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Abstract
Metaheuristics are highly efficient optimization methods that are widely used today. How-
ever, the performance of one method cannot be generalized and must be examined in each
class of problems. The hybrid algorithm of particle swarm optimization and grey wolf opti-
mizer (HPSOGWO) is new swarm-based metaheuristic with several advantages, such as
simple implementation and low memory consumption. This study uses HPSOGWO for
reservoir operation optimization. Real-coded genetic algorithm (RGA) and gravitational
search algorithm (GSA) have been used as efficient methods in reservoir optimization
management for comparative analysis between algorithms through two case studies. In
the first case study, four benchmark functions were minimized, in which results revealed
that HPSOGWO was more competitive compared with other algorithms and can produce
high-quality solutions. The second case study involved minimizing the deficit between
downstream demand and release from the Hammam Boughrara reservoir located in North-
west Algeria. A constrained optimization model with non-linear objective function was
applied. Based on the average solutions, HPSOGWO performed better compared with RGA
and was highly competitive with GSA. In addition, the reliability, resiliency, and vulner-
ability indices of the reservoir operation, which was derived from the three algorithms,
were nearly similar to one another, which justified the usability of HPSOGWO in this
field.
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1 Introduction

Optimization algorithms aim to determine values of decision variables that maximize or
minimize an objective function with or without constraints. Several algorithms, such as
linear programming (LP; Loucks 1968), non-linear programming (NLP; Arunkumar and
Jothiprakash 2012), and stochastic dynamic programming (SDP; Stedinger et al. 1984),
have been used to solve problems in reservoir optimization management for a single or a
system of reservoirs. Despite the performance and wide usability of the classical methods,
they suffer from several disadvantages, such as inability to solve problems with non-linear
and non-convex objective functions (i.e., in the case of LP) and the curse of dimensionality
(Sharif and Swamy 2014).

Evolutionary optimization algorithms (EOAs) are new methods for searching the
approached solutions for optimization problems with reasonable computation time and
acceptable accuracy. Several EOAs, such as genetic algorithm (GA; Chang and Chen 1998;
Ahmed and Sarma 2005), particle swarm optimization (PSO; Kumar and Reddy 2007;
Ghimire and Reddy 2013), gravitational search algorithm (GSA; Bozorg-Haddad et al.
2016), and weed optimization algorithm (WOA; Karami et al. 2019), have been successfully
used and efficiently addressed critical issues in reservoir operation management.

EOAs have many drawbacks despite their advantages. First, no evidence demonstrates
the generalizability of the performance and superiority of a metaheuristic method across
applications (Wolpert et al. 1997). Second, a large part of EOAs can overlook the global
optimal solution and become trapped in a local one. Third, several algorithms suffer from
imbalance between exploration and exploitation capabilities during a search. Fourth, the
majority of EOAs cannot detect the stochastic nature of certain variables (e.g., inflow,
evaporation, and non-linear form of constraints; Karami et al. 2019). Finally, EOAs are sen-
sitive to parameter setting. In this context, exploring other algorithms that can surpass these
drawbacks is necessary.

Singh and Singh (2017) developed the hybrid algorithm of particle swarm optimiza-
tion and grey wolf optimizer (HPSOGWO), which is a recent nature-inspired algorithm. It
is a combination of PSO (Eberhart and Kennedy 1995) and grey wolf optimizer (GWO)
(Mirjalili et al. 2014) that exploits the benefits of the two algorithms and outperform their
drawbacks. During the optimization process, search agents in HPSOGWO mimic the hunt-
ing behavior of grey wolves (Canis lupus) via the GWO and update their positions by using
the PSO approach. Similarities exist between GWO and HPSOGWO in the majority of the
structure. However, HPSOGWO retains the main advantages of the GWO, such as the sim-
ple design, ease of coding, and low memory consumption (Faris et al. 2018). The authors
of HPSOGWO compared it with PSO and GWO by minimizing 23 benchmark functions
from the work of Yao et al. (1999). Based on statistical results, HPSOGWO displays bet-
ter performance in terms of solution quality, stability, computational time, and capability to
achieve the global optimum.

