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Abstract
To turn General Circulation Models (GCMs) projection toward better assessment, it is
crucial to employ a downscaling process to get more reliability of their outputs. The data-
driven based downscaling techniques recently have been used widely, and predictor
selection is usually considered as the main challenge in these methods. Hence, this study
aims to examine the most common approaches of feature selection in the downscaling of
daily rainfall in two different climates in Iran. So, the measured daily rainfall and National
Centers for Environmental Prediction/National Center for Atmospheric Research
(NCEP/NCAR) predictors were collected, and Support Vector Machine (SVM)
was considered as downscaling methods. Also, a complete set of comparative
tests considering all dimensions was employed to identify the best subset of
predictors. Results indicated that the skill of various selection methods in differ-
ent tests is significantly different. Despite a few partial superiorities viewed
between selection models, they not presented an obvious distinction. However,
regarding all related factors, it may be deduced that the Stepwise Regression
Analysis (SRA) and Bayesian Model Averaging (BMA) are better than others.
Also, the finding of this study showed that there are some weaknesses in the
interpretation of SRA, so concerning this issue, it may be concluded that BMA
has more reliable performance. Furthermore, results indicated that generally, the
downscaling procedure has more accuracy in arid climate than cold-semi arid
climate.
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1 Introduction

The most reliable instrument to assess the variability of the climate components influenced by
climate change impacts is the projection of General Circulation Models (GCMs) (Fayaz et al.
2020). GCMs simulate the variability of climate components such as wind direction, sea
surface pressure, temperature, relative and specific humidity, divergence, and velocity in grid
points with a large scale. Hence, their spatial resolution is very coarse and it limits their
efficiency to reflect their simulation on a local scale.

To assess the impact of climate change, GCMs projections must be converted. The
downscaling process, categorized into two statistical and dynamical approaches, is a method
to gain GCMs outputs by converting coarse resolution data to finer resolution. The statistical
techniques are performed based on a statistical relation among GCMs outputs as predictors and
weather variables as predictants (Wood et al. 2004). The statistical downscaling has different
categories (Bermúdez et al. 2020), in which the transfer functions have gained the attention of
most hydrologists due to the widespread development of computational modeling. Some
researchers such as Duhan and Pandey, (2015) and Flower et al., (2007) have stated that
Transfer functions have various ranges of different black-box models such as Artificial Neural
Network (ANN), Support Vector Machine (SVM), and K-Nearest Neighbors (KNN) and
prepared platforms such as Statistical Downscaling Model (SDSM).

GCMs predictors and local predictant are considered as inputs and output components of
transfer functions, respectively. In these downscaling methods, the most crucial step is to
discover the most reliable predictors to establish a statistical relationship (Crawford et al.
2007). Many researchers consider a physical relation as a proper criterion while some of them
express that behavior of rainfall is a consequence of one specific variable (Goyal and Ojha
2012), so they selected single ones or considered a set of predictors. Anyway, there is still an
important question; which of the available predictors have the most competent for the
downscaling procedure? Several researchers employed different methods such as Principal
Component Analysis (PCA), Gamma test, Canonical Correlation Analysis (CCA), fuzzy
clustering, Rapid Variable Elimination (RaVE), Entropy methods, and Independent Compo-
nent Analysis (ICA) to select variables for downscaling (MoradiKhaneghahi et al. 2019;
Ahmadi et al. 2015). For example, Najafi et al. (2011) used ICA to select predictors for
downscaling of daily precipitation using the SVM method. Ben Alaya et al., (2015) employed
PCA to reduce the dimension of predictors. Also, there are some studies that developed
previous methods and presented novel approaches (Harpham and Wilby 2005; Fistikoglu
and Okkan 2011; Sarhadi et al. 2017). In follow, it is tried to present a review and assessment
of the most applied selection methods involved with downscaling literature. As a general
consequence of the literature review, it is revealed that the strong correlation is a vital criterion
for predictor selection (Wilby and Wigley 2000) so, the Correlation Analysis (CA) is usually
used to discover best predictors (Pervez and Henebry 2014). For example, Chen et al. (2012)
and Meenu et al. (2013) determined the required predictors by the CA method. There are
several studies that their predictor selection was accomplished using Partial Correlation
Analysis (PCA) (Liu et al. 2011). Nasseri and Zahraie (2013) used the PCA method to detect
essential predictors for SDSM downscaling. The results of their study indicated that predictors
such as relative humidity and velocity were the most realistic variables. The Stepwise
Regression Analysis (SRA) is another common technique used in studies of assessment of
climate change impacts. The fundamental logic behind SRA is trying to find the best fitting of
a Multiple Linear Regression (MLR) in which the Sum of Square Error (SSE) be minimized.
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Currently, the application of SRA has been extended in various studies (Huth 1999; Chen et al.
2011; Hessami et al. 2008). For example, Hessami et al. (2008) apply SRA for choosing the
best predictors for SDSM downscaling method to simulate extreme values. Literature assess-
ment of feature selection methods indicates that SRA is one of the most applied
methods, however it has some deficiencies. This method has defects when there are
large numbers of predictors that have a strong correlation together. This case may
cause a multi-colinearity issue in which estimated weights of predictors have not
specific link to predictor accuracy. Interested readers are referred to Burnham et al.
(2011) for more information about SRA’s drawback.

