over 450 km. The cli-
mate of the basin is tropical, with a mean annual rainfall of 1800 mm (Paul et al. 2019). 
Subarnarekha receives 82% of the flow from the southwest monsoon from June to Septem-
ber. The average temperature of the basin varies from 9 °C to 42 °C. The basin is flood-
prone and characterised by a complex hydrological regime owing to variations in climate, 
geomorphology, and topography, thus, making it an interesting study to pursue.

Two major reservoirs, Chandil and Getalshud, are situated inside the basin (Fig. 1). In 
the present study, two gauging stations, i.e., Jamshedpur and Ghatshila, and six groundwa-
ter monitoring stations (17,002, 16,977, 09,736, 16,991, 16,988, and 09,113) are consid-
ered to calibrate the surface water and groundwater interaction.

Fig. 1  Index map of Subarnarekha river basin
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Figure 1 presents the locations of the gauging stations and the groundwater level (GWL) 
monitoring stations. Figure S1 in supplementary material presents the area drained by the 
gauging stations.

2.2  Data

The climatic variables required in MIKE SHE/MIKE HYDRO RIVER are precipitation, max-
imum and minimum temperature, and potential evapotranspiration. Among them, precipita-
tion and maximum and minimum temperature datasets are taken from India Meteorological 
Department (IMD), Pune at 0.25° × 0.25° and 1° × 1° resolutions, respectively. The potential 
evapotranspiration is estimated using the Hargreaves method (Hargreaves and Samani 1985). 
Observed discharge data is taken from the Central Water Commission (CWC), Bhubaneswar. 
The observed data for GW monitoring wells, at the seasonal scale, are taken from the Central 
Ground Water Board (CGWB).

The LULC maps of the basin are prepared using Landsat TM and Landsat ETM 
imagery of 1989, 1994, 2006, and 2011 by applying the unsupervised classification. The 
major LULC classes are water bodies, dense forest, scrubland, barren land, and built-up 
area. The predicted LULC maps (2020, 2030, and 2040) by MLP-M Model are obtained 
from Gaur et al. (2020b). Figure S2 presents the statistics of the distribution of each LULC 
class during 1989–2011. The model details and the utilised explanatory variables can be 
accessed from Gaur et al. (2020b).

The future simulations are carried out using the data from CORDEX-South Asia 
for all available RCMs (i.e., 19 RCMs) for 1976–2005 (baseline period, from now on), 
2010–2039 (the 2020s, from now on), 2040–2069 (2050s, from now on), and 2070–2099 
(2080s, from now on) under two RCPs, RCP4.5 and RCP8.5. Here, the ensemble means for 
projected climate variables (rainfall and maximum and minimum temperature) are gener-
ated using SCM as it outperforms the other two ensemble techniques (Random Forest and 
Support Vector Regression as per Singh, (2019). The selection of the most appropriate sub-
ensemble members (i.e., RCMs) is performed based on their ability to mimic their respec-
tive observed dataset’s spatial patterns through spatial performance metrics as suggested 
in Singh (2019) during the baseline period. Climate data is bias-corrected using ’quantile 
mapping’ (Piani et al. 2010).

Being a physically-based model, MIKE SHE/MIKE HYDRO RIVER requires an inten-
sive amount of data. The details of the datasets required for setting up the MIKE SHE/
MIKE HYDRO RIVER model are presented in Table S1.

2.3  Integrated Modelling Technique

An integrated modelling system is formed by combining i) MIKE SHE/MIKE HYDRO 
RIVER model; ii) MLP-M, spatial-explicit LULC model; iii) Ensemble projections of most 
suitable RCMs for Subarnarekha basin, and iv) a flexible framework in which any new plan 
related to water sustainability can be easily incorporated in future.

Hydrologic model MIKE SHE along with river model MIKE HYDRO RIVER is a com-
prehensive, physically-based, and distributed modelling system that is capable of simulat-
ing almost all processes of the land phase of the hydrological cycle.

MIKE SHE provides numerous approaches, ranging from simple, lumped, conceptual 
to advanced, distributed, and physically-based (Wijesekara et  al. 2012). An advanced, 
fully distributed version is utilised here, considering the surface and sub-surface water 
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components (overland flow, channel flow, and saturated zone flow) as governing compo-
nents to fulfil the purpose of the study. The boundary of the catchment was delineated 
using a 30 m DEM (Table 1). The model domain was discretised in 500 m grid size. The 
climate data (i.e., precipitation and maximum and minimum temperatures) are interpolated 
to 500 m using bi-linear interpolation. Similarly, the spatial maps of other datasets (topog-
raphy maps, LULC maps, roughness coefficients, detention storage, soil maps, horizontal 
hydraulic conductivity, vertical hydraulic conductivity, specific yield, specific storage, and 
initial potential head) are interpolated to 500 m and given as input to the model in fully dis-
tributed form. Table S2 in supplementary material presents the details of the methods used 
in the present study to simulate the dominant hydrological processes.