The water resource management field has yet to apply HPSOGWO, which may encour-
age researchers to explore its capabilities in this field. Thus, this study tests and compares
HPSOGWO with RGA and GSA. Comparison was based on minimizing four benchmark
functions and solving the reservoir operating optimization problem with a constrained non-
linear objective function. The algorithms were evaluated based on the statistical results of
analysis on the one hand and the reliability, vulnerability, and resiliency indices of reservoir
operation on the other hand. Examining the performance of HPSOGWO in dealing with the
aforementioned problems is the ultimate objective of this study.

4546



HPSOGWO for Reservoir Operation Optimization

2 Materials andMethods

2.1 Optimization Techniques

2.1.1 Hybrid PSOGWO

HPSOGWO is a novel hybrid metaheuristic algorithm, which merges the functionalities of
PSO with GWO to improve the exploration and exploitation abilities of GWO and PSO,
respectively (Singh and Singh 2017). HPSOGWO imitates the hunting behavior of grey
wolves in nature in the form of GWO. Grey wolves live in groups of 5 to 12 members with a
strict hierarchy organized from top to bottom in four categories, namely, alpha (α), beta (β),
delta (δ), and omega (ω). The alpha is considered the dominant member of the group and
is responsible for making decisions regarding the social behavior of the group especially
during hunting. The beta and delta are subordinate to the alpha and can control the remainder
of the group (omega). The hunting mechanism of grey wolves has specific steps as follows:
(1) tracking, chasing, and approaching,(2) pursuing, encircling, and harassing the prey until
it stops moving, and (3) attacking.

In the mathematical model, HPSOGWO runs in the following steps:

1. N grey wolves are defined and placed randomly in the search space as follows:

Xi = {x1
i , x2

i , ...xl
i , ..., x

d
i } i = 1, . . . N (1)

where xl
i denotes the position of the ith wolf at the lth dimension, and d refers to the

search space dimension.
2. Fitness is computed for the search agents by using the objective function. Then, the

agents are ranked in descending order according to fitness, and the first three best agents
are provided with Xα , Xβ , and Xδ attributes, respectively.

3. Coefficient vectors −→
a ,

−→
A , and

−→
C are updated to guide the search process by using the

following equations:
−→
a = 2(1 − k

Kmax

) (2)

−→
A = 2−→a · −→

r 1 − −→
a (3)

−→
C = 2 · −→

r 2 (4)

where k is the current iteration, and Kmax denotes the maximum number of iterations.
r1 and r2 are random vectors in [0,1]. Coefficient −→a will decrease linearly from 2 to 0
at the end of the process.

4. Wolves α, β, and δ are considered closest to the prey because the position of the prey
is unknown. The encircling and hunting behaviors can be performed as follows:

−→
D α = |−→C 1 · −→

X α − w ∗ −→
X |,−→

D β = |−→C 2 · −→
X β − w ∗ −→

X |,−→
D δ = |−→C 3 · −→

X δ − w ∗ −→
X |

(5)

−→
X 1 = −→

X α − −→
A 1 · −→

D α,−→
X 2 = −→

X β − −→
A 2 · −→

D β,−→
X 3 = −→

X δ − −→
A 3 · −→

D δ

(6)
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5. The velocities and positions of the wolves are updated by using the PSO approach as
follows:

vk+1
i = w ∗ (vk

i + c1r1(x1 − xk
i ) + c2r2(x2 − xk

i ) + c3r3(x3 − xk
i )) (7)

xk+1
i = xk

i + vk+1
i (8)

where w represents the inertia constant generated randomly in [0,1], and r3 is a random
value in [0,1].

6. Repeat steps 2 to 5 until the maximum number of iterations is reached. Afterward, the
search agents stop moving, and final position Xα is considered the best solution.