A Least Absolute Shrinkage and Selection Operator (LASSO) is an alternative to improve
this problem (Tibshirani 1996). In this method, the Penalized Multiple Linear Regressions
(PMLR) is replaced by conventional MLR. In the LASSO the sum of the predictors’
coefficient is embedded into the SSE function to shrinkage the total number of the predictors.
While in SRA, the Fisher statistic limits the number of predictors. Despite the novelty plan,
few downscaling studies employed LASSO as predictor selection in past. But, its application
in recent years, is becoming more widespread (Long et al. 2019; Liu et al. 2019; He et al.
2019). For example, He et al. (2019) used LASSO to specify the best predictor in geopotential
height at 500 hectoPascal (hPa) for downscaling monthly rainfall over the Yangtze River
Valley in China.

Recently a number of studies have addressed Bayesian model averaging (BMA) applica-
bility (e.g. Huang et al. 2019; Li et al. 2019). The major application of BMA is related to
studies whose purpose is to improve the outputs of downscaling or enhance the projection of
ensemble GCM (Zhang and Yan, 2015; Zhang et al. 2016a, 2016b; Pichuka and Maity 2018).
For example, Zhang and Yan, (2015) employed CA as predictor selection and BMA was
incorporated to downscale GCMs projection. Also, in a study by Su et al. (2019), BMA was
applied for downscaling monthly precipitation in different stations of China (Heihe River basin
HRB). Furthermore, Zhang et al. (2016a, 2016b) used BMA as a downscaling method to
rebuild regional mean temperature. In Bayesian predictor selection, the superiority of variables
is recognized based on Bayes’s theorem and that is defined based on probabilistic likelihood.
Hence, the estimated weights are directly reflex the predictor accuracy, and it drives to more
realistic results. In spite of BMA’s advantages, its application in climate change studies as
feature selection remains unused and there is rare literature in this field. The study by
Tareghian and Rasmussen (2013) is one of the rarest studies that was conducted to examine
BMA’s applicability as predictor selection in the downscaling procedure. They introduced a
quantile regression model for extreme precipitation downscaling in which BMA elected the
best predictor. They examined results and found that the performance of the proposed plan is
superior to common regression downscaling especially in summer precipitation in the Punjab
state of India.

The presented literature review can properly describe some methodological deficiencies
listed as follow: First, the performance assessment of all excited feature selection approaches
in the downscaling process was neglected, as there are relatively few studies in this field. The
studies by Hammami et al. (2012), Soleh et al. (2016), Yang et al. (2018), and Teegavarapu
and Goly (2018) are well cases for the above explanation. For example, Hammami et al.
(2012) aimed to compare just SRA and LASSO for downscaling, and examination of other
exciting methods was dismissed. Also, in studies by Yang et al. (2018) and Teegavarapu and
Goly (2018), the examination of two common approaches of correlation (CA and PCA) and
regression (SRA) was investigated, while the analysis of the more recent approaches such as
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BMA and LASSO was ignored. As a consequence, there isn’t a specific study to investigate
the performance of all predictor selection methods in the downscaling process.

Second, the most relevant studies attempted to examine the predictor selection methods
alone in one climate pattern whilst the effect of predictor selection methods is likely mixed in
different climates. Therefore, it can be concluded that the regional effects of the selection
methods weren’t examined.

Third, On the other hand, due to the daily downscaling requires for large-scale computa-
tions, some researchers (Hammami et al. 2012; Yang et al. 2018) carried out the variable
selection step on a daily scale, then they considered a monthly scale in the downscaling
process to reduce computation time. However, the proposed solution has many defects, as it is
proven that the same time scale should be considered in both the downscaling and the predictor
selection.