A 1-D hydrodynamic model, MIKE HYDRO RIVER, was used to simulate the channel 
flow. The river network was generated using ArcGIS. It consists of six branches and two res-
ervoirs. The upstream boundary of the river was set to ‘closed’ (i.e., no-flow boundaries), and 
the downstream boundary condition was selected by ‘flow versus water level (Q-H boundary)’.

2.4  Description of Methodology

2.4.1  Performance Evaluation of MIKE SHE/MIKE HYDRO RIVER Model

For the comprehensive evaluation of the streamflow simulation against the observed stream-
flow, the dimensionless measures, i.e., Nash–Sutcliffe efficiency (NSE), coefficient of deter-
mination  (R2), logarithmic NSE ((Ln) NSE), the error-index, i.e., Percent bias (PBIAS), and 
the dimensional measure, i.e., root mean square error (RMSE) are used. The rationale behind 
incorporating Ln (NSE) is NSE’s insensitivity to model over/under prediction, especially for 
low flows (Wijesekara 2013). In such a case, Ln (NSE) offers an increase in low flow values 
by flattening the peak discharge values and simultaneously keeping the high flow values intact.

For evaluating the groundwater level simulations, coefficient of determination  (R2) and 
root mean square error (RMSE) is used. The details of the evaluation measures and their 
corresponding ranges are presented in Appendix A1.

2.4.2  Uncertainty Analysis Due to Hydrological Impact Model

A stochastic approach, the ‘quantile regression (QR)’ technique, is used to analyse the 
uncertainties arising from all sources (model inputs, model parameters, and model struc-
ture) in the streamflow and the GW levels (Weerts et al. 2011). In QR, the observed, simu-
lated, and residual values of the respective streamflow/GW levels are associated by:

(1)Q(t) = Q̂(t) + r(t)

Table 1  Performance evaluation measures during streamflow simulation

NSE R2 Ln(NSE) RMSE  (m3/s) PBIAS (%) SD  (m3/s)

Jamshedpur Calibration 0.78 0.82 0.68 188.30 -22 398
Validation 0.72 0.78 0.63 265.30 -23 540

Ghatshila Calibration 0.81 0.82 0.61 240.6 -10 404
Validation 0.74 0.84 0.67 192 -24 592
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Where Q(t) and H(t) are observed streamflow and groundwater levels, Q̂(t) and ( ̂H(t) ) 
are simulated streamflow and groundwater levels, and r(t) are the residuals.

QR holds a functional relationship among the residuals and estimates in Gaussian 
domain, i.e., NQR (Normalised quantile regression) and NQD/NQH (Normalised quantile 
discharge/head) (Kumar et al. 2015), and is expressed as:

Distinct QR lines are obtained by minimising the absolute bias by allocating different 
weights to (+)ve and (-)ve residuals in the Gaussian domain. In this instance, absolute bias 
is considered as objective function as follows:

Where �t  is the regression function responsible for placing the regressing line at the 
desired location, a is the slope, and b is the intercept of the regression line.

For estimating the streamflow/head, the simulated streamflow/head is first converted to the 
Gaussian domain as NQD; subsequently, the error in the Gaussian domain, NQR, is assessed 
using the regression line (i.e., using Eqs. 3–4). The assessed error, NQR, is converted to the 
original domain using the pre-estimated mean and standard deviation of the residual. As a final 
step, the estimated residual is added to daily simulated streamflow to obtain the streamflow, 
including uncertainty. Regression lines are used to analyse uncertainty in the simulated stream-
flow for different confidence intervals (CIs). Equations (5–6) estimate the slope and intercept of 
these lines using the calibration period data. Likewise, to validate the correctness of error mod-
els, the same model is applied for both calibration and validation periods for streamflow/head.

2.4.3  Simulating the Impact of Combined Land‑Use Change and Climate Change

A critical limitation associated with LULC projections is its applicability for short 
term projection, i.e., typically for one-two decades (Serneels et al. 2001). Here, LULC 
projections are considered until 2040 in the present work. Therefore, in the combined 
LULC and climate change analyses of the hydrological process, the LULC scenarios are 
nonstationary until 2040. Afterwards, only climate change is considered.