2.1.2 Real-coded Genetic Algorithm

Wright (1991) introduced the real-coded GA (RGA), which is another method of coding
individuals using either real or binary values. In RGA, each gene represents a variable of
the problem, and the size of genome is kept the same as the length of the solution. Wright
(1991), Janikow and Michalewicz (1991), and Chang and Chen (1998) compared the two
versions and concluded that RGA produces superior results compared with binary-coded
GA.

In RGA and for a given optimization problem, a population of N possible solutions Xi =
(x1

i , x2
i , ..., xd

i ) is commonly generated in a pseudo-random manner. During iterations, the
population evolves by forming generations of solutions through three operations, namely,
selection, crossover, and mutation.

In this version of RGA, the stochastic tournament technique is adopted to perform
the selection step, where individuals or ”genomes” from the population are randomly
selected for crossover. To perform the crossover operation, the random single-point tech-
nique is used. It consists of generating a random index l less than d . Therefore, genomes
of the couple exchange genes from index l to d . For example, a pair of genomes X1 =
(x1

1 , ..., x
l
1, ..., x

d
1 ) and X2 = (x1

2 , ..., x
l
2, ..., x

d
2 ) becomes X′

1 = (x1
1 , ..., x

l
2, ..., x

d
2 ) and

X′
2 = (x1

2 , ..., x
l
1, ..., x

d
1 ) after performing a crossover.

To operate mutation, a random single-point mutation is employed, where one gene xl
i is

randomly chosen for a selected offspring X′
i and changed by a random feasible value yl

i .
Thus, a set of size 2N includes fathers, and an offspring is obtained. To guarantee conver-
gence, N individuals with low performance are eliminated, and the process is repeated until
the maximum number of iterations is reached.

2.1.3 Gravitational Search Algorithm

GSA is one of the novel population-based metaheuristic algorithms. The population in GSA
pertains to a set of searcher agents, which are considered masses that interact with one
another by the laws of gravity and movement (Rashedi et al. 2009). The GSA process starts
with initializing a population by considering a set of N agents Xi = (x1

i , ..., xd
i ) defined in

the search space with dimension d . The ith position xl
i of agent Xi in the lth dimension is

randomly defined with a feasible value. Then, the fitness of each agent is calculated by using
the objective function. Therefore, gravitational and inertia masses are computed as follows:

mi(k) = f iti(k) − worst (k)

best (k) − worst (k)
(9)
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Mi(k) = mi(k)
∑N

j=1 mj(k)
(10)

Mai = Mpi = Mii = Mi (11)

where f iti(k) is the fitness value of the ith agent, best (k) and worst (k) are the best and
worst fitness, respectively, at iteration k. Mai , Mpi , and Mii are active, passive, and inertia
masses respectively. The gravitational force acting on agent i by agent j is computed as
follows:

F l
ij (k) = G(k)

Mpi(k) · Maj (k)

Rij (k) + εg

(xl
j (k) − xl

i (k)) (12)

where Rij (k) is the Euclidean distance between agents i and j . εg is a small constant, and
G(k) is the gravitational constant updated at each iteration as follows:

G(k) = G0 e
(

−αgk

Kmax
) (13)

where G0 and αg are initialized at the beginning, and Kmax is the maximum number of
iterations. G will be reduced with the increase in iterations. Therefore, the total force acting
on agent i is calculated as follows:

F l
i (k) =

∑

j∈Kbest ,j �=i

randj · Fij (k) (14)

where randj is a random number in [0,1], and Kbest is the set of first K agents with the
best fitness. Kbest will decrease linearly, and only one agent will be applying force on the
others by the end of the process.

Newton’s law of movement denotes that object acceleration a is dependent only on
applied force F and object mass M . In GSA, the following equation is used to calculate
acceleration.

al
i (k) = F l

i (k)

Mii(k)
(15)

To move agents through the search space, velocities and positions are updated as follows:

vl
i (k + 1) = randi · vl

i (k) + al
i (k) (16)

xl
i (k + 1) = xl

i (k) + vl
i (k + 1) (17)

where vl
i (k) and xl

i (k) denote the velocity and position, respectively, of agent i in dimension
l at iteration k, whereas randi is a uniform random variable in [0,1]. The process is repeated
until iterations reach their maximum limit, where the best fitness value is the global fitness,
whereas the position of the corresponding agent is the global solution.

