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Abstract
The universal simulation model was developed with the use of system-analytical model-
ing to ensure a long-term forecast of mountain river runoff during spring-summer floods.
Prediction quality of this SAM-model is characterized by Nash-Sutcliffe efficiency of
0.68–0.88 and is very high for long-term flood forecasts, including ones for inundations
and mountain reservoirs filling in spring. The model was tested on the example of 34
medium and small rivers (1630 values of runoff observations for 1951–2016) located in
the Altai-Sayan mountain country (2,000,000 km2). Its input factors include monthly
precipitation, monthly mean air temperature, GIS data on landscape structure and orog-
raphy of river basins. Meteorological factors are calculated as percentage of their “in situ”
long-term mean values averaged for the whole study area. This helps to explain and
quantify the influence of autumn-winter-spring soaking, freezing and thawing of moun-
tain landscape soils on spring-summer flood. We apply a simple novel method to evaluate
model sensitivity to variations in environmental factors expressed in terms of their
contribution to variance of the observed flood runoff. It turns out that sensitivity of the
latter decreases in the following sequence of factors: autumn precipitation, landscape
structure of river basins, winter precipitation, winter air temperature, landscape altitude.
The developed SAM-model provides a three-month lead-time estimate of runoff in a high
water period with the threefold less variance as compared to forecasts based on the
observed long-term mean values.
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1 Introduction

Solving the problems of efficient use of river runoff under climate warming and increased
number of extreme weather events requires the development of adequate models of flood
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forecasting. Such models enable to assess flood risks (including catastrophic ones), take
measures in advance to prevent adverse consequences of inundation, and provide sustainable
water supply to population (Mohammad-Azari et al. 2020; Parisouj et al. 2020). The models
should take into account changes in meteorological, geomorphological and other factors over
time and space (Conrad 2019; Brinkerhoff et al. 2020). As soon as the most important factors
are identified, a quantitative forecast of river hydrological regime is made (Ahmadi et al. 2019;
Feng et al. 2020). This task becomes much more complicated for mountain territories due to
their complex orography, varied spatial-temporal structure of meteorological fields, diverse
landscapes, and a sparse network of weather stations (Roessler et al. 2014). We have found the
solution and developed the universal simulation model for a long-term forecasting of river
runoff during spring-summer floods. Such a prediction is extremely important for flood control
(Kundzewicz et al. 2019), planning of hydropower reservoir filling (Zhang et al. 2019), and
management of water resources in the mountain areas (Tullos et al. 2016).

Most modern flood forecasting models are designed for a specific river and provide a short,
medium- or long-term forecast with a lead-time from a few days up to a season. They use statistical
methods for processing meteorological and hydrological data, differential equations of hydrological
processes, artificial neural networks, genetic programming,GIS technologies, or different techniques
taken together (Corripio and López-Moreno 2017; Mosavi et al. 2018; Musselman et al. 2018;
Tabari 2019;Wu et al. 2020). GIS is used in accounting for spatial data distribution, visualization of
calculation results, modeling of individual processes, etc. Statistical methods alone do not provide
the accuracy required inwatermanagement; that is why differential equations of hydrodynamics and
mathematical physics supplemented by simulation equations are applied to describe hydrological
processes in river basins (Wijayarathne and Coulibaly 2020). Differential equations require the
detailed spatially distributed information on precipitation, air temperature, evaporation, underground
aquifers, morphometry, slopes, properties of water-saturated soils and fractured rocks, indicators of
flow resistance on slopes and in river channels, etc. Because of the lack of such an information for
mountain areas, the application of differential equations prevents an increase in the lead-time and
good quality of forecasts and, therefore, becomes impractical. Since it is hardly feasible to account
for impacts of soaking, freezing and thawing of mountain soils on flood, the accuracy of all
predictive models leaves much to be desired.

Our method of system-analytical modeling (SAM) (Kirsta and Puzanov 2020) allows to
avoid the problems mentioned above and to create the simulation balance SAM-models not
based on differential equations of mathematical physics but distinguished by adequate de-
scription of real hydrological and physical processes occurred in the mountains. Following
Beven (2002), adequacy is a conformity of the model to physical principles and laws
complemented by appropriate assumptions. In this paper, the established dependences of flood
runoff on environmental factors characterize dozens of different catchments and landscapes
that makes them universal.