This paper attempts to cover all mentioned deficiencies above and aims to perform a
comprehensive examination to specify the skill of the various predictor selections approaches
including correlation, regression, and maximum likelihood in downscaling of daily rainfall
through high computation professional center. Furthermore, this study purposes to compare
the effect of different selection methods in two diverse climates (arid-desert and semiarid-cold)
in Iran.

The current manuscript is structured as follows, Section 2 describes case studies,
feature selection methods, downscaling process, and assessment metric. Following
this, Section 3 presents related results about selected predictors, discusses the perfor-
mance of different selection methods. Finally, a summary of current work and a set of
conclusions well as some suggestions for future work in this field are drawn in
Section 4.

2 Material and Methods

2.1 Presented Work

This section describes the steps of the current study. In the first step, the long-term data sets,
including predictor variables and measured rainfall, were collected. Then, different selection
methods such as CA, PCA, SRA, LASSO, and BMA chose the dominant atmospheric
variables and entered them into SVM to simulate local rainfall. In the last, the effect of
different selection methods for the downscaling process was investigated by a set of compar-
ative tests.

2.2 Data Sets and Case Study

In this study, the all 26 National Centers for Environmental Prediction/National Center for
Atmospheric Research (NCEP/NCAR) predictors obtained from Canadian Centre for Climate
Modelling and Analysis (CCCMA) were captured for 1961–2005. The NCEP predictors and
their explanation has been provided in Table 1. Also, the daily rainfall dataset (1960–2005)
from Urmia and Birjand synoptic stations were used as observation data. Urmia is the center of
Urmia province, located in the north-west of Iran (See Fig. 1). Annual rainfall and mean
annual temperature are 330 mm and 8.9 °C, and the coordinate of this station is nearly 37o 32’
N latitude and 45o 05′ E longitude (Amirataee and Montaseri 2013). Birjand is the center of
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Southern Khorasan province with low annual precipitation and high mean annual temperature.
Based on Emberger (1932) and De Martonne (1925) climate classification the categories of
climate pattern of Urmia and Birjand can be evaluated as cold- semi-arid and arid.

This study divided data into two parts of 1961–1990 as the training (70%) and 1991–2000
as the testing (30%). Due to the high computation and complexity of the daily simulation, a
high-performance computing framework was designed in the High-Performance Computing
(HPC) center at the University of Birjand to perform the downscaling process. Also, the Data
preprocessing stage, including removing and replacing outliers and miss-data well as the
stationary assumption was tested and verified.

2.3 Feature/Predictor Selection

In this study, each selection method ranked all 26 NCEP variables to pick up the first five ones
as the dominant predictors. The structure of each selection method was described in the
following:

2.3.1 CA

This method is used to obtain the strength of the mutual relationship between local rainfall and
atmospheric predictors. The priority of predictors was calculated according to Pearson corre-
lation as following:

Table 1 NCEP/NCAR Predictor Variables

Number Predictor description Acronym Type Level (hpa)

1 Mean sea level pressure Mslp Circulation Surface
2 Wind speed p1_f 1000
3 Zonal wind component p1_u 1000
4 Meridional wind component p1_v 1000
5 Relative vorticity of true wind p1_z 1000
6 Wind direction p1_th 1000
7 Divergence of true wind p1_zh 1000
8 Air temperature at 2 m temp Temperature surface
9 Specific humidity shum Humidity 1000
10 precipitation prcp Surface
11 Wind speed p5_f Circulation 500
12 Zonal wind component p5_u
13 Meridional wind component p5_v
14 Relative vorticity of true wind p5_z
15 Wind direction p5_th
16 Divergence of true wind p5_zh
17 Specific humidity shum Humidity
18 Geopotential p500 Circulation
19 Wind speed p8_f 850
20 Zonal wind component p8_u
21 Meridional wind component p8_v
22 Relative vorticity of true wind p8_z
23 Wind direction p8_th
24 Divergence of true wind p8_zh
25 Specific humidity shum Humidity
26 Geopotential p850 Circulation
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Rxy ¼ 1

n−1
∑
n

i¼1

xi−μx

σx

� �
⋅

yi−μy

σy

� �� �
ð1Þ

Where, x, y (hereafter) represent predictor and local rainfall, while σ, μ, n are standard division,
average and number of sample. Also, Rxy indicates correlation coefficient amongst x and y.

2.3.2 PCA

This test calculates the strength of correlation between one predictor and daily rainfall, while it
removes the effect of other predictors as the following equations:

Rxy;z ¼ Rxy−Rxz:Ryzffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−R2

xz
� �

: 1−R2
yz

� �q ð2Þ

Where, Rxy, Rxz, and Ryz represent the correlation coefficient between x, y, and z. Also,
Rxy,z denotes the partial correlation between x and y, while it removes the correlation of z.