2.2 Case Study of Benchmark Functions

Before comparing HPSOGWO with RGA and GSA in reservoir operating optimization,
four standard mathematical functions as reported by Yao et al. (1999) are used to evaluate
the performance of algorithms. Table 1 shows the benchmark functions and their character-
istics. Function F1 is unimodal, which has one global minimum and no local minima. F2,
F3, and F4 are multimodal functions with one global minimum and many local minima. The
algorithms are launched 20 times independently for each function minimization, where the
population size is set to 30, and the maximum iteration number is set to 3,000.
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Table 1 Mathematical benchmark functions

Function da Range Global minimum

F1(x) = ∑n
i=1 x2

i 30 [−100, 100] 0

F2(x) = ∑n
i=1[x2

i − 10cos(2πxi) + 10] 30 [−5.12, 5.12] 0

F3(x) = 1
4000

∑n
i=1 x2 − ∏n

i=1 cos(
xi√

i
) + 1 30 [−600, 600] 0

F4(x) = 1
500 + ∑25

j=1[ 1
j+∑2

i=1(xi−aij )6
]−1 2 [−65, 65] 1

aSearch space dimension.

2.3 Case Study of HammamBoughrara Reservoir

The Hammam Boughrara reservoir is the most important reservoir in Tlemcen Wilaya (far
Northwest of Algeria). It is located on the confluence between Mouillah and Tafna Rivers
at 1◦39′61′′W longitude and 34◦52′23′′N latitude, 13 km downstream from Maghnia Town.
Figure 1 shows the geographic location of the study area. The reservoir is characterized by
177 million cubic meters (MCM) of capacity and 23.3 MCM of dead storage. It drains a
basin shared between the Algerian and Moroccan territories with an area of 2,914 km2, a
perimeter of 241 km, and a main thalweg of 104.4 km. The climate of the basin is semi-
arid and experiences a wet season from November to April and a dry season from May to
October. Maximum precipitations are observed in December with an average of 64.2 mm,
whereas the minimal precipitations occur in July with an average of 2.36 mm. The average
annual temperature and wind speed are 18.5◦C and 24 m/s, respectively. Monthly inflows
are variable with a maximum average of 6.29 MCM recorded frequently in November, and
a minimum of 0.88 MCM in June. The reservoir started operations in September 2000 for
multiple purposes, such as (1) water supply for Maghnia at 17 MCM/year, (2) water supply
reinforcement for Oran Town (located approximately 140 km Northeast of Maghnia) at 33

Fig. 1 Location of Hammam Boughrara reservoir
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MCM/year, and (3) irrigation for the Maghnia perimeter (6,000 ha) at 9 MCM/year. The
perimeter is supplied with 38 MCM/year of water by the Beni Bahdel reservoir, which is
located approximately 30 km upstream from the Hammam Boughrara reservoir.

2.4 Reservoir OptimizationModel

In general, the operation of the reservoir is governed by the following constraints:

2.4.1 Mass Balance Constraints

St+1 = St + Qt − Rt − Evt − It − Ot t = 1, . . . T (18)
where St and St+1 are the starting and ending reservoir storage (in MCM), respectively,
at time period t . Qt , Rt , Evt , It , and Ot are inflow, release, evaporation, infiltration, and
overflow (MCM), respectively, during time period t . T pertains to operating duration.

The evaporation loss is computed as follows:

Evt = evtAt (19)

where evt and At are evaporation and reservoir area, respectively, at time period t .

2.4.2 Storage Constraints

Smin ≤ St ≤ Smax t = 1, . . . T (20)
where Smin and Smax are the minimum and maximum storage volumes, respectively, of the
reservoir (MCM).