2 System-analytical Modeling

SAM enables to identify and quantitatively describe major processes and their relations with
environmental factors in natural systems. SAM is used to search for and quantify relationships
of flood runoff with meteorological factors, morphometry, and landscape structure of river
basins. As the Tardy expert-analytical method (Tardy et al. 2004), SAM provides the selection
of information on these relationships from experimental data series.
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Main SAM steps are as follows (Kirsta and Puzanov 2020; Kirsta 2020):
1. Preparation of temporally and spatially homogeneous consistent data samples for a

simulated process (flood runoff) and influencing factors.
2. Selection of averaging periods for primary data and model steps with regard for features

and inertia of the process.
3. Estimation of admissible number of model parameters, which should be an order of

magnitude less than the amount of process observation data.
4. Identification and verification of different variants of simulation balance equations (not

differential, but with piecewise-linear dependencies on factors) by solving the inverse
mathematical problem based on observation data. Choosing the model equations with the
least quadratic discrepancy.

5. Assessment of adequacy of the model and its sensitivity to input factor variations.
6. Estimation of factors’ contributions to model residual variance.

The simulation balance SAM-model for long-term forecasting spring-summer floods is con-
structed as a system of algebraic equations. Functional relationships between river runoff and
environmental factors are found through hydrology-based selection and adjustment of equa-
tions to provide minimum model discrepancy (the sum of squared residuals) between calcu-
lated and observed values of runoff. Equation parameters are identified by solving the inverse
mathematical problem using optimization methods of the MATLAB software package via
substituting runoff observation data into equations. At the same time, the tested version of the
model is evaluated for the resulting quadratic discrepancy. The SAM-model is considered to
be developed when an equation system provides the least discrepancy.

In SAM, the form of sought dependencies on environmental factors is not fixed in advance,
unlike differential equations when this form is fixed by their choice. To support this feature, we
apply the universal match function H defined as (Kirsta and Puzanov 2020):

H X1;X2; Y1; Y2; Z1; Z2;Xð Þ ¼
Y1þ Z1 X � X1ð Þ; if X < X1

Y2�Y1
X2�X1 ðX � X1Þ þ Y1; if

X1 � X < X2
X1 6¼ X2

�

Y2þ Z2ðX � X2Þ; if X � X2

8>><
>>:

; ð1Þ

where X1, X2, Y1, Y2, Z1, Z2 are parameters; X is any model variable. Function H is a
continuous piecewise-linear function consisting of three arbitrary linear fragments. It is used to
approximate different dependencies between variables by changing parameters’ values.

Any mathematical models (including predictive ones) need verification. To do that, we
propose a criterion for assessing adequacy of any models or calculation methods through the
comparison of observed and calculated data series (Kirsta 2011; Kirsta and Puzanov 2020):

A ¼ 1ffiffiffi
2

p Sdif
Sobs

; ð2Þ

where A is the criterion of model adequacy; Sdif is the standard (RMS) deviation of the difference
between calculated and observed data patterns (standard deviation of model residuals); Sobs is the
standard deviation of the observed pattern; 1=

ffiffiffi
2

p
is the introduced multiplier. According to (2), A is

actually a model error normalized to the standard deviation of observation data.
Criterion A in (2) is similar to commonly accepted indicators of model quality RSR

(RMSE-observation Standard deviation Ratio, where RMSE is Root Mean Square Error
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(Moriasi et al. 2007; Koch·and Cherie 2013)) and NSE (Nash-Sutcliffe model Efficiency
(Nash and Sutcliffe 1970; Koch·and Cherie 2013)). A is related to RSR and NSE through

dependencies RSR=A
ffiffiffi
2

p
and NSE = 1–RSR2 = 1–2A2. As compared to RSR and NSE, the

range of criterion A applications is wider and additionally involves assessment of statistical
forecasting when NSE < 0.

Mathematical models have another important characteristic, i.e. sensitivity to variations in
environmental factors (Iooss and Lemaître 2015; Song et al. 2015; Wang et al. 2020). We have
proposed a simple method for quantifying the model sensitivity due to the use of adequacy
criterion A (Kirsta 2020):

FS ¼ A
0

� �2
� Að Þ2 ¼ S

0
dif

� �2 � Sdifð Þ2
2 Sobsð Þ2 ¼ 2 Sf acð Þ2

2 Sobsð Þ2 ¼ Sf acð Þ2
Sobsð Þ2 ; ð3Þ

where FS is the model sensitivity to natural variations of the selected input factor; A is the
criterion (2); A' is the value A obtained from (2) by using randomly mixed values of input
factor instead of initially ordered. In this case, the randomly mixed observed data pattern,
obviously, has a former statistical distribution and variance. Here, (Sdif)2 is the variance for the
difference between calculated and observed data patterns of the model output variable (river
runoff); (S’dif)2 is the same variance obtained by substituting randomly mixed values of the
selected input factor in the model; (Sfac)2 is the contribution of natural variations of input factor
to variance of the output variable (river runoff); (Sobs)2 is the variance of the observed output
variable used for FS normalization.

