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Abstract
Accurate forecast of the magnitude and timing of the flood peak river discharge and the
extent of inundated areas during major storm events are a vital component of early
warning systems around the world that are responsible for saving countless lives every
year. This study assesses the forecast accuracy of two different linear and non-linear
approaches to predict the daily river discharge. A new linear stochastic method is
produced by evaluating a detailed comparison between three pre-processing approaches,
differencing, standardization, spectral analysis, and trend removal. Daily river discharge
values of the Bow River with strong seasonal and non-seasonal correlations located in
Alberta, Canada were utilized in this study. The stochastic term for this daily flow time
series is calculated with an auto-regressive integrated moving average. We found that
seasonal differencing is the best stationarization method for periodic effect elimination.
Moreover, the proposed non-linear Group Method of Data Handling (GMDH) model
could overcome the known accuracy limitations of the classical GMDH models that use
only two inputs in each neuron from the adjacent layer. The proposed new non-linear
GMDH-based method (named GS-GMDH) can improve the structure of the classical
linear GMDH. The GS-GMDH model produced the most accurate forecasts in the Bow
River case study with statistical indices such as the coefficient of determination and Nash-
Sutcliffe for the daily discharge time series higher than 97% and relative error less than
6%. Finally, an explicit equation for estimation of the daily discharge of the Bow River is
developed using the proposed GS-GMDH model to showcase the practical application of
the new method in flood forecasting and management.
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1 Introduction

One of the most important ways to reduce the damages of floods in large cities is to design a
robust, reliable, and universal method for flood forecasting and early warning detections
(Walton et al. 2019; Gholami et al. 2019). Due to climate change, water-related studies have
attained increased importance by many researchers. Climate change forecasts have suggested
that impacts on water resources will have devastating consequences on human and ecological
health. In this manner, the planning and management of water resources will be the most
critical issue faced by humankind (Gharabaghi and Sattar 2019). Climate change can increases
the potential for extreme rainfall as well as the risk of flooding. Indeed, river flow forecasting
is vital for the management and planning of river basins, including water allocation for
agriculture, generation of hydroelectric energy, navigation planning, risk appraisal, droughts,
and flood control (Khatibi et al. 2012). Floods are presently the dominant natural disaster and
tend to have the most significant associated economic cost (Serinaldi et al. 2018). One-third of
all natural disasters in Canada between 1950 and 2012 were the result of floods (Kelly and
Stodolak 2013).

1.1 Data-Driven Models

Expanding upon data-driven models has an extended application in flood modelling, which
has gained a heightened reputation in recent years. Amongst them, one of the most popular
methods is the group method of data handling (GMDH) (Najafzadeh et al. 2015). The GMDH
is a self-organized approach that is capable of introducing different explicit equations for
practical applications. However, due to intricate non-linear patterns in time series, their use
needs professional programming knowledge. Also, the critical question with these methods is
the selection of the best input parameters for predicting the results with high accuracy (Ebtehaj
et al. 2020).

1.2 Problem Statement

The use of stochastic-based models has generally been rejected due to their linear nature in the
modelling of hydrological processes, and in most studies, inefficiencies have been reported
(Mosavi et al. 2018). Recently, Bonakdari et al. (2019) indicated that considering an appro-
priate linear methodology could result in improved modelling compared to a non-linear
approach (such as ANFIS and neural network) in terms of accuracy and simplicity. Therefore,
the following fundamental questions arise: 1) Can the identification of deterministic and
stochastic terms of the time series also provide a useful solution in modelling river discharge
with strong seasonal and non-seasonal correlations with a stochastic model?; and 2) What is
the performance of this linear methodology in comparison with the non-linear model? This
study seeks to address these questions for the case of a highly complex daily time series data
set with strong seasonal and non-seasonal correlations.