2.4.3 Release Constraints

0 ≤ Rt ≤ Dt t = 1, . . . T (21)
where Dt is downstream demand (MCM) at time period t .

2.4.4 Overflow Constraints

During the operating period of the reservoir, overflow Ot is estimated as follows:

Ot = Max((St+1 − Smax), 0) t = 1, . . . T (22)

2.4.5 Constraints Application

If constraints (Equations [20] and [21]) are not satisfied, then the following penalties are
applied (Karami et al. 2019):

P1,t =
[

(Smin−St+1)
2

Smin
←− if St+1 < Smin

0 ←− otherwise

]

(23)

P2,t =
[
(
St+1−Smax

Smax
)2 ←− if St+1 > Smax

0 ←− otherwise

]

(24)

P3,t =
[

(Rt−Dt )
2

Dmax
←− if Rt > Dt

0 ←− otherwise

]

(25)
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where Dmax denotes the maximum downstream demand (MCM) over the considered
operating duration T .

2.4.6 Objective Function

This study aims to minimize water supply deficits from the reservoir. As a result, volumes of
release are considered decision variables. By applying penalties, the optimization function
is expressed as follows:

Minimize(Z) =
T∑

t=1

((
Rt − Dt

Dmax

)2 + P1,t + P2,t + P3,t ) (26)

where T is considered 36 months. Figure 2 shows the monthly inflow, downstream demand,
and evaporation loss curves from September 2009 to August 2012 (36 months). These data
are used as input to the optimization model. In addition, the average of monthly infiltration
loss (0.033 MCM) is considered. Notably, hydrological and water consumption data are
provided by the water service office of Tlemcen.

2.5 Evaluation Indices

The reliability, resiliency, and vulnerability indices proposed by Hashimoto et al. (1982) are
considered to evaluate the performance of HPSOGWO compared with RGA and GSA.

2.5.1 Reliability

Volumetric reliability (av) reflects the relation between release and downstream demand for
total operation period T :

av =
∑T

t=1 Rt
∑T

t=1 Dt

(27)

Fig. 2 Monthly inflow, evaporation, and downstream demand of Hammam Boughrara reservoir (September
2009 to August 2012)
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2.5.2 Resiliency

It is defined by the time a system takes to return to normal state following a failure state:

γ = fs

f
(28)

where γ represents the resiliency index, f is the number of failure periods, and fs pertains
to the number of failure series, which is a sequence of successive failure periods preceded
and followed by non-failure periods.

2.5.3 Vulnerability

Vulnerability index (σ ) measures the severity of failures:

σ =
∑fs

j=1 max(Shj )

fs

(29)

where Shj is the maximum shortage during the j th failure series.

3 Results and Discussion

3.1 Mathematical Functions

HPSOGWO was compared with RGA and GSA by minimizing four benchmark functions.
Twenty runs were applied for each function provided in Table 1 to examine the effective-
ness of HPSOGWO. A population of 30 agents and 3,000 iterations were employed, which
indicates that a 9.0E + 04 evaluation function was performed for each run. The parameters
of HPSOGWO were set as follows: C1 = C2 = C3 = 0.5 and w = 0.5(Rand() + 1).
However, the mutation frequency was set to 0.2 for RGA, whereas those of GSA were set
as follows: G0 = 100 and αg = 20.

Table 2 reports the statistical comparison of the solutions found over 20 runs. Clearly,
HPSOGWO found the best solutions, which were closest to the global minimum of func-
tions F1, F2, and F3. However, the best solutions of the three algorithms were closer to one
another for function F4. In addition, the average and standard deviation of the HPSOGWO
solutions were best for F3 and second best for the remainder.

According to the mean values of the F2 solutions, the three algorithms failed to reach the
global minimum of function F2 over several runs, which indicates that they were trapped
in the local minima. Results confirm those by Rashedi et al. (2009) and Singh and Singh
(2017). Moreover, the results obtained by RGA largely differed from the overall minima
of F1, F2, and F3, which may be caused by the small population size (N = 30). Rashedi
et al. (2009) and Bozorg-Haddad et al. (2016) revealed comparable findings when they used
small population sizes in RGA.