In Eq. (3), the variance determined by errors in input factor observations is present in both
(S'dif)2 and (Sdif)2. Therefore, it does not affect FS because of its mutual subtraction in the
numerator of Eq. (3). Hence, FS evaluates the model sensitivity directly to natural variations
of input factor, excluding any errors in its observations. Obviously, FS also indicates the
relative importance of environmental factors. Similar to A, FS can be expressed as a function of

RSR or NSE. Taking into account the equality of RSR=A
ffiffiffi
2

p
, we have FS ¼ ½ðRSR0 Þ2

� RSRð Þ2�=2. Similarly, we get FS = (NSE –NSE’)/2. As A’ in (3), RSR’ and NSE’ are equal
to RSR and NSE obtained via using randomly mixed values of the selected input factor instead
of initially ordered ones.

3 Source Materials

The study territory of the Altai-Sayan mountain country (50–56° N and 82–90° E) represents a part
of the world watershed located between the humid zone of the Arctic Ocean and the arid drainless
area of Central Asia. It covers more than 2,000,000 km2 and serves as the catchment for Siberian
large rivers Ob, Irtysh and Yenisei distinguished by a complex hydrographic network. Generally,
mountain ridges are of 2000–2500 m a.s.l., while in Altai they reach 3500–4500 m a.s.l. The river
flow regime depends mainly on snow melting in springtime and precipitation amount during
summer and autumn. The share of snow melting in the annual flow exceeds 50%.

The climate of the Altai-Sayan mountain country is sharply continental. According to
meteorological observations, long-term average temperature is − 16 °C in January and +
18 °C in July. Long-term average precipitation varies from 20 mm in February to 84 mm in
July. More detailed climate characteristics can be found in (Kirsta 2011; Kokorin 2011).
Climatic diversity of the country contributes to that of its landscapes: glacial-nival, tundra,
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alpine and subalpine meadows, forest, steppe and semi-desert ones (Gvozdetskiy 1968; Kirsta
and Puzanov 2020). For instance, some northern slopes at altitudes over 3000 m get 1200–
2500 mm of precipitation per year, the middle parts of the slopes – up to 600 mm, and the foot
– about 200 mm (Gvozdetskiy and Mikhailov 1987).

SAM was based on river runoff observations in the Altai-Sayan mountain country made by
the Hydrometeorological service of the USSR and Russia in 1951–2016. For the study, 34
medium and small rivers with defined basin boundaries (i.e. Anuy, Berd, Charysh, Inya,
Katun, Tom, et al.) were selected (Kirsta and Puzanov 2020). A large number of simulta-
neously analyzed basins (from 177 to 21,000 km2 in size) allowed leveling their specific
features and determining general (universal) patterns of hydrological processes for the entire
mountain territory.

Taking into consideration annual dynamics of streamflow, we specified four hydrological
periods/seasons: winter low water (XII–III months), spring-summer flood (IV–VI), summer
low water (VII–VIII) and autumn low water with possible flood in case of heavy rains (IX–
XI). The data on daily runoff observations at each of 34 river gauges were averaged over
spring-summer flood period for each year of observations. During flooding, runoff was about
140 m3/s with standard deviation of streamflow time series of 24% on average for all basins.
Note that this runoff was much higher compared to other periods (10, 50, 30 m3/s for the first,
third and fourth seasons, respectively).

We made typification of landscapes of the Altai-Sayan mountain country reflecting the
conditions of hydrological and hydrochemical runoff formation including altitudinal-belt and
structural-layering heterogeneity of the territory (Kirsta and Puzanov 2020). To account for the
landscape structure of river basins and for spatial separation of different types of a hydrological
regime, we used maps “Landscapes of Altai” (Chernykh and Samoilova 2011) and “Land-
scape map of Altai Krai” (Tsimbaley 2011) of 1:500,000 scale. A total of 12 landscapes and
one extra (13th) small aquatic landscape were selected. Each landscape was considered as an
independent typological group of geosystems with its own hydrological characteristics and a
certain contribution to the overall flow from the river basin.

The elevation and areas of the selected landscapes were calculated for all 34 river basins.
The mentioned above maps as well as topographic ones of 1:200,000 scale served as a basic
cartographic material processed in ArcGIS 10.2 to create digital versions of maps. We
calculated the morphometry of landscape structure of each river basin (namely, the area and
mean altitude of landscapes) by means of TIN models constructed by ArcGIS 3D Analyst.

For most analyzed river basins, regular meteorological observations are absent. We have
shown that long-term dynamics of monthly mean air temperature and monthly precipitation is
the same throughout the Altai-Sayan mountain country, if these factors are expressed in
percent/fraction relative to their long-term in situ average for corresponding month (Kirsta
2011). For calculations of dynamics of such relative/normalized factors, we used the data from
11 reference weather stations for 1951–2016 years. Four stations (with WMO indexes 29,822,
29,915, 29,923, 29,939) were located in the plains adjacent to the Mountain Altai, six (36,038,
36,045, 36,055, 36,064, 36,229, 36,442) – in the Mountain Altai, and one (29,849) – in the
Kuznetsk intermountain basin at the altitudes of 125–2601 m a.s.l.