The simulated LULC maps (1989, 1994, 2006, 2011, 2020, 2030, and 2040) are used 
to extract the LULC-based parameters for each LULC class. The maps include spatially 
distributed maps of Manning’s M (surface roughness), detention storage, paved runoff 
coefficient, and overland groundwater leakage coefficient. The spatially distributed time 
series for vegetation properties (i.e., LAI and RD) are prepared as per the distribution of 
each LULC class in the LULC map. The ensemble climate projections (precipitation) for 
the 2020s, 2050s, and 2080s under two RCP scenarios, RCP4.5 and RCP8.5, are taken 
from Singh (2019). Similarly, the ensemble projections for minimum and maximum tem-
peratures are used to generate potential evapotranspiration.

(2)H(t) = Ĥ(t) + r(t)

(3)NQR = a × NQD + b

(4)NQR = a × NQD + b

(5)Minimize

∑

�� (NQR − (a × NQD + b))

(6)Minimize

∑

�� (NQR − (a × NQH = b))
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2.4.4  Understanding of Linkage Between the Combined LULC and Climate Change 
and Hydro‑Climatic Extremes

Here, we have attempted to develop a step-wise transferrable methodology to assess the 
possible linkage between the combined LULC and CC and hydro-climatic extremes moti-
vated by Dodson et al. (2020). Figure 2 presents the details of methodology.

Step 1: Identification of trends in observed and future records of hydrological 
extremes
The first step to assess the existence of hydro-climatic extremes is the identification of trends. 
Analysis of trends is considered the fundamental process to assess the climate of a region. If 
the trends are significant for a variable in the region, it reflects strong climate change pos-
sibilities. The trend estimation is performed by assuming the null hypothesis that there is 
no trend in the hydrological series at a given significance level. A positive/negative trend in 
high flows suggests an increase/reduction in flood hazards, whereas a negative/positive trend 
in low flow suggests an increase/reduction in drought hazard (Pechlivanidis et al. 2017).
The Mann–Kendall test (Mann 1945; Kendall 1975) is a well-recognised method for 
estimating trends; however, the existence of autocorrelations in the time-series could 
increase the significant number of false positives outcomes (Storch et al. 1999). Hence, 
nonparametric Mann–Kendall test, with corrections for ties and auto-correlation 
(Hamed and Ramachandra Rao 1998), is used for estimating trends in the annual series 
of  Q10  (90th exceedance percentile, high flow),  Q01  (99th exceedance percentile, very 
high flow), and  Q90  (10th exceedance percentile, low flow) during the baseline period, 
the 2020s, 2050s, and 2080s. If a trend is present in the data, then the slope (change per 
unit time) is estimated using a nonparametric procedure (Sen 1968).
Step 2: Examining the ability of hydrological impact models to mimic such trends/
observation in the past
The second step includes attribution of estimated trends to historical climate change, 
e.g., if there are positive trends in the hydrological extremes, then whether the hydro-
logical impact model could capture the hydro-climatic extremes in the baseline period?
This step assures the credibility of the impact model in mimicking the observations in 
the past.

Fig. 2  Details of the generalised framework
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Step 3: Evaluation of the projected effects of changing environmental conditions on 
future hydro-climatic extremes
After testing the suitability of the hydrological model, the third step deals with find-
ing the answer to science questions: Do the projected environmental conditions lead to 
intensifying/diminishing future hydro-climatic extremes?

• Streamflow climate sensitivity
The streamflow climate sensitivity determines the sensitivity of the river streamflow to 
climate variability. It deals with the inspection of the sensitivities of  Q90 (low flow) and 
 Q10 (high flow) to  Pmean (mean precipitation). The analysis involves estimating the rela-
tive changes in  Q90,  Q10, and  Pmean during 2010-2099 with respect to the baseline period 
and then analysing the respective  Q90(Q10) versus  Pmean relationship.    

• Flow duration curves (FDC)
FDC analysis helps determine the percentage of time the river flow exceeds/falls below 
a  particular value known to cause flood/drought damage. Projected streamflows are 
compared with the observed ones through the FDCs for high, medium, and low flows. 

• Change in dispersion coefficient
Change in dispersion coefficient determines the stability of streamflows during the 
2020s, 2050s, 2080s with respect to the baseline period. Dispersion coefficient (in %) is 
calculated as(Q25−Q75)

Q50

× 100    , i.e., the  75th exceedance percentile flow minus the  25th 
exceedance percentile flow divided by the  50th exceedance percentile flow (Zhang et al. 
2016). Change in dispersion  coefficient is determined by calculating it for the future 
periods with respect to the baseline period.  

• Seasonality analysis
Seasonality analysis is performed to estimate the persistence and occurrences of peak 
discharge  events (PDE) through circular statistics. Seasonality analysis is performed 
in terms of seasonality index (SI) (Laaha and Bloschl 2006). The details of SI can be 
obtained from Appendix A2.    