1.3 Scope of the Current Study

This study provides a comparison of a novel stochastic based linear methodology with a new
encoding of the GMDH known as the generalized structure of the GMDH (GS-GMDH) for the
daily discharge forecasting in the Bow River in Alberta, Canada. Both proposed linear and

Bonakdari H. et al.3690



non-linear approaches are encoded in MATLAB. The linear methodology assessed the
existence of the deterministic and stochastic terms and suggested a method to remove the
deterministic terms. In the non-linear GS-GMDH model, to overcome the limitation of the
classical GMDH method (which uses only a second-order polynomial and lacks the use of
nonadjacent inputs in each neuron), a second and third order polynomial and inputs from
adjacent layers in each neuron. Finally, the performance of the best linear-based stochastic
model is compared with the best GS-GMDH based model as a non-linear approach using
multi-criteria statistical indices.

1.4 Hydrological Data Collection

The highest natural disaster in Canadian history in terms of economic losses was the June 2013
flood event that affected the city of Calgary, Alberta, where five lives were lost. As much as $6
billion CAD in economic losses were sustained (Pomeroy et al. 2016). This flood event
resulted in one of the top causes of the domestic insurance misfortunes in Canada
(Insurance Bureau of Canada 2017).

Moreover, the cost of infrastructure damages, recovery costs, and emergency response were
$409 million, $323 million, and $55 million CAD, respectively. In addition to the June 2013
flood event, $186,831,824 was paid by insurance companies in response to 21,179 flood
claims from the 2005 flood event that also affected Calgary (Dohy 2005).

The Bow River is located in Alberta, Canada, and flows through the city of Calgary. The
headwaters are located in the Rocky Mountains at the Bow Glacier and merges with the
Oldman River and eventually form the South Saskatchewan River (Fig. 1a). A hydrometric
station had collected daily discharge data in the Bow River (05BH004, located at 51o03’00” N,
114o03’05” W) near Calgary from 2000 to 2018.

The Bow River drains a gross area of 7870 km2. The average daily discharge of the Bow
River is 90.7 m3/s. The banks of this river overflow when the flow rate reaches 500 m3/s and
influences to structures, and overland flooding happens when the flow rate reaches 850 m3/s
(City of Calgary 2018). The daily discharge data related to the Bow River and statistical
indices of these data for training and testing stages are presented in Fig. 1b and Table 1,
respectively.

2 Theoretical Conceptions

2.1 Linear Modeling Conceptions

The autoregressive integrated moving average (ARIMA) is one of the most popular linear
methods for predicting time series. This method may also be defined seasonally, which is then
known as the Seasonal ARIMA (SARIMA). The ARIMA method is defined as:

ARIMA p; d; qð Þ ¼ φ Bð Þ 1 Bð Þx tð Þ ¼ θ Bð Þ ε tð Þ ð1Þ

where p and q are the order of autoregressive (AR) and moving average (MA), d is the
differencing degree, φ and θ are the AR and MA parameters (respectively), (1-B)d is the dth
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(a) Location of studied site

(b) Daily time series from January 2000 to January 2018

Fig. 1 The location and daily discharge of the Bow River near Calgary, Alberta, Canada
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non-seasonal differencing operator, x(t) is the raw time series, and the ε is the residual.
Considering k as the non-seasonal parameters (φ and θ), the non-seasonal differencing is
calculated as follows:

k Bð Þ1 k B kB2−K3B3−…KnBn ð2Þ
where n is the order of non-seasonal parameters (p and q). In the modelling of the time series
using stochastic processes, the series should be subject to certain conditions. The Jarque-Bera
(JB) (Jarque and Bera 1980) test is used to verify the normality of the series, and is defined as
follows:

JB ¼ n
S2K
6

þ Ku−3ð Þ2
24

 !
ð3Þ

where Ku is elongation, SK is skewed.
If the time series is regular, in the next step, the static term is evaluated, but if the series is

not normal, it will normalize the series using the expression of Box and Cox (1964):

Xn λð Þ ¼
X þ að Þλ

λ
log xþ að Þ

8<: λ≠0
λ ¼ 0

ð4Þ

where Xn(λ) is the normalized time series, λ is the transform data, and α is a constant that xt +
α > 0. We also evaluated the stationary of the time series, to make necessary transformations
on the time series, if necessary before the series can be modelled. One of these tests, which is
applied before the series, is the KPSS static time series test (Kwiatkowski et al. 1992) as
follows:

S2 lð Þ ¼ 1

n
∑
n

t¼1
e2t þ

2

n
∑
1

j¼1
w j; lð Þ 1

n
∑
n

t¼ jþ1
etet−s ð5Þ

w s; lð Þ ¼ 1− j= l þ 1ð Þ ð6Þ

KPSS ¼ 1

n2
∑
n

t¼1

S2t
S2 lð Þ ð7Þ

where St is Σet, l is the truncation lag. KPSS is a series static-statistic at level or trend. Each
time series is formed from the four terms of trend, jump, period, and the stochastic term. The

Table 1 Statistical Indices of Bow River daily discharge, divided into Total, Train, and Test Periods

Statistic Nbr. Min. Max. 1st Q. Median 3rd Q. Mean σ(n) γ1 γ2

Total 6574 27.90 1750.00 54.60 64.20 93.50 86.38 64.95 6.81 114.85
Train 5917 30.10 1750.00 54.90 64.30 93.70 86.95 65.89 7.07 119.85
Test 657 27.90 392.00 49.60 62.80 91.30 81.27 55.63 2.64 8.35

Nbr., Number of data, Min. and Max., Minimum and Maximum of data, 1st Q. and 3rd Q., first and third
Quarters, σ(n), Standard Deviation, γ1, Skewness, γ2, Kurtosis
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existence of any of the first three terms in the time series causes the time series to become non-
stationary. One of the most commonly utilized methods for time series stationary is differenc-
ing. In this method, the differential series is created by subtraction of two consecutive data
values (i.e., Diff (t) = X (t) -X (t-1)). The trend and seasonal changes in the series are
eliminated, and ultimately stationary the series can be obtained. Alternatively, the methods
of differentiation (diff.), standardization (Std.), and spectral analysis (Sf.) can be used as time-
series methods (Bonakdari et al. 2019). The non-parametric Mann-Kendal test is applied to test
the process, to identify the gradual changes that occur over time in the time series (Jain and
Kumar 2012). The standard of Mann-Kendall statistic (STDMK), can be obtained as follows:

STDMK ¼
MK−1ð Þvar MKð Þ−0:5

0
MK þ 1ð Þvar MKð Þ−0:5

Mk > 0
MK ¼ 0
MK < 0

ð8Þ

where MK is the Man-Kendall statistic, and var(MK) represents the variance of MK. MK and
var (MK) are calculated as:

MK ¼ ∑
N−1

i¼1
∑
N

j¼iþ1
sgn X j−X i
� �

and

var MKð Þ ¼ 2N3−7N2−5N
� �

−∑
g

j
Obs j Obs j−1

� �
2Obsj þ 5
� � !

=18 ð9Þ

where X is data values, Obsj is the number of observations at the jth group, g is the number of
identical groups, N is the number of samples, and sgn is the sign function. Gradual changes in
the time series may occur alternately and seasonally, leading to a seasonal process in the time
series. In this case, using the seasonal Mann-Kendall test, the seasonal process is identified as
follows:

Sk ¼ ∑
Nk1

i¼1
∑

Nk−1

j¼iþ1
sgn X ki−X kj
� � ð10Þ

SMK ¼ ∑
ω

k¼1
Sk−sgn Skð Þð Þ ð11Þ

var SMKð Þ ¼ 2 ∑
ω−1

k¼1
∑
ω

j¼iþ1
σij þ ∑

ω

k
2N 3k−5Nk
� �

=18 ð12Þ

STDSMK ¼ MK var MKð Þ−0:5 ð13Þ
where σij is the covariance of statistic test in season i and j, and ω represents the number of the
seasons in a year. If the probability of the statistics of these tests is higher than the significant
level of 0.05, the time series has lacked any process. The jump the series can be tested with the
following equation (Mann and Whitney 1947):
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MWU ¼ ∑
t¼1