First, we calculatedmonthly and interannual dynamics of normalized values of airmonthlymean
temperature andmonthly precipitation for each weather station separately. For the cold period of the
year, we expressed the normalized temperature sets of 11 stations as percentage of long-term
average January in situ temperature, and for the warm period – of July one. July provided the
normalized precipitation sets for all months of the year. Then, using the average for 11 stations, we
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obtained spatially averagedmonthly dynamics of normalizedmeteorological factors. This dynamics
adequately characterized the real meteorological situation in any part of the Altai-Sayan mountain
country, regardless of coordinates and elevation. The absence of dependence on changing elevation
was particularly important for the description of dynamics of normalizedmonthlymean temperature
and monthly precipitation over the entire area of each basin, where elevation difference reached
2000 m. Moreover, this dynamic was uniform for all river basins. Thus, 66 × 12 = 792 normalized
values were calculated both for temperature and precipitation for the years 1951–2016. To present
monthly and interannual dynamics of temperature and precipitation in degrees Celsius and milli-
meters for any site, it is sufficient to have their long-term in situ average for January and July.

The adequacy of normalized meteorological characteristics was assessed by criterion (2).
Via comparison of their calculated (for reference stations) and observed (for other non-
reference stations) multi-year monthly series with criterion A, we got AT=0.39 for air temper-
ature and AP=0.62 for precipitation for all months of the year on average (Kirsta 2011). It is
expected to use values of A in evaluating the SAM-model adequacy.

Since normalized air temperature and precipitation were among input factors of the SAM-
model, streamflow values should be normalized as well. For this purpose, the observed values
were divided by their long-term average for each basin. Thus, we passed from streamflow
measurements in m3/s to dimensionless units of normalized runoff. Such a normalization made
it possible to create suitable for SAM single homogeneous sample of runoff data on all 34 river
basins. In a similar manner, landscape areas (km2) in each basin were converted into percent/
fraction via division by the basin area. Elevation of landscapes remained unchanged.

Overall, the created database to execute SAM of flood runoff includes the following character-
istics for 34 river basins: hydrological (1630 normalized values of river runoff for spring-summer
flood period), meteorological (792 + 792 = 1584 normalized monthly values of air temperature and
precipitation) and landscape (160 + 160 = 320 values of area and altitude) ones.

4 Development of the SAM-model for Flood Forecasting

Just as in regression analysis, to use SAM successfully, the array of actual data on the process
dynamics should greatly exceed the number of SAM-model equation parameters (Kirsta and
Puzanov 2020). There are 1630 values of river runoff. Theoretically, it allows us to enter about
160 parameters into the model. However, the number of river basins comes to 34 resulting in 3–4
parameters allowed, if we describe the runoff dependence on any of basin characteristics (e.g. basin
area or elevation of landscapes). The same applies to the dependence of runoff on temperature and
precipitation if we use, for example, a 33-year observation period to identify the model parameters.
The limitation to 3–4 parameters implies the presence of two linear fragments in piecewise-linear
function H in (1). This requirement is implemented according to (1) as dependence
H(X1,X2,1,1,Z1,Z2,X).

The forecast of average river runoff during spring-summer flood (IV–VI months) was made for
each year (1984–2016) using the data on air temperature and precipitation for preceding IX–III
months. The parameters of the developed predictive SAM-model were identified by solving the
inversemathematical problemdue to optimizationmethods. For their calculation,we simultaneously
used actual normalized flood flows of all 34 rivers over a 33-year moving identification period
preceding the forecast years. The defined parameters were applied to forecast runoff only in the next
three years. For subsequent years, their values were calculated again using further identification
period with a three-year shift.
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During SAM, various sets of equations describing runoff formation influenced by environ-
mental factors during high water periods were tested. As a result, the SAM-model for flood
forecasting with 39 parameters and the least quadratic discrepancy between predicted and
actual flood flows was constructed. Its general/universal (for all river basins) simulation
balance equation has the form:

Qi ¼
H c1; c2; 1; 1; c3; c4;P1ð Þ P

kakS
i
kP1H c9; c10; 1; 1; c11; c12; hik

� �þ�
þP

kbkS
i
kP2H c5; c6; 1; 1; c7; c8; T2ð ÞH c9; c10; 1; 1; c11; c12; hik

� �	þ d
; ð4Þ

whereQi – the predicted average normalized runoff during spring-summer flood period (IV–VI
months) for outlet of basin i, i = 1–34; the first and second sums in the right part of (4)
correspond to contributions of recent autumn period (IX–XI) and current winter one (XII–III),
respectively; ak, bk – the parameters characterizing k-th landscape contributions to river runoff

in relevant period, k = 1–13; Sik – the relative area of k-th landscape in the basin i; hik – the
landscape elevation, m a.s.l.; P1, P2 – the mean deviations of normalized monthly precipitation
from its long-term average monthly values in recent autumn and current winter periods,
respectively; T2 – the analogous mean deviation but for normalized monthly air temperature
in current winter period; H – the piecewise-linear function (1); c1�4 , c5�8 , c9�12 – the
parameters describing the influence of autumn precipitation P1 and winter temperature T2 on
runoff volume during a flood period as well as landscape elevation hik on precipitation amount;
d – the constant fraction of normalized runoff (d ≤ 1) equal for all river basins.