2.4.5  Segregation of Uncertainty Due to Different Sources

The segregation of uncertainty due to RCMs, RCPs, the interaction between RCM and 
RCP, and internal variability is performed using ANOVA. The details of the ANOVA 
model used for the disintegration of uncertainty are given in Appendix A2.

Unlike the other methodologies (Lee et al. 2017; Kim et al. 2019), ANOVA has a unique fea-
ture, i.e., quantifying the uncertainty due to the interaction term. Consideration of the interaction 
term is equally vital as ignoring this term could impact the data interpretation (Kim et al. 2019).
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3  Results

3.1  Calibration and Validation of MIKE SHE/MIKE HYDRO RIVER Model

Model calibration and validation were performed against streamflow and groundwater 
levels using ten-years (1997–2006) and seven-year (2007–2013) daily records for calibra-
tion and validation. The model used 1996 as a warm-up period. At the commencement of 
the study, the observed streamflow and GW level data were available only until 2013. The 
parameters used for calibration of the surface water model are vegetation parameters (LAI 
and root depth), Manning’s number, detention storage, initial water depth, soil parameters 
(water content at saturation, water content at field capacity, water content at the wilting 
point, saturated hydraulic conductivity), and evapotranspiration coefficients  (C1,  C2, and 
 C3). The groundwater model parameters used for calibration are horizontal and vertical 
hydraulic conductivities, specific retention, and specific storage.

3.1.1  Calibration and Validation Against Streamflow

Model calibration and validation against streamflow were performed at Jamshedpur and Ghat-
shila stations. A sensitivity analysis was performed before the calibration, which suggested 
surface roughness coefficient (LULC-wise Manning’s M), saturated hydraulic conductivity of 
soils in the study area  (Ksat), evapotranspiration coefficients  (C1,  C2, and  C3), and the horizon-
tal and vertical hydraulic conductivities of the aquifer material  (Kh and  KV) as the sensitive 
parameters.

Figures 3(a)-(h) present the time series plots along with the scatter plots for correspond-
ing observed and simulated streamflows during calibration/validation at Jamshedpur and 
Ghatshila stations, respectively. It is evident from Fig. 3 that MIKE SHE/MIKE HYDRO 
RIVER effectively captures the temporal patterns and overall trends of the observed 
streamflow during both calibration and validation periods at both stations. Table  1 pre-
sents the performance evaluation measures obtained during the calibration/validation of 
the model at Jamshedpur and Ghatshila stations.

As modelling extremes is the main focus of the present work, capturing peak and low 
flows simultaneously is deemed a primary concern. Peaks are effectively captured, in gen-
eral, except at a few points during calibration periods at both stations (Fig. 3). The magni-
tudes of Ln(NSE) (Table 2) suggest that the model effectively captures low flows.

Overall, as per the criteria suggested by Moriasi et  al. (2007), model performance is 
good in simulating the streamflow. Furthermore, the model can capture the patterns of high-
flows, the medium flows, and low flows reasonably well (i.e., justified by the magnitude of 
NSE and Ln(NSE)). The PBIAS values (Table  2) are found to be overestimated by the 
model; nonetheless, its magnitude lies within the optimum limits (-25% < PBIAS < 25%). 
The criteria for RMSE (given in Appendix A) suggest accurate RMSE values.

3.1.2  Calibration and Validation Against Groundwater Levels

Figures 4(a)-(f) present the time series plots for calibration/validation at selected GWL sta-
tions. Table 2 presents the statistical indicator at selected GWL stations. It is evident from 
Table 2 that, as per Moriasi et al. (2007), the model performs reasonably well for all wells. 

1898



From Changing Environment to Changing Extremes: Exploring…

1 3

Since the model performance is reasonably good in simulating GW levels, it may augur 
well for obtaining the suitable values of geological parameters (Wijesekara et al. 2014).

Fig. 3  Testing of hydrological model against streamflow: (a-d) Time-series and scatter plots during calibra-
tion/validation at Jamshedpur, (e-h) Time-series and scatter plots during calibration/validation at Ghatshila

Table 2  Performance evaluation measures for GWL simulation in different wells

R2 RMSE (m) SD R2 RMSE (m) SD

17,002 Calibration 0.89 0.70 1.53 16,991 Calibration 0.92 0.78 1.6
Validation 0.55 1.2 1.7 Validation 0.70 0.91 2.0

16,977 Calibration 0.62 1.9 4.8 16,988 Calibration 0.76 1.4 3.1
Validation 0.46 2.2 5.2 Validation 0.82 1.2 2.7

9736 Calibration 0.46 1.2 3.6 09,113 Calibration 0.71 1.45 3.1
Validation 0.41 1.8 4.3 Validation 0.75 1.59 3.5
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3.2  Analysis of Uncertainties Due to Hydrological Impact Model