2.3.3 SRA

This method has consecutive steps in which the p value of Fisher’s test determines the
validation of the different combinations of predictors. The SAR has two kinds of algorithms:
forward and backward. In the forward state, used in this study, the most correlated predictor is
chosen first. Afterward, the model adds another predictor among the remaining based on
Fisher’s tests as following:

Fig. 1 Location of study area in the east and northwest of Iran
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F ¼ SSEp−SSEpþi

σ2
pþi

ð3Þ

Where, F denotes Fisher’s test, SSEp is SSE of current model, SSEp+ i and σ2
pþ1 indicates SSE

and variance of model when predictor i is considered respectively. When Fisher’s test value of
predictor i, is more than the Fisher value limit of F-table, predictor i will add to the model.

2.3.4 Lasso

LASSO has two possible types: constrained and penalized. In the constrained case (Eq. 4), the
summation of predictors’ coefficient must be minimized or equal to the shrinkage parameter
(λ) while in the penalized case (Eq. 5), this summation is considered as a penalty and is backed
by shrinkage parameter as the following;

min ∑
n

i¼1
yi−β0−xTi β
� �2� �

s:t : ∑β≤λ
ð4Þ

min ∑
n

i¼1
yi−β0−xTi β
� �2 þ λ ∑

p

j¼1
β j

		 		 !
ð5Þ

Where, βand β0 are regressor coefficients and intercept of MLR. While, n and p are sample
size and numper of predictors. In this study the Coordinate Descent Algorithm (CDA) was
used to solve LASSO equations and identify a proper subset of variables. For more informa-
tion see Schmidt, (2005).

2.3.5 BMA

BMA provides a weighted average of different models (here predictor) that their contribution
(weights) is based on Bayesian’s theorem and probabilistic likelihood. Consider y as daily
rainfall and atmospheric predictors as ensemble members ({Si, i = 1, 2,…, n}). BMA corrects
the value of the members first ({Si, i = 1, 2,…, n}→ {fi, i = 1, 2,…,K}). The probabilistic
density of y based on total probability’s law can be presented as the following equation
(Duan et al. 2007):

p yj f 1; f 2…; f k ; Yð Þ ¼ ∑
K

i¼1
p f ijYð Þ:pi yj f i; Yð Þ ð6Þ

Where, p(fi|Y)is the posterior probability of model prediction fi and it indicates that
how well ith member reflects the observed behaviors. Indeed this term is the weight
of each predictor. Hence it can be expressed that wi = p(fi|Y) and consequently

∑
K

i¼1
wi ¼ 1. The term pi(y|fi, Y) is the conditional Probabilistic Density Function

(PDF) of members. Based on the BMA procedure, this term can be mapped to a
normal distribution that its average and variance are approximated by {fi, i = 1, 2,…,
K} and σi. Therefore pi(y|fi, Y) was replaced by g yj f i;σ2

i

� �
and final form of Eq. 6 can

be written as following the equation:
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p yj f 1; f 2…; f k ; Yð Þ ¼ ∑
K

i¼1
p f ijYð Þ:pi yj f i; Yð Þ ¼ ∑

K

i¼1
wi:g yj f i;σ2

i

� � ð7Þ

Proper estimation of wi and σi can provide a good performance of BMA. Therefore, the BMA
requires an optimization algorithm to estimate the parameter setθ = {wi, σi, i = 1,…,K}. This
study employed the Expectation-Maximization (EM) algorithm as an optimization technique
and maximum log-likelihood as a fitness function to find the best values of the parameter set.
See Raftery et al. 2005 for more information.

2.4 Downscaling by SVM

Vapnik (1995) presented a new statistical learning method denominated SVM for regression
simulation. Based on Cover’s law (Cover 1965) a linear function was employed to form a non-
linear relation between input (x) and output (y) through the following equations:

by ¼ wTφ xð Þ þ b ð8Þ
Where,by and φ(x) are model prediction and non-linear transformation function mapping set (x,
y) to a higher feature space. Also, w and b are the model parameters representing weight and
bias. To find these parameters, yi−byij j εis considered as ε-insensitive loss function based on
Vapnik’s theorem:

yi−byi			 			
ε
¼

0 if yi−byi			 			≤ε
yi−byi			 			−ξ otherwise

8<: ð9Þ

Where, ξ indicates the deviation of model prediction (byi) from observed rainfall (yi). Based on
Eq. (9), the lowest value ofξ is desired. To reach it, a cost function was considered to minimize
deviation as the following:

Z ¼ 1

2
wT :wþ C ∑

n

i¼1
ξi þ ξ*i

s:t :
yi−byi−ε ¼ ξi
−yi þbyi−ε ¼ ξ*i
ξ*i ; ξi≥0

8><>:
ð10Þ

Where, ξ represents more error thanε, while ξ*i denotes less error thanε. Also, C is a constant
and positive coefficient to highlight deviation. Furthermore, the first term was imposed on the
cost function to regularize the weights (w). The method of Lagrangian multipliers used to solve
the above equation is the following:

ℓ w; b; ε;αið Þ ¼ 1

2
wT :wþ C ∑

n

i¼1
ξi þ ξ*i þ αi yi−byi−ε−ξi
 �

þ α*
i −yi þbyi−ε−ξ*i
 �

∂ℓ
∂w

¼ 0;
∂ℓ
∂b

¼ 0;
∂ℓ
∂ε

¼ 0;
∂ℓ
∂αi

¼ 0
ð11Þ

Where, αiand α*
i are Lagrange coefficients, from which the weight can be evaluated

as w ¼ ∑
n

i¼1
αi−α*

i

� �
φ xið Þ.By substituting weight parameter back into Eq. (8), the SVM

formulation can be obtained as following equation:
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by ¼ ∑
n

i¼1
αi−α*

i

� �
:K xi; xð Þ þ b ð12Þ

Where,K(xi, x)is the kernel function. This study employed a linear kernel due to its simplicity
and quick run. Also, the values of εand penalty coefficient were evaluated by Ant Colony
Optimization (ACO) algorithm, similar to other researches (Kashif Gill et al. 2007). Readers
are referred to Tripathi et al. (2006) and Farzin et al. (2020) for more details about SVM
formulation.

2.5 Performance Assessment

To examine the performance of different selection methods, it needs to employ a perfect set of
comparative tests comprising all possible aspects explaining the rainfall pattern. Hence this
study compared performance criteria RMSE, NSE, and R over the training and testing periods
first. Then to give a more accurate examination, the assessment of descriptive statistics was
performed. Also, to address the variability of measured and downscaled series, Interquartile
Relative Fraction (IRF) and Absolute Cumulative Bias (ACB) were compared (Campozano
et al. 2016.). Further, the comparison of probability distribution was carried out by the violin
plot and Kolmogorov- Smirnov (KS) test. Finally, the analysis of the wet spells in the
measured and simulated rainfall was performed. The following equations represent the formula
of the RMSE, NSE, IRF, and ACB:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i Pi
m−P

i
o

� �2
n

s
ð14Þ

NSE ¼ 1−
∑n

i Pi
m−P

i
o

� �2
∑n

i Pi
o−Po


 � ð15Þ

R ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑n

i Pi
o−Po


 �
Pi
m−P

i
o

� �
∑n

i Pi
o−Po


 �2
∑n

i Pi
m−P

i
o

� �2
vuuuut ð16Þ

IRF ¼ IQRm

IQRO ¼ Pm
75−P

m
25

� �
PO
75−P

O
25

� � ð17Þ

ACB ¼ Pm
25−P

O
25

		 		þ Pm
50−P

O
50

		 		þ Pm
75−P

O
75

		 		 ð18Þ

Where, Pm and Po are downscaled and observed rainfall, while Poand n are the average of the
observation and sample size. The P25m and P25o denote the first modeled and measured
quartiles, while P50m and P50o well as P75m and P75o represent the second and third ones. Also,
KS calculates the maximum difference of CDFs based on the following equation:
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D ¼ max F1 xð Þ−F2 xð Þj jð Þ ð19Þ
Where F1(x) and F2(x) are the CDFs of actual and downscaled data set respectively, while D is
the KS test statistic.

Furthermore, the contingency table event was employed to assess the performance of each
selection method. This table contains four internal partitions computed based on the following
plan: Hits: the count of true distinguishes of wet events, Correct negative: the count of true
distinguishes of dry events (See Table. 2), Misses: the count of the observed wet days
estimated as dry day, False alarm: the count of the observed dry days simulated as wet days.
The Critical Success Index (CSI) was applied to quantify the precision of the distinguishing
based on the following:

CSI ¼ Hits
HitsþMissesþ False alarm

ð20Þ

As shown, CSI takes zero in the worst case and it obtains one by contrast (Duan et al.
2019). Also, 1 mm.day−1 was considered as separator threshold of wet and dry days (Raje and
Mujumdar 2011).