Figure 3 displays the average values of the convergence trends. Clearly, HPSOGWO con-
verged slower than RGA and GSA for F1, F2, and F3, but converged simultaneously with
RGA and was faster than GSA for F4. However, a stagnation of the RGA convergence trend
was observed far from the global minimum for F1 and F3, whereas it has progressed slowly
for F2. In addition, another stagnation was observed for F2 and F3 by GSA, which indicates
the trapping of RGA and GSA in the local minima. On the contrary, the average conver-
gence curve of HPSOGWO was improved with the progress in iterations in all cases, which
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Table 2 HPSOGWO, RGA, and GSA statistical results of 20 runs for benchmark functions

Algorithm Stat.criteriona Mathematical function

F1 F2 F3 F4

HPSOGWO Min 5.61E − 132 0.00E + 00 0.00E + 00 0.9980

RGA 5.69E − 01 7.94E − 01 5.88E − 01 0.9980

GSA 2.60E − 17 1.09E + 01 1.05E − 03 0.9980

HPSOGWO Max 1.23E − 05 2.81E + 01 8.85E − 03 0.9985

RGA 1.93E + 00 3.59E + 00 1.03E + 00 0.9980

GSA 9.18E − 17 3.88E + 01 1.98E − 01 6.6955

HPSOGWO Mean 6.19E − 07 7.88E + 00 2.82E − 03 0.9980

RGA 1.30E + 00 1.78E + 00 8.98E − 01 0.9980

GSA 5.24E − 17 2.29E + 01 4.74E − 02 2.1429

HPSOGWO SD 2.76E − 06 1.00E + 01 3.95E − 03 1.04E − 04

RGA 3.61E − 01 6.29E − 01 1.27E − 01 1.50E − 07

GSA 1.99E − 17 6.72E + 00 6.82E − 02 1.47E + 00

aStatistical criterion.

indicates that it could escape from local minima trapping. Thus, the results demonstrate the
effectiveness of HPSOGWO in solving similar problems.

3.2 Case of HammamBoughrara Reservoir

Table 3 reports the sensitivity analysis of HPSOGWO, RGA, and GSA. The test was carried
out to determine the suitable values of algorithm parameters. For HPSOGWO, the best
objective function value (3.05E − 08) was achieved by a population size of 30 and C1 =
C2 = C3 = 0.6. For RGA, a population size of 100 and a mutation frequency of 0.2
provided the best objective function value (8.57E − 05). Typically for GSA, a population
size of 100, αg = 10, and G0 = 20 are necessary to obtain the best value of the objective
function (1.31E −07). Thus, the HPSOGWO found the best solution using the small search
population size (N = 30). In addition, Table 3 highlights that the solutions achieved by
RGA and GSAwere improved by increasing the population size and, consequently, function
evaluation. Notably, the maximum number of iterations equals 3,000 was applied.

Table 4 provides the results of 10 random runs of the three algorithms, where the tun-
ing parameters values cited in Table 3 that gave the best solutions were used. Results in
Table 4 also indicate that HPSOGWO found the best solution, whereas the worst, aver-
age, and standard deviation of HPSOGWO were worse than those of GSA, but better than
those of RGA. The variation coefficient results of HPSOGWO was less than those of RGA
and GSA, which indicate that HPSOGWO is less stable compared with the others. Despite
the high value of variation coefficient, the average and standard deviation values prove the
efficiency of HPSOGWO.

Figure 4 shows a comparison between the convergence trends of the algorithms and
the minimum, maximum, and average solution curves for HPSOGWO. Results show that
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Fig. 3 Average convergence trends of HPSOGWO, RGA, and GSA for mathematical functions

the convergence of HPSOGWO occurred earlier than RGA and GSA, and their minimum,
maximum, and average solution curves were converged to one another.