The right part of Eq. (4) summarizes the contributions of each landscape toQiof river basin
i. In the first summand of (4), the contribution of k-th landscape is formed due to autumn
precipitation P1 in the preceding year and depends on hydrological features of this landscape

(parameter ak), its area Sik, and landscape elevation h
i
k (which affects precipitation amount). In

the second summand of (4), the contribution of k-th landscape is formed by winter precipita-
tion P2 and depends on landscape features (parameter bk), area Sik, temperature T2 (responsible
for evaporation from the snow surface), and elevation hik . Multiplier H c1; c2; 1; 1; c3; c4; P1ð Þ
accounts for moisture exchange between soils and snow cover in winter, which depends on
autumn precipitation P1 (Tanasienko et al. 1999).

To identify parameters through solving the inverse problem, we used the runoff observation data
for 1951–2013.We replaced the left part of Eq. (4) with normalized values of runoff observed in the
proper 33-year moving identification period. These values (200–1000) made up a system of the
same number of equations solved by means of MATLAB optimization methods to calculate
parameters as unknown variables. Through solving this system of equations, the quadratic mean
of identification residuals was also determined; it characterized quadratic discrepancy between
calculated and observed river flows in the 33-year identification periods. River runoff data, which
gave significant residuals, were excluded from calculations. Such a randomdisagreementmay occur
in a particular year due to (a) considerable difference between value of a meteorological factor
averaged for 11 reference weather stations and its actual fluctuations in some river basins, (b)
technical errors in data recording. Significant residuals were detected by comparison of calculated
and observed runoff according to the known “three-sigma rule” for normal statistical distribution.
For SAM, deviation of calculated from experimental/observed values was close to normal as in
adequate mathematical models. Any runoff observation beyond three residual standard deviations
from the calculated runoff was considered to be an error. Up to 4% of the data were excluded in this
way. Obviously, these data could be reliable and correspond to real fluctuations of precipitation or
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air temperature in the basin. In fact, few errors exclusion did not affect SAM. From the above it
follows that reliability of performed forecasts is 100–4 = 96% (commonly accepted reliability of
statistical estimates makes up 95%).

The quality of the SAM-model (4) for forecasting spring-summer flood runoff was verified
for 1984–2016 using adequacy criterion A in (2). This period was divided into short three-year
intervals; for each we made individual forecasts using (4) with parameters found for the
preceding 33-year moving identification period. When calculating criterion A, standard devi-
ation Sdif characterizing discrepancy between predicted and actual normalized river runoff was
used. For 1984–2016, 381 normalized values of observed runoff were available for all 34 river
basins. It is obvious that such samples of predicted and actual runoff are sufficient for reliable
statistical estimates. According to the calculations, adequacy A of model (4) is equal to 0.65.
Note that the same value of A was obtained for winter runoff forecasting; it was based on
meteorological data of preceding summer and autumn seasons (Kirsta and Puzanov 2020). The
resulting value A = 0.65 is less than the threshold value of 0.71 (consistent with NSE = 1–
2A2 = 0). The latter corresponds to a simple predictive model based on the use of statistical
average of a characteristic. Thus, preceding meteorological conditions considered in (4) really
affect the volume of spring-summer flood runoff in river basins of the Altai-Sayan mountain
country. It should be noted that we used the data from weather stations located outside the river
basins. The possibility of more accurate flood forecast based on in situ meteorological
observations is discussed below.

5 Discussion of Simulation Results

Most predictive models of river floods are developed due to the data obtained for a single river
basin. In such cases, to characterize the impact of runoff from each basin landscape as a
separate natural hydrological system is extremely difficult. One value of elevation (or any
other characteristic) is assigned to each landscape. To construct the function of landscape
runoff dependence on this characteristic using only one plot point is impossible. In addition,
one can not exclude individual characteristics of the analyzed basin from the model, which
limit its application in another territory. In our case, parameters of model (4) characterize 34
basins concurrently analyzed in SAM; they essentially differ in orography, land cover and
climate. In other words, the developed SAM-model is universal and can be used in forecasting
river floods throughout the Altai-Sayan mountain country. It is worth noting that predicted
runoff from each of 34 river basins is normalized to its long-term average value. Multiplying
runoff by this value, we can convert it to m3/s. Using Eq. (4), it is also easy to forecast runoff
from individual landscapes in each basin.