3 Results and Discussion

3.1 Predictor Selection

Table 3 presents the final predictor numbers adopted from Table 1 for both Urmia and birjand
stations. In Urmia station, atmospheric precipitation (represented by * in Fig. 2) can
be accounted as a dominant predictor. Also, the vorticity of wind at 500 hPa can be
in the second place. Table 3 indicates that there is no significant difference between
all selection methods in Birjand station. However, the specific humidity in surface and
precipitation in 1000 hPa pressure level are the main predictors. Also, the meridional

Table 2 Contingency table event for downscaling verification

Estimated rainfall series Observed rainfall events

Wet events Dry events

Wet events Hits False alarm
Dry events Misses Correct negative

Table 3 Final predictors selected by different methods for downscaling daily precipitation

Selection method Urmia Station Birjand Station

CA 10,14,24,18,13 10, 18, 13, 9, 14
ParCA 10,14,13,17,7 10, 14, 9, 13, 7
SRA 10,14,13,12,4 10, 14, 9, 13, 4
LASSO 1,8,26,10,12 1, 8, 10, 9,26
BMA 10,14,15,4,9 10, 14, 13, 9 18

416 A. Jafarzadeh et al.



and vorticity of wind at 500 hPa pressure level take the second place. Fig. 3 is a
Butterfly chart (Tornado diagram) that provides a quick view for different arrange-
ments of final selected predictors in two stations as side by side at the same time. In
this plot, the top three fields indicate the height of variables, while the remaining is
related to variables type. As shown, the count of final predictors in both stations at
the circulation category is more than other categories (i.e. surface, humidity, and
temperature). Also, it may be inferred from Fig. 3 that the selection methods would
prefer to choose the lower-level variables.

Fig. 2 Radar chart frequency of selected predictors for Urmia (a) and Birjand (b) Stations

Fig. 3 Butterfly chart in Urmia and Birjand stations
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3.2 Performance Assessment

Tables 4 and 5 outline the performance criteria values for two stations Urmia and Birjand in
the training and testing period. For all selection methods, the value of RMSE, R, and NSE at
Birjand is consistently better than those in the Urmia site throughout the simulation period.
Based on the obtained results for performance criteria, the accuracy of the downscaling
procedure with SRA outperform (bolded values) others in both sites during training and testing
periods.

Downscaled and observed descriptive statistics were presented in Table 6, and the best
values were bolded. In this table, Std.Dev and CV denote the standard deviation and
coefficient of variation, while KS and SC indicate kurtosis coefficient and Skewness Coeffi-
cient. It reveals that downscaling based on SRA has more accurate than others, although there
is no obvious difference between estimated statistical components such as Std. Dev, CV, SC,
IRF, and ACB by different methods.

Figure. 4 presents the violin plots of observation versus downscaled rainfall in the wet days.
This plot exhibits both the frequency density and box plot. In this plot, the green boxes, white
circles, and squares express, respectively, the limitation of 5 and 95th percentiles, median, and
average. This figure indicates that there is an underestimation of rainfall in both stations and all
selection methods. As shown, heavy rainfalls (more than 15 mm.day-1) have no density in all
selection methods, whilst the frequency of these events in the observation is significant.

Note that Fig. 4 shows the probability distribution form. The observation violin indicates
that as rainfall increases, its density reduces smoothly. Whereas, some simulated violins have

Table 4 Results of performance criteria in training period

Stations Method RMSE(mm.day−1) R NSE

Urmia CA 2.894 0.521 0.271
PCA 2.922 0.507 0.257
SRA 2.826 0.552 0.305
LASSO 2.975 0.480 0.230
BMA 2.944 0.496 0.246

Birjand CA 1.742 0.591 0.349
PCA 1.743 0.591 0.348
SRA 1.722 0.604 0.364
LASSO 1.807 0.548 0.299
BMA 1.743 0.590 0.348

Table 5 Results of performance criteria in testing period

Stations Method RMSE(mm.day−1) R NSE

Urmia CA 2.828 0.545 0.290
PCA 2.850 0.541 0.279
SRA 2.798 0.554 0.305
LASSO 2.922 0.508 0.242
BMA 2.920 0.498 0.243

Birjand CA 1.720 0.596 0.354
PCA 1.723 0.594 0.352
SRA 1.719 0.597 0.355
LASSO 1.774 0.565 0.314
BMA 1.720 0.596 0.355
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violated this pattern. For example, in the Urmia site (Fig. 4a) in the observation violin, the
density of rainfall with 9 mm.day-1 is less than 8 or 7 mm.day-1, whilst the PCA violin shows
the equal density for rainfalls ranged between 9 to 10.5 mm.day-1. Similar behavior is
understood in the CA and LASSO violins. This point may be better realized in the Birjand
station (Fig. 4b), where the LASSO violin confirms this matter. However, the style of BMA
and SRA violins in the Urmia station, as well as the BMA and CA violin in the Birjand are
closer to observation ones.