Figure 5 presents the results of the root square mean error (RMSE) between monthly
release and downstream demand. The RMSE of the HPSOGWO results were in the order
of 2.5E − 04 and better than RGA for each month by 100%, which is also better than those
of GSA in the majority of months by 75%.

Figure 6 illustrates the optimal releases from the Hammam Boughrara reservoir as cal-
culated by the three algorithms and storage evolution during the operating period. Results
indicate the superposition of the release curves with downstream demand for the three algo-
rithms. The derived curves for storage presented the same trend and found between the
minimum and maximum storage volumes of the reservoir. In fact, they evidently show the
algorithms’ consideration of the minimum and maximum storage constraints.

Table 5 presents high reliability and resiliency, and low vulnerability for all algorithms.
The values of the indices were identical for HPSOGWO and GSA and better than RGA.
These finding confirms the previous results and proves the capability of HPSOGWO to
optimize reservoir operation.
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Table 4 Ten random results for HPSOGWO, RGA, and GSA

Run HPSOGWO RGA GSA

1 7.63E − 06 6.34E − 05 2.74E − 07

2 8.20E − 06 3.67E − 05 6.35E − 07

3 1.01E − 05 4.01E − 05 6.28E − 07

4 1.06E − 05 5.58E − 05 6.14E − 07

5 7.50E − 08 5.52E − 05 2.77E − 07

6 3.17E − 05 5.58E − 05 6.49E − 07

7 6.54E − 06 3.50E − 05 3.53E − 07

8 2.42E − 06 5.95E − 05 2.83E − 07

9 1.32E − 06 5.31E − 05 2.10E − 07

10 1.02E − 07 4.79E − 05 3.81E − 07

Best 7.50E − 08 3.50E − 05 2.10E − 07

Worst 3.17E − 05 6.34E − 05 6.49E − 07

Average 7.87E − 06 5.02E − 05 4.30E − 07

Standard deviation 9.29E − 06 9.86E − 06 1.79E − 07

Variation coefficient 1.18 0.196 0.417

Fig. 4 a convergence trends of HPSOGWO, RGA, and GSA for Hammam Boughrara reservoir and
b minimum, maximum, and average solutions for HPSOGWO algorithm
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Fig. 5 Monthly RMSE of algorithms during the operation period (MCM)

Fig. 6 a released water volume and b storage volume evolution

Table 5 Results of reliability, resiliency, and vulnerability indices for the Hammam Boughrara reservoir

Index Hybrid PSOGWO Real-coded GA GSA

Reliability (%) 99.99 99.84 99.99

Resiliency (%) 100 90 100

Vulnerability (%) 0.02 0.58 0.02
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4 Conclusion

Evolutionary algorithms have recently been used to solve a wide range of optimization
problems. This study evaluated a hybrid algorithm of PSO and GWO, which is collectively
called HPSOGWO. The study used two case studies, namely, minimizing four benchmark
functions and solving the single reservoir optimization problem using the non-linear objec-
tive function. In addition, HPSOGWOwas compared with two efficient algorithms, namely,
RGA and GSA, whose performances were verified in the literature.

In the first case study, the algorithms were independently run for 20 times, where
HPSOGWO proved its competitive capability of minimizing unimodal and multimodal
mathematical functions. It was ranked the most powerful among half of the studied
benchmarks and second for the remainder.

Optimizing the Hammam Boughrara reservoir operation was selected as the second case
study, where the three algorithms were independently run 10 times. Sensitivity analysis
demonstrated that HPSOGWO required a small search population size and can achieve
high-quality solutions. Moreover, the average monthly RMSE indicated the high precision
of release computation by HPSOGWO compared with the other algorithms. However, the
average and standard deviation of the results revealed that HPSOGWO ranked second to
GSA. The reliability and resiliency indices for the algorithms were high, whereas the vul-
nerability index was low. Furthermore, the indices for HPSOGWO and GSA were identical
and better than RGA. Hence, the previous results prove the usability of HPSOGWO for
such problems.