Figure 5(a) presents the daily 90% CI of streamflow during the calibration period at the 
Jamshedpur gauging station. Figure 5(b) presents the scatter plot between NQR and NQD 

Fig. 4  Testing of hydrological model against GW levels: (a-f) Time series plot for calibration/validation at 
Well-17002, Well-16977, Well-09736,Well-16991, Well-16988, and Well-09113 respectively

Fig. 5  a) Observed streamflow and uncertainty band along with error models of simulations in normalised 
domain during calibration period at Jamshedpur, b) scatter plot between NQR and NQD along with regres-
sion lines, c) coverage of observations in 90% CI during calibration and validation
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along with three regression lines, i.e., the middle one corresponding to the median, and the 
rest two corresponding to the upper and lower limits of the 90% CI. The regression equa-
tion of each line presents the relationship between the residual and the simulated stream-
flow within the Gaussian domain. It is evident from Fig. 5(a) that most of the observed 
streamflow is bracketed by 90% CI; thus, endorsing the accuracy of the error model. 
Similarly, Fig. 5(b) confirms that the simulated streamflow is able to capture 95% of the 
observed streamflow during the calibration and validation periods. Figure 5(c) summarises 
the outcomes of QR by presenting the coverage of the observed data points in 90% CI 
during calibration/validation for two gauging stations. Figure 5(c) shows that 90% CI can 
capture more than 95% of the observed data points; thus, confirming the applicability of 
the error model. The per cent coverage of observed points in the uncertainty band (or the 
uncertainty band’s width) shows that the uncertainty during the validation period is higher 
than that during the calibration period.

Figure  6(a) presents the daily 90% CI of GWL during the calibration period at Well 
16,991 as an example. Figure 6(b) presents the scatter plot between NQR and NQD, along 
with three regression lines, described while presenting Fig. 6(b). It is evident from Fig. 6(a) 
that 90% CI can capture all observed points. Figure 6(c) presents the summary of QR for 
all Wells by presenting the coverage of 90% CI by observed points. Figure 6(c) suggests a 
good coverage of observed GWL points (> 85%) within the 90% CI band. The uncertainty, 
however, needs to be further analysed by incorporating more observed data points.

Fig. 6  a) Observed Groundwater levels and uncertainty band along with error models of simulations in nor-
malized domain for calibration period at Well-16991, b) scatter plot between NQR and NQD with regres-
sion lines at Well-16991 during calibration period, c) Coverage of observations in 90% CI during calibra-
tion and validation of different wells
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3.3  Linkage Between the Combined LULC and Climate Change and Hydro‑Climatic 
Extremes

3.3.1  Detection of Monotonic Trends of Hydrological Extremes in the Past and Future 
Records

Figure  7 presents the monotonic trends found using the MK test in  Q01,  Q10, and  Q90 
during the 2020s, 2050s, and 2080s under RCP scenarios RCP4.5 and RCP8.5. For all 
extreme flows, significantly increasing trends were obtained during the baseline period. 
The shreds of evidence obtained from Fig.  7 are i) significantly increasing trends are 
found for ‘Q10′ throughout the time-span except during the 2020s and 2050s (RCP4.5) 
at Ghatshila station. Non-significantly increasing trends are obtained during these excep-
tional periods. Overall, ‘Q10′ trends are increasing (either significant or insignificant) at 
both stations. ii) ‘Q01′ trends are found significantly increased for most of the time-peri-
ods, under RCP8.5; however, a mixture of significantly increasing and decreasing flows 
is found under RCP 4.5 at both stations. iii) ‘Q90′ trends are found to be significantly 
increasing except during the 2050s (Jamshedpur (RCP8.5) and Ghatshila (RCP4.5) and 
2020s (Ghatshila (RCP4.5). Moreover, significantly decreasing trends are found during 
the 2080s for RCP4.5. Under RCP8.5, the overall ‘Q90′ trends are found to be increasing. 
It is important to note that for ‘Q10′ and ‘Q01′, the trends appear to be more vital for the 
2080s than the 2020s and 2050s.

Overall significant trends (either increasing or decreasing) could be attributed to 
ongoing and projected LULC changes, i.e., a decrease in dense forest and an increase 
in the basin’s built-up area, as reported in Gaur et  al. (2020b). The LULC trends 
possibly reduce the infiltration rate and result in increased runoff. The prominently 
increasing trends in  Q10 and  Q01 (mainly) could lead to increased flood hazards; how-
ever, increasing trends in  Q90 indicates a low risk of droughts in the Subarnarekha 
basin in future.