In this section, the comparison results of observed and downscaled CDF has been present-
ed. The results strongly rejected the null hypothesis in which actual and downscaled rainfall
come from identical distribution. But KS test statistic (D) was computed and compared for
better examination between different methods (Fig. 5). According to D values, the
downscaled rainfall using BMA predictors obtained the lowest D value, and conse-
quently, it gained more similar to observation ones. The superiority of BMA to SRA
has approved by Su et al. (2019).

To better analyze, the scatter plot with Mean of Error (ME) for the observed and simulated
rainfall was illustrated. Based on Fig. 6a, all selection methods downscaled the rainfall with an
underestimation in the Urmia station. Also, this Figure indicates that the estimation of small
rainfalls (less or equal to 5 mm) is better than larger. As shown, based on the ME, the
underestimation in the Urmia station is varied between different methods, as the downscaling
process based on the LASSO has the most bias (−3.87 mm) while the lowest bias is owned for
the SRA (−3.11 mm). The same results may be received in the Birjand station, but it seems
that, due to less ME, there is more accuracy in this station.

Table 6 Descriptive statistics of measured and downscaled rainfall

Indices Station Actual CA PCA SRA LASSO BMA

Average (mm) Urmia 0.81 0.59 0.54 0.62 0.49 0.49
Birjand 0.45 0.34 0.34 0.34 0.28 0.34

Median (mm) Urmia 0.00 0.00 0.00 0.00 0.00 0.00
Birjand 0.00 0.00 0.00 0.00 0.00 0.00

Max (mm) Urmia 61.00 15.27 13.28 20.35 11.09 11.09
Birjand 39.00 14.35 11.62 11.76 10.52 13.45

Std. Dev Urmia 3.36 1.60 1.49 1.78 1.35 1.35
Birjand 2.14 1.24 1.22 1.23 1.08 1.24

CV Urmia 4.15 2.69 2.74 2.87 2.77 2.77
Birjand 4.73 3.63 3.57 3.61 3.88 3.61

KC Urmia 79.23 16.88 17.02 23.06 15.84 22.07
Birjand 81.25 32.27 23.82 25.17 25.51 30.28

SC Urmia 7.47 3.76 3.78 4.28 3.70 4.12
Birjand 7.73 5.13 4.61 4.71 4.81 5.01

90th P (mm) Urmia 2.00 2.11 2.02 2.17 1.83 1.97
Birjand 0.20 1.13 1.14 1.11 0.00 1.12

95th P (mm) Urmia 5.00 3.79 3.54 3.89 3.24 3.43
Birjand 2.40 2.41 2.50 2.52 2.09 2.44

97.5th P (mm) Urmia 10.00 5.74 5.34 6.13 4.88 5.32
Birjand 6.00 4.17 4.49 4.38 4.04 4.21

99th P (mm) Urmia 16.20 8.25 7.55 9.18 7.13 7.62
Birjand 10.76 6.76 6.69 6.90 6.30 6.77

IRF Urmia −0.76 −0.71 −0.78 −0.65 −0.69
Birjand 1.01 1.04 1.05 0.87 1.02

ACB (mm) Urmia 1.32 1.48 1.28 1.94 1.60
Birjand 0.94 1.04 1.03 0.51 0.96

419Examination of Various Feature Selection Approaches for Daily...



The comparison of the simulated wet and dry spells was carried out, and the results were
presented in Table 7. As the CSI indicates (last column in the table), the downscaled data for
various selection methods is more accurate in the Birjand than Urmia. Considering the last
rows, in the Urmia station, there are 703 and 4776 days for wet and dry events, respectively.
Whilst the downscaled data for all selection methods contains an over- and under- forecast for
wet and dry days. For example, the downscaling based on the CA, detected correctly 490 wet

Fig. 4 Violin plot between observation and downscaled rainfall in wet days based on different selection methods
in Urmia (a) and Birjand (b) stations
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days while it made 213 false detections. Also, this procedure simulated 4218 dry days
correctly, but it made a mistake 558 times in detecting of dry events. Although there isn’t a
significant difference between CA, PCA, RSA, and BMA methods, the CA and PCA have
acceptable act in both stations.