N1

Dg Xorderedð Þ−Nm1 Nm1þNm2þ1ð Þ
2

� �
= Nm1Nm2 Nm1 þ Nm2 þ 1ð Þð Þ0:5=12
� �

ð14Þ

In the relationship, Xordered is the series arranged according to the original X(t), Dg (Xordered)
degrees of the Xordered function, Nm1, and Nm2 is the number of members of the original series,
Nm1 +Nm2 =Ntotal. The frequency in time series can be verified using the autocorrelation function
(ACF) and the partial autocorrelation (PACF) diagrams. Another test that numerically examines
time series is the Fisher test (Kashyap and Rao 1976). The test statistic is calculated as:

F* ¼ N N−2ð Þ a2k þ β2
k

� �
4 ∑

k

z¼1
x tð Þ−azcos Ωztð Þ−βzsin Ωztðð Þ

� � ð15Þ

where N is the number of sample data, F* is the Fisher test statistic, αz and βz are Fourier
coefficients, and Ωz is the angular frequency obtained as follows:

az ¼ 2

N
∑
N

t¼1
x tð Þcos 2πf ztð Þ

� �
z ¼ 1; 2;…; k ð16Þ

βz ¼
2

N
∑
N

t¼1
x tð Þ 2πf ztð Þ

� �
z ¼ 1; 2;…; k ð17Þ

f z ¼
z
N
Ωz ¼ 2πz

N
z ¼ 1; 2;…; k ð18Þ

In the above relationships, fz is equal to the z-th harmonic of the base frequency. The
periodicity of Ωz is significant when the critical value F at the confidence level F (2, N-2) is
lower than the F* value.

F*≥ F 2;N−2ð Þ ð19Þ
For a significant level of 0.05, the level of freedom in the denominator is equal to 3. The
Ljung-Box test is used to check the validity of the modeling to verify the autonomy of the
residuals of the time series (Ljung and Box 1978). The test statistic is calculated as follows:

Qm ¼ N N þ 2ð Þ ∑
m

h¼1

rh
N−1

ð20Þ

In this relationship, N is the number of samples, rh is the correlation coefficient of the residues
(εt) in delay h, m is equal to ln (N). If the probability of the Ljung-Box test statistic in the χ2
distribution is higher than the confidence level α (in this case PQ >α = 0.05), the residue series
is independent, and the model is appropriate.

2.2 Group Method of Data Handling (GMDH)

The GMDH neural network arises from the bonding of different pairs through a quadratic
polynomial by a set of neurons. The system describes a quadratic polynomial obtained by an
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approximate function bfwith output y from all neurons, for inputs X= f (x1,x2, …xn)with the
lowest error compared to the actual output of y. Therefore, for the observed sample M,
including n inputs and one output, the results are represented in the form of:

yi ¼ f xi1; xi2; xi3;…; xinð Þ i ¼ 1; 2;…;Mð Þ ð21Þ
In the GMDH method, a network that can predict the output value y for any input vector x can
be calculated according to:

by1 ¼ bf xi1; xi2; xi3;…; xinð Þ i ¼ 1; 2;…;Mð Þ ð22Þ
So that the mean square error between the observed values and the estimated values is
minimized, as:

MSE ¼
∑
M

i¼1
byi−yi� �2
M

→Min ð23Þ

The general formula of structure between the input and output variables can be represented
using the polynomial function, as:

y ¼ a0¼ þ ∑
n

i¼1
a1xi þ ∑

n

i¼1
∑
n

j¼1
aijxix j þ ∑

n

i¼1
∑
n

j¼1
∑
n

k¼1
aijkxix jxkþ ð24Þ

The following second order form and two-variable polynomials are expressed as:

by ¼ G xi; x j
� �þ a0 þ a1xi þ a2x j þ a3x2j þ a4x2j þ a5xix j ð25Þ

The unknown coefficients ai in the above equation are estimated by regression methods in
such a way that the difference between the true output y and the estimated y values for each
pair of input variables xi and xj is minimized. A set of polynomials is constructed using Eq.
(25), all unknown coefficients are calculated by the least squares (LS) method. The coefficients
of each neuron equation (for each function Gi) are obtained by minimizing its total error to
adapt the inputs to all pairs of input-output sets optimally.