Fig. 7  Monotonic trends in a)  Q10 (high flows), b)  Q01 (very high flows), and c)  Q90 (low flows) during the 
2020s, 2050s, and 2080s for RCP4.5 and RCP8.5 at Jamshedpur and Ghatshila stations. Black rectangle 
boxes at the center of the square indicate significant trend (at 5% significance level) based on MK test

1902



From Changing Environment to Changing Extremes: Exploring…

1 3

3.4  Ability of HM in Mimicking the Past Hydro‑Climatic Behaviour

The ability of HM in mimicking the hydro-climatic behaviour of the basin is analysed in 
terms of maximum peak discharge (MPD). The year-wise MPD was extracted from the 
simulated MIKE SHE/MIKE HYDRO RIVER flow series. The observed flood records of 
the Subarnarekha basin was obtained from Singh and Giri (2018). The simulated MPD 
series can capture the significant floods observed in 1977, 1978, 1997, 2007, and 2009 dur-
ing 1976–2015 at both gauging stations (Fig. 8). The coloured strips in Fig. 8 present the 
years during which the flood occurred in the Subarnarekha basin.

The results highlight the model’s credibility in regenerating the hydro-climatic behav-
iour of the Subarnarekha basin; thus, endorsing the model’s ability to project the future 
streamflows accurately.

Fig. 8  Reconstruction of maximum peak discharge of major floods through hydrological impact model at 
Jamshedpur and Ghatshila stations. The coloured strips are showing the years during which flood occurred 
in the Subarnarekha basin

Fig. 9  Climate sensitivity under RCP4.5: a) Between  Q90 and  Pmean at Jamshedpur, b) Between  Q90 and 
 Pmean at Ghatshila, c) Between  Q10 and  Pmean at Jamshedpur, d) Between  Q10 and  Pmean at Ghatshila; climate 
sensitivity under RCP8.5: e) Between  Q90 and  Pmean at Jamshedpur, f) Between  Q90 and  Pmean at Ghatshila, 
g) Between  Q10 and  Pmean at Jamshedpur, h) Between  Q10 and  Pmean at Ghatshila. (Curve shows fitted local 
regression (polynomial) over all values, together with the adjusted  R2 values)
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3.4.1  Evaluation of the Projected Effects of Climate Change on Future Extremes

Streamflow Climate Sensitivity Figure  9 illustrates the  Q10 and  Q01 anomalies against 
 Pmean anomalies for the 2020s, 2050s, and 2080s. It is evident from Fig. 9 that streamflow 
is highly sensitive to precipitation and holds a nonlinear relationship. In the Subarnarekha 
basin, streamflow climate sensitivity is considerably high, i.e., small precipitation regime 
changes may cause enormous streamflow regime changes. An average 150% increase in 
annual precipitation causes a 600% increase in modelled annual discharge, whereas a 
10% reduction in annual precipitation causes a 200% reduction in modelled annual dis-
charge. However, in extreme cases, a 200% increase in annual precipitation causes a 2000% 
increase in modelled annual discharge, whereas a 25% reduction in annual precipitation 
causes a 350% reduction in modelled annual discharge. The range of variation is high for 
low flows than for high flows. The strength of the relationship is reasonably good for Q10 
(0.55 < Adj. R2 < 0.64), indicating the statistical significance of  Q10 to  Pmean trends. In low 
flows, the strength of the relationship is inferior  (R2 < -0.05), suggesting that  Q90 to  Pmean 
trend is not statistically significant. The uncertainties associated with RCMs, RCPs, and 
hydrological impact models appear to make this relationship, and hence, the consideration 
of uncertainty is essential (Pechlivanidis et al. 2017).

Our findings agree with Aich et al. (2014) and Kling et al. (2014), where authors have 
found high sensitivity of discharge to precipitation.

Analyses of Flow Duration Curves for Projected Flows Figure 10 presents the FDCs at 
Jamshedpur and Ghatshila stations under baseline, RCP4.5 and RCP8.5 scenarios. The pro-
jected FDC values show an increase in all flows (low, high, and medium) during the 2020s, 

Fig. 10  Flow duration curves a) At Jamshedpur station during baseline period b) At Jamshedpur station 
under RCP4.5 scenario c) At Jamshedpur station under RCP8.5 scenario d) At Ghatshila station during 
baseline period e) At Ghatshila station under RCP4.5 scenario f) At Jamshedpur station under RCP8.5 sce-
nario
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2050s, and the 2080s; however, the increase in low flows (>  Q80) is relatively high. Increas-
ing high flows (<  Q20) suggests the susceptibility to flooding hazards in the basin. Changes 
in the climate and LULC could increas the basin’s flows due to changing rainfall patterns, 
deforestation, and urbanisation. The FDC analysis shows that the low flows (>  Q80) would 
increase in the future; hence there would be a reduction in drought events during the 2020s, 
2050s, and 2080s than in the baseline period.