5.1 Runoff Dependence on Meteorological Factors

Figure 1 shows a typical dependence of spring-summer flood runoffQ on input meteorological
factors of model (4) obtained by SAM. Proportionality of runoff to amount of winter
precipitation P2 as well as rather complex dependence of runoff on autumn precipitation P1

and winter temperature T2 are marked.

Let us consider runoff Q behavior at small amount of winter precipitation P2 < 0. A drastic
decrease in autumn precipitation P1<–0.3 (Fig. 1a) or low winter temperature T2 < 0 (Fig. 1b)
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bring to an increase in runoffQ. This is due to growing depth of soil freezing (up to 2–3 meters
(Tanasienko et al. 1999)) in winter because of a thin snow cover (P2 < 0). When snow melts in
spring, deep freezing facilitates an ice layer formation in the upper soil layers and prevents
meltwater infiltration into soils (Tanasienko et al. 1999). As a result, water flows downslope
into rivers, thus intensifying flooding. With autumn precipitation increase P1 >–0.3 (Fig. 1a),
the ice layer is formed already in the transitional autumn-winter period and occupies more and
more soil areas. In winter, it enlarges due to upward diffusion of water vapor from deep soil
layers. In spring, it again prevents meltwater infiltration and increases Q. In turn, with winter
temperature rise T2 > 0 (Fig. 1b), the increase in runoff Q can be explained by two reasons: (a)
more intensive melting of snow cover at all altitudes due to slightly frozen soils, (b) greater
moistening of soils because of their less drying in winter caused by a reduced temperature
gradient between them and snow cover/air.

With a large amount of winter precipitation (P2 > 0), decrease in winter temperature T2 < 0
brings to decrease in Q (Fig. 1b). This is because of temperature fall in snow cover and soil
resulting in delayed snowmelt in spring and partial flood transfer to summer. With temperature
rise T2 > 0, decrease in Q is explained by (a) slower freezing of soils that causes moisture
transition to the lower soil layers (Nikolaev and Skachkov 2012) and then to winter runoff, (b)
increase in evaporation from the snow surface.

5.2 Sensitivity of the SAM-model to Factors’ Variations

Another important characteristic of model (4), namely, its sensitivity FS to variations in
environmental factors, makes it possible to quantify the significance of these factors in
forecasting spring-summer floods. Since FS in (3) is expressed as a fraction of variance of
observed values of output variable (Sobs)2, FS can be expressed as percentage via multiplying it
by 100. Flood sensitivity assessment with the use of series of forecasted river runoff Qi in (4)
and observed ones is given in Table 1.

According to Table 1, sensitivity of flood forecasting model (4) to variations in environ-
mental factors goes down in the following order: both autumn and winter precipitation P1 and
P2, autumn precipitation P1, hydrological characteristics of landscapes ak and bk, winter
precipitation P2, air temperature T2, and elevation of landscapes hik . As expected, the SAM-

Fig. 1 Dependence of Katun river runoff during spring-summer flood on air temperature and precipitation for the
preceding seasons (we show the deviations of normalized meteorological characteristics from their long-term
averages – see notation for Eq. (4)); a – runoffQ (IV–VI months) as a function of precipitation P1 (IX–XI) and P2

(XII–III); b – runoff Q as a function of temperature T2 (XII–III) and precipitation P2
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model is most sensitive to two factors, i.e. precipitation and hydrological features of land-
scapes. It shows the least sensitivity to landscape elevation, regardless of significant depen-
dence of precipitation on elevation (Gvozdetskiy and Mikhailov 1987). This independently
confirms adequacy of the description of meteorological fields in the Altai-Sayan mountain
country using normalized values of monthly precipitation and temperature.

A special emphasis should be put on the small value of flood sensitivity FST =1.1% to
variations in winter temperature T2 (Table 1). The value of T2 is calculated as deviation of
normalized monthly mean air temperature from its long-term value for four months (XII–III)
on average. Therefore, interannual variations of T2 are small and, consequently, their impact on
flood runoff is insignificant too. In rare years, T2 deviations can be great and have essential
effect on runoff (Fig. 1b).

5.3 Assessing the Accuracy of Flood Prediction for a Single Basin

When spring-summer flood forecasts are made for a single river basin, its landscape structure,
elevation and area of landscapes remain constant and, therefore, they can be excluded from the
predictive SAM-model (4). Thus, Eq. (4) takes a simplified form:

Q ¼ H c1; c2; 1; 1; c3; c4; P1ð Þ aP1 þ bP2H c5; c6; 1; 1; c7; c8;T2ð Þf g þ d; ð5Þ
where the same notation as in (4) but for a single river basin is used. The values of parameters
c1�4 and c5�8 are also not changed. Three parameters a, b, and d in (5) should be SAM
calculated anew from the data on flood observations in the analyzed basin for the preceding
33 years. Further, these parameters are used when making flood forecasts in the following
three years. After that, they are calculated again for the next preceding 33-year identification
period shifted forward by three years.