Figure 7 exhibits the observed and downscaled frequency of the wet spells with different
duration (days) in both stations. This figure indicates that all selection methods simulated long-
duration wet spells (more than 2 days) more than measured ones. This is while these methods
had underestimated the daily rainfall (see Table 6 and Figs. 4 and 6). In contrast, these methods
have better efficiency in the short-duration wet spells (less or equal to 2 days). Furthermore,
form Fig. 7b, it can be derived that there is more consistency, particularly in the wet spells with
length 2, 3, and 5 days, in the Birjand. It is obvious that the simulated wet spells in the Birjand
station (with more arid climate and lower rainfall) are closer together.

The obtained results from various tests have been summarized here. It can be understood
that there is a great desire in all methods to select circulation and humidity variables located in
the low-pressure levels. The selection methods frequently picked the meridional wind com-
ponent and relative vorticity of true wind at 500 hPa well as surface precipitation in both
stations.

Generally, the accuracy of downscaling based on all selection methods in the Urmia site is
less than the Birjand. It is likely related to the inherent dynamic of rainfall in these two climate
patterns. Since rainfall variation is significantly more in Urmia than Birjand, then it led to the
rainfall process is more complicated.

As shown, the strengths and weaknesses of various selection methods are different in
diverse comparison tests. For example, based on the comparative tests such as performance
criteria and statistic components, the SRA- based downscaling rendered better results. This is
while in other tests, including distributions comparison, the BMA-based downscaling is

Fig. 5 KS test statistic for all selection methods in Urmia and Birjand stations
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Fig. 6 Comparison of downscaled and observed rainfall in wet days over testing period for Urmia (a) and
Birjand (b) stations
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outperformed. Also, there is a similarity between methods in comparison to wet and dry spells
at two sites. However, it can be declared that the SRA and BMA gained more accurate results
than other methods. But, due to many drawbacks of SRA as reported in hard interpretation in
the multi-collinearity case (Winkler 1989), it can be derived that BMA predictors are more
reliable for downscaling. The BMA gives better information about selected predictors, as it
presents a distribution instead of a single number. Also, the final BMA predictors have been
selected based on maximum likelihood, so it has no problem even in multi-colinearity
conditions.

4 Conclusion

This study has designed a framework in MATLAB to take three different approaches:
correlation, regression, and maximum likelihood to select the most relevant predictors for
downscaling procedure in the two different climates. Within the suggested plan, we employed
Pearson and partial strategies in correlation fashion, stepwise, and penalized strategies in
regression and Bayesian theorem as likelihood techniques. Also, the downscaling process
was carried out using the SVM technique, and the comparison stage was done through many
tests to find out the ability of each selections method.

The outcomes of different comparative tests indicated that generally, the accuracy of the
downscaling process influenced by predictors selected by BMA and SRA outperformed other
selection methods. Also, it should be noted that the BMA has some more advantages than
SRA.

Table 7 results of contingency table events at both stations and in testing period

Station Method Estimated events Observed events Sum of simulated events CSI

Wet days Dry days

Urmia CA Wet days 490 558 1048 0.39
Dry days 213 4218 4431

PCA Wet days 482 514 996 0.40
Dry days 221 4262 4483

SRA Wet days 481 525 1006 0.39
Dry days 222 4251 4473

LASSO Wet days 445 500 945 0.37
Dry days 258 4276 4534

BMA Wet days 468 539 1007 0.38
Dry days 235 4237 4472

Sum of observation events 703 4776
Birjand CA Wet days 299 309 608 0.41

Dry days 123 4748 4871
PCA Wet days 298 295 593 0.42

Dry days 124 4762 4886
SRA Wet days 288 299 587 0.40

Dry days 134 4758 4892
LASSO Wet days 254 234 488 0.39

Dry days 168 4823 4991
BMA Wet days 300 309 609 0.41

Dry days 122 4748 4870
Sum of observed events 422 5057
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Finally, we present some limitations excited in this study to obtain a specific outlook and to
overcome them for future studies. First, we employed default BMA to select the most
influential predictors, while some presented version of BMA currently has more superiorities,
and it leads to more reliable results. Second, the used algorithm in the LASSO method surely
affects the performance estimate, while the current study used the default algorithm of LASSO

Fig. 7 Observed and downscaled frequency of wet spells at Urmia (a) and Birjand (b) stations
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(CDA). Therefore, it is worthy to note that which of an available algorithm can give a better
estimation of daily rainfall in the downscaling procedure. Third, the current study included two
climate types and examined the effect of predictor selection step in the various approaches, as
for a reliable and good conclusion, more climate categories are required. Hence, it is worthy to
more studies may be conducted to examine the Intercomparison of climate patterns and
predictor selection methods.
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