Changes in Dispersion Coefficient Figure  11 presents the monthly per cent changes in 
the dispersion coefficient for streamflow in future periods relative to the baseline period. 
Ample decrease (5%-75%) in the monthly dispersion coefficient was projected for non-
monsoon months (Jan-May and Oct-Dec), signifying more stable streamflow during these 
months under both RCPs. Conversely, a significant increase (5%-95%) is obtained during 
monsoon moths (June-Sep) under both RCPs. Thus, the future streamflows could be highly 

Fig. 11  Dispersion coefficient of projected streamflow compared to the baseline period at a) Jamshedpur b) 
Ghatshila

Fig. 12  The circular plots presenting mean date and persistence of the Peak Discharge Events (PDE) at a) 
Jamshedpur b) Ghatshila
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unstable, with the likely occurrence of extreme events (i.e., floods in our case) during mon-
soon months. These findings are in agreement with the findings of Zhang et al. (2016).

Detection of the seasonality of PDE The seasonality measures of PDE are plotted as cir-
cular statistics to present the flood persistence and mean date of occurrence at Jamshedpur 
and Ghatshila stations (Fig.  12). The distance from the centre of the polar plot presents 
persistence, whereas the mean date of occurrence is denoted by measuring the counter-
clockwise angle with respect to January 1. It is evident from Fig. 12 that the flood events 
are persistent across all periods, with mean flood dates concentrated around September. 
There appears to be a shift (delay) of around one to three weeks in the future periods’ flood 
occurrence dates. Ghatshila station shows relatively more variation in the flood dates with 
varying persistence. Our findings corroborate the findings of Burn and Whitfield (2018) 
that there are a few (significant) changes in the flood seasonality.

3.5  Quantification of Uncertainty

Figures  13(a)-(f) present the segregation of different sources of uncertainty, i.e., 
RCMs, RCPs, the interaction between RCMs and RCPs, and internal variability in 
 Q10,  Q50, and  Q90. Figure  13(a)-(f) illustrates that the uncertainty stemming from 
RCMs dominates over the whole time-span (contributing to 40–62%), followed by 
uncertainty due to the interaction between RCMs and RCPs, internal variability, and 
RCPs. The dominance of uncertainty due to climate model has been warranted by 
numerous studies related to future climate projections, e.g., Bosshard et al. (2013); 

Fig. 13  Contribution of different factors to uncertainty of annual streamflow projections for a)  Q90 at Jam-
shedpur station b)  Q50 at Jamshedpur station c)  Q10 at Jamshedpur station d)  Q90 at Ghatshila station e)  Q50 
at Ghatshila station f)  Q10 at Ghatshila station
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Krysanova et  al. (2017); Chawla and Mujumdar (2018) and Kim et  al. (2019). The 
contribution of uncertainty due to RCM and RCP interaction also covers a signifi-
cant proportion, implying the utility of consideration of interaction uncertainty for 
the future assessment of climate impacts on water resources, which agrees with 
Bosshard et al. (2013).

A closer look reveals that the fraction of uncertainty due to the internal variability 
decreased consistently from the 2020s to the 2080s. This decrease in the uncertainty due 
to the internal variability is in agreement with the IPCC (2013) report, which suggests 
the dominance of internal variability during the early-century. Next, RCP uncertainty also 
plays an important role; however, its contribution is relatively lower than that of other 
sources. Uncertainty due to RCPs signifies the consideration of different RCPs for the 
assessment of future climate change impacts.

4  Discussion

4.1  Utility of Integrated Modelling Systems

Unlike the previous study, i.e., Gaur et  al. (2020a), the present study attempted to 
overcome the several limitations: i) distributed physically-based hydrological model 
is used instead of the conceptual model; ii) consideration of LULC changes have 
been taken into account; iii) uncertainty associated to model parameters, model 
structure, and model inputs are considered; iv) appropriate selection RCMs has 
been performed; v) prediction of hydro-climatic extremes has been performed under 
changing environmental conditions. The present study proposes an integrated mod-
elling system that unites four comprehensive systems, i.e., spatially explicit LULC 
model, models to simulate the hydrological processes (i.e., flow model, MIKE SHE 
and river model MIKE HYDRO RIVER), and an ensemble of RCMs to simulate the 
hydro-climatology of the Subarnarekha basin. Moving a step forward from the previ-
ous studies that developed integrated modelling systems, i.e., Wijeskera (2013) and 
Farjad et  al. (2017), we have integrated an ensemble of climate models along with 
the uncertainty framework in the existing framework. Development of the proposed 
integrated modelling system is crucial, as it offers the flexibility of  changing the 
input dataset, parameters, and configuration with marginal modifications so that any 
application related to the sustainability of water resources can be easily added in 
future, e.g., to assess the variations in GW table as a consequence of LULC changes, 
or to examine the responses of altering streamflow to the future climate changes, and 
so on. Moreover, the integrated modelling system can also capture the underlying 
processes and nonlinear mechanisms of the system components and capture the inter-
actions between land and water resources.