Assume that we deal with a single typical river basin and use in situ meteorological
observations. For this reason, forecast adequacy (A0) for the simplified SAM-model (5) should
differ from that for model (4) (A in Table 1). Indeed, in (5) there is no influence of (a)
landscape hydrological features of 34 different basins, which increase discrepancy between
forecasted and observed runoff as well as (b) errors in values of precipitation and air

Table 1 Sensitivity of flood forecasting model (4) to variations in environmental factors

Characteristic Value

Adequacy A of model (4) according to Eq. (2) 0.65
Standard deviation1 Sobs of actual river runoff Q 0.30
Sensitivity2 FSP to combined variations of autumn and winter precipitation (P1 and P2) 34
Sensitivity FSP1 to autumn precipitation P1 21
Sensitivity FSL to variations in landscape structure of river basins3 16
Sensitivity FSP2 to winter precipitation P2 10
Sensitivity FST to winter air temperature T2 1.1
Sensitivity FSh to landscape elevation hik 0.2

1 calculated as mean standard deviation of normalized observed runoff in 34 river basins. At the same time, it
corresponds to mean standard deviation in fractions (or as percentage when multiplied by 100%) of non-
normalized observed runoff
2 estimated by (3) and expressed in percent of variance (Sobs)2

3 calculated via joint randommixing the values of landscape hydrological characteristics (ak and bk in (4)) among
34 basins, k = 1–12
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temperature arising from their spatial averaging over the Altai-Sayan mountain country.
Obviously, A0 is more important than A, since a flood forecast is almost always needed for
a specific river if there is a threat of extreme flooding, overflowing a hydropower reservoir, or
breakdown in normal water supply of local population.

Sensitivity of the SAM-model (4) to variations in environmental factors (Table 1) makes it
possible to assess adequacy A0 for spring-summer flood forecasts based on in situ meteoro-
logical observations. Normalized monthly mean air temperature and normalized monthly
precipitation are the changing input factors of model (4). They are the same for the entire
territory of the Altai-Sayan mountain country because of their spatial averaging characterized
by adequacy criterion (2) for each month of the year (Kirsta 2011). Let us consider what makes
up discrepancy variance (Sdif)2 for river runoff predicted by means of (4).

In mathematical models of complex natural systems, variance of model residuals is
composed of components determined by variability of input factors, observation errors and
equation errors (Mirkin and Rozenberg 1978; Kirsta 2020). Given such summation and
Eqs. (2), (3), we can distinguish the components of residual variance (Sdif)2 for the SAM-
model (4), which are absent in residual variance for the simplified SAM-model (5). Excluding
them from (Sdif)2 for (4), we find the remaining component that characterizes A0. Using
normalization of (2) and (3) to Sobs and (Sobs)2, we get:

2A2 ¼ Sdifð Þ2= Sobsð Þ2 � FSL þ FSP � 2A2
P þ FST � 2A2

T þ 2A2
0; ð6aÞ

where A – the adequacy (2) of model (4); (Sdif)2 – the variance of residuals between predicted
and observed stream flows; (Sobs)2 – the variance of observed stream flows; FSL – the
contribution of variations of landscape hydrological characteristics ak, and bk (Table 1); FSP,
FST – the contributions of precipitation and air temperature variations, respectively (see (3) and

Table 1); AP, AT – the adequacy (2) of relevant meteorological factors; 2A2
P, 2A

2
T – the shares in

FSP, FST, formed by errors of P and T spatial averaging; A0 – the desired variance component
that characterizes adequacy of simplified model (5) for a single river basin (see above).
Substituting in (6a) the values in fractions of a unit A = 0.65, FSL=0.16, FSP=0.34,
FST=0.011 (Table 1) as well as AP=0.73 and AT=0.32 obtained by averaging their monthly
values for autumn-winter and winter seasons (Kirsta 2011), we easily identify A0 :

2� ð0:65Þ2 � 0:16þ 0:34� 2ð0:73Þ2 þ 0:011� 2ð0:32Þ2 þ 2A2
0 or A0 � 0:40: ð6bÞ

Let us consider a typical river basin, for which model adequacy A0 should remain the same as
in Eqs. (6a), (6b). This is because samples of normalized observed runoff for a typical basin
and for 34 basins have the same statistical characteristics Sobs and differ only in their volumes.
Therefore, we can use A0 ≈ 0.40 from (6b) to evaluate the quality of model (5) for an individual
basin. Calculating A0 in Eqs. (6a), (6b), we excluded the terms characterizing relatively small

influence of (a) landscape elevationhik on normalized precipitation, (b) errors in determininghik,
Sik, and (c) errors in evaluating parametersc9�12 in model (4). This means that a real value of A0

is less than obtained 0.40, and A0 < 0.40 is final assessment of adequacy of the predictive
SAM-model (5) based on meteorological observations in the basin.