Despite the capability of HPSOGWO to overcome trapping in the local minima, it suffers
from drawbacks, such as low stability, which is indicated by the high value of variation
coefficient compared with RGA and GSA. Thus, additional efforts are needed to improve
its performance.
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Bozorg-Haddad O, Janbaz M, Loáiciga HA (2016) Application of the gravity search algorithm to multi-
reservoir operation optimization. Advances in water resources 98:173–185

Chang F-J, Chen L (1998) Real-coded genetic algorithm for rule-based flood control reservoir management.
Water Resour Manag 12(3):185–198

Eberhart R, Kennedy J (1995) A new optimizer using particle swarm theory. In: Micro Machine and Human
Science, 1995. MHS’95., Proceedings of the Sixth International Symposium on, IEEE, pp 39–43

Faris H, Aljarah I, Al-Betar MA, Mirjalili S (2018) Grey wolf optimizer: a review of recent variants and
applications. Neural computing and applications 30(2):413–435

Ghimire BN, Reddy MJ (2013) Optimal reservoir operation for hydropower production using particle
swarm optimization and sustainability analysis of hydropower. ISH Journal of Hydraulic Engineering
19(3):196–210

Hashimoto T, Stedinger JR, Loucks DP (1982) Reliability, resiliency, and vulnerability criteria for water
resource system performance evaluation. Water resources research 18(1):14–20

Janikow CZ, Michalewicz Z (1991) An experimental comparison of binary and floating point representations
in genetic algorithms. In: ICGA, pp 31–36

Karami H, Ehteram M, Mousavi S-F, Farzin S, Kisi O, El-Shafie A (2019) Optimization of energy manage-
ment and conversion in the water systems based on evolutionary algorithms. Neural Comput & Applic
31(10):5951–5964

4559



S. Dahmani, D. Yebdri

Kumar D, Reddy M (2007) Multipurpose reservoir operation using particle swarm optimization. J Water
Resour Plan Manag 133(3):192–201

Loucks DP (1968) Computer models for reservoir regulation. J Sanit Eng Div 94(4):657–670
Mirjalili S, Mirjalili SM, Lewis A (2014) Grey wolf optimizer. Advances in engineering software 69:46–61
Rashedi E, Nezamabadi-Pour H, Saryazdi S (2009) Gsa: a gravitational search algorithm. Information

sciences 179(13):2232–2248
Sharif M, Swamy VSV (2014) Development of lingo-based optimization model for multi-reservoir systems

operation. International Journal of Hydrology Science and Technology 4(2):126–138
Singh N, Singh SB (2017) Hybrid algorithm of particle swarm optimization and grey wolf optimizer for

improving convergence performance. J Appl Math, 1–15
Stedinger JR, Sule BF, Loucks DP (1984) Stochastic dynamic programming models for reservoir operation

optimization. Water resources research 20(11):1499–1505
Wolpert DH, Macready WG et al (1997) No free lunch theorems for optimization. IEEE transactions on

evolutionary computation 1(1):67–82
Wright AH (1991) Genetic algorithms for real parameter optimization. In: Foundations of genetic algorithms,

vol 1, Elsevier, pp 205–218
Yao X, Liu Y, Lin G (1999) Evolutionary programming made faster. IEEE Transactions on Evolutionary

computation 3(2):82–102

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

4560


	HPSOGWO for Reservoir Operation Optimization
	Abstract
	Introduction
	Materials and Methods
	Optimization Techniques
	Hybrid PSOGWO
	Real-coded Genetic Algorithm
	Gravitational Search Algorithm

	Case Study of Benchmark Functions
	Case Study of Hammam Boughrara Reservoir
	Reservoir Optimization Model
	Mass Balance Constraints
	Storage Constraints
	Release Constraints
	Overflow Constraints
	Constraints Application
	Objective Function

	Evaluation Indices
	Reliability
	Resiliency
	Vulnerability


	Results and Discussion
	Mathematical Functions
	Case of Hammam Boughrara Reservoir

	Conclusion
	References