4.2  Methodologies for Understanding the Linkage Between Environmental 
Changes and Hydro‑Climatic Extremes

The changing global environmental scenarios lend a new perspective to the climate and 
anthropogenic LULC changes on hydro-climatic extremes; however, for effective policy 
interventions, such investigations are equally required at a regional scale. Therefore, we 
have considered the linkages between the environmental changes and hydro-climatic 
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extremes for the Subarnarekha basin. LULC changes can significantly alter the hydrologi-
cal cycle components by partitioning rainfall into components like runoff and evapotranspi-
ration (Aduah et al. 2017). Climate change exaggerates the hydrological cycle components, 
with outcomes such as intensification in frequency and severity of droughts and floods. 
Besides, both these changes influence each other, e.g., LULC changes have feedbacks on 
regional climate through vegetation dynamics (Warburton et  al. 2012). In other words, 
LULC change may have more effects on floods rather than droughts and normal flows in 
the watershed. The influence of LULC changes on the peak flow magnitudes may intensify 
when it shall occur in the same direction as the climate change impact.

Further, to unravel the linkage between such changes and hydro-climatic extremes, 
systematic methodologies need to be explored that deal with multiple aspects rather than 
focusing on a single aspect, such as identifying trends. Unlike the previous studies, e.g., 
Krysanova et al. (2017) and Pechlivanidis et al. (2017), we have analysed the changes in 
hydro-climatic extremes through more organised methodologies that deal with numer-
ous aspects like sensitivity, occurrences, dispersion, and persistence. Such analysis will 
undoubtedly help design suitable adaptation and mitigation strategies interventions.

5  Conclusions

The present study evaluates the combined impact of climate and LULC changes on hydro-
climatic extremes during the 2020s, 2050s, and 2080s for the Subarnarekha basin, a flood-
prone river basin in Eastern India. Unlike the existing studies, we have attempted to under-
stand better the climate and LULC changes through an integrated modelling system. The 
integrated modelling system is formed by combining a spatially explicit LULC model, a 
fully-distributed physically-based hydrological model, i.e., MIKE SHE/MIKE HYDRO 
RIVER and an ensemble of selected RCMs. In addition to this, we have also considered 
the uncertainties associated with different sources within the integrated modelling system. 
In this aspect, the selection of the hydrological impact model, i.e., a distributed physically-
based MIKE SHE/MIKE HYDRO RIVER model compared to the lumped conceptual 
models, was the first step towards the uncertainty reduction. Various kinds of uncertainties 
associated with the hydrological impact model (i.e., parametric uncertainties, model input 
uncertainties, and model structure uncertainty) are studied through ’quantile regression.’

Further, the segregation of uncertainty due to different sources, i.e., RCMs, RCPs, RCM 
and RCP interaction, and internal variability, is performed through the ’ANOVA’ approach. 
The key insights from the study and answer to the framed questions are as follows:

• For most future periods, significantly positive trends are obtained in extremes flows 
 (Q10,  Q01, and  Q90) except for a few periods at Jamshedpur and Ghatshila stations.

• The climate discharge sensitivity suggests that discharge is highly sensitive to precipi-
tation in the Subarnarekha basin.

• A decrease of 5%-75% for non-monsoon months (Jan-May and Oct-Dec) and a signifi-
cant increase of 5%-95% during monsoon moths (June-Sep) is observed in the monthly 
dispersion coefficient.

• The future PDEs will probably be concentrated around the ‘September’ month with 
very low to no change in persistence.
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• RCMs, followed by RCM and RCP interaction, are significant sources of uncertainty in 
the streamflow projections.

The LULC changes in the basin are responsible for alteration in peak flows, the medium 
flows, and low flows; furthermore, climate change is responsible for intensifying these 
flows. Overall findings suggest that the analysis and prediction of hydrological extremes 
under climate and LULC changes will be of great importance for preventing and mitigat-
ing hydrological disasters in the Subarnarekha basin. In the present study, the future LULC 
changes are assumed to follow the historical LULC growth pattern. Since LULC changes 
are dynamic, it may be interesting to incorporate and analyse the impact of various LULC 
scenarios reflecting the future development plans, e.g., the sustainable development plans, 
on the projected streamflows. We believe that the transferable methodological framework 
developed in this study could prove help understand the linkages between environmental 
changes and hydro-climatic extremes in various other basins around the world.
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