Consider the extent to which the SAM-model (5) reduces residual variance (Sdif)2 of
predicted flood runoff in comparison with variance (Sobs)2 for a trivial forecast based on the
long-term average of observed runoff. Given Eq. (2) and A0 < 0.40, we obtain threefold
reduction in residual variance:
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A2
0 ¼ Sdifð Þ2=2 Sobsð Þ2 < 0:40ð Þ2or Sdifð Þ2

It is also easy to calculate another characteristic of predictive model quality, i.e. the Nash-
Sutcliffe efficiency NSE. The flood forecast by model (5) in a river basin with in situ

meteorological observations is characterized by NSE0 = 1� 2A2
0 (see Section 2). Substitution

of A0 < 0.40 gives NSE0 > 0.68. Values NSE0 > 0.68 correspond to a good (0.65 < NSE ≤ 0.75)
quality of “descriptive” hydrological models (Koch·and Cherie 2013) and are incredibly high
for models of long-term forecast of flood runoff. In our case, river runoff forecasting is made
for the entire period of spring-summer high water (IV–VI months), i.e. for 3 months ahead.

The average share of current precipitation in spring-summer runoff from 34 river basins
makes up 0.3 (Kirsta and Puzanov 2020) and proves the possibility of achievement of high
accuracy in flood forecasting. With regard for the standard deviation of precipitation amount
(28%) (Kirsta 2011), we get theoretically best accuracy of flood forecasting models: 2 × 0.3 ×
28 ≈ 17%. The latter characterizes the confidence interval of the forecast ± 2 × sigma (i.e., ±
2×”forecast standard deviation”) with 95% reliability.

Using the standard deviation Sobs ≈ 24% of the observed flood runoff, we can also estimate
theoretically best value NSEbest for forecasting river flows during spring-summer floods:

NSEbest � 1� ð0:3� 28=SobsÞ2 � 1� ð0:3� 28=24Þ2 � 0:88:

Thus, for the rivers of the Altai-Sayan mountain country, the values of NSE0 and RSR0

¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� NSE0

p
are within 0.68–0.88 and 0.35–0.57, respectively.

6 Conclusion

The proposed system-analytical modeling (SAM) of complex natural systems is an efficient method
for developing adequate simulationmodels of river runoff. SAMensures quantitative assessments of
their accuracy and sensitivity to variations in environmental factors as well as evaluation of factors
contributions to the variance of discrepancy between calculated and observed values of output
model variable. Based on these estimates, individual components of this variance can be identified
and analyzed separately. Such an analysis provides more objective and complete description of the
mathematical model quality as compared to index RSR (the ratio of RMSE to standard deviation of
observation data) or Nash-Sutcliffe efficiency NSE.

The runoff from 34 river basins of the Altai-Sayan mountain country was analyzed using
SAM. The universal predictive SAM-model (4)–(5) was developed to forecast spring-summer
flood runoff for 3 months ahead. The forecasts are based on relative (normalized for long-term
average values) monthly precipitation and monthly mean air temperature for recent autumn
and winter periods. Relative values of these factors more adequately reflect their complex
distribution over the mountain country and are employed to improve the accuracy of hydro-
logical calculations. In the course of SAM, the influence of autumn-winter-spring freezing and
thawing of soils on spring-summer flood was quantified due to the data on autumn-winter-
spring precipitation, air temperature and observed flood runoff.

Sensitivity of the SAM-model (4)–(5) to environmental factors decreases in their order:
autumn precipitation, landscape structure of river basins, winter precipitation, winter air
temperature, landscape elevation. The predicted flood runoff is normalized similar to meteo-
rological data and can be converted to m3/s via multiplying by its long-term average value.
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The simplified SAM-model (5) has a threefold reduction in variance of forecast error as
compared to that of trivial prediction based on the long-term average of observed runoff. The
quality of forecasts is characterized by the Nash-Sutcliffe efficiency of 0.68–0.88. These
values are excellent for long-term forecast hydrological models. Such a quality can be
achieved using precipitation and air temperature observed directly in the river basin under
study. The versatility of the model makes it applicable to all rivers of the Altai-Sayan mountain
country, and after additional identification (specifying the values of some parameters) – to
rivers in other mountain territories. It can be successfully applied in real-life water resources
management under changing climate conditions, e.g. regulation of mountain hydropower
reservoir filling or advance preparation for extreme flooding in spring.
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