E ¼
∑
M

i¼1
yi−Gið Þ2

M
→Min ð26Þ

In the GMDH algorithm, all dual neurons are constructed of n input variables, and unknown
coefficients of all neurons are calculated using the LS method. Therefore, the number of

neurons to build the second layer are nð 2Þ ¼ n n−1ð Þ
2

, which can be represented as the

following set:

yi; xip; xiq
� �j i ¼ 1; 2;…;Mð Þ&p; q∈ 1; 2;…;Mð Þ� 	 ð27Þ

From the quadratic form of the function expressed in the relationship (5), each M triple row is
used; these equations can be expressed in the form of the following matrix:

Aa ¼ Y ð28Þ
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where A is the vector of unknown coefficients of the second order equation shown in Eq. (25)
and:

a ¼ a0; a1;…a5f g ð29Þ

Y ¼ y1; y2…yMf gT ð30Þ

A ¼

1 x1p x1p x21p x21q x1px1p
1 x2p x2p x22p x22p x2px2q

: : : : : :
: : : : : :
: : : : : :

1 xMp xMp x2Mp x2Mq xmpxMq

26666664

37777775 ð31Þ

The least squared method of multi-regression analysis calculates the equations in the form of
the following equation:

a ¼ AT A
� �−1

ATY ð32Þ
This equation generates a vector of coefficients of Eq. (25) for all three triangular M sets.

2.3 Generalized Structure of GMDH

Although GMDH has a great ability to model non-linear problems, this method is subject
to some limitations, including 1) the use of a second-order polynomial; 2) inputs of each
neuron are provided only from adjacent neurons, and 3) each neuron only has two inputs.
Therefore, this method may not be accountable for issues of considerable complexity.
Thus, in this study to address the problems presented, GMDH generalized structure (GS-
GMDH) is introduced. In this method, neuron inputs can be two to three. In addition to
the second-order polynomials, the third-order polynomial can also be used. The inputs of
each neuron can be from adjacent layer neurons, and can also use the neurons of
nonadjacent layers.

2.4 The Structure of the Proposed Models

In this study, two linear and non-linear methods for modelling the daily discharge of
the Bow River are presented. In the non-linear process, the GMDH algorithm is used
where, as explained in the previous section, the structure of this method has been
modified so that it has advantages over the classical GMDH method. The linear
method used is the ARIMA method, which has been used by several previous
researchers. First we evaluated the normalization of the time series training data by
the Jarque-Bera test. In the case of non-normality, the Box-Cox Transform normal-
ization is completed. The stationary time series is then assessed using the KPSS test.
Jump and period are other definite terms. By using the Mann-Whitney and Fisher
tests (respectively), the existence of jump and period are examined, and by
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differencing, standardization and spectral analysis are removed. After eliminating
definite terms, the time series modelling is performed using the ARIMA method.
After modeling, the independence of the residuals is evaluated using the Ljung-Box
test. Following the verification step, the accuracy of the linear modelling results and
the GS-GMDH methods are evaluated using the test data (Fig. 2).

3 Modelling Evaluation Measures

Due to the stochastic nature of the hydrological variables, the use of single criteria to assist in
the execution of a statistical model is not enough. In this study, the coefficient of determination
(R2), as well as two relative indices (mean absolute percentage error (MAPE) and root mean
square relative error (RMSRE)), are used to establish the efficacy of a linear and non-linear
model.

R2 %ð Þ ¼ 100�
∑
n

1¼1
xobsi−X obst

� �
X pi−XPt

� �� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
n

i¼1
X obsi−X obstt

� �2r
∑
n

i¼1
X i¼1−XPt

� �2
0BBB@

1CCCA ð33Þ

MAPE ¼ 100

n
∑
n

i¼1

X obs;i−X p;1

X obs;i
ð34Þ
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Fig. 2 The structure of the proposed model
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RMRSE ¼ 100ð Þ �
ffiffiffi
1

n

r
∑
n

i¼1

X obs;i−XP;i

X obs;i

� �2

ð35Þ

The value of R2 bounded by [0, 1] explains the covariance in the actual daily discharge data that
can be described by the predicting model, but it originates from the linear assumptions (Krause
et al. 2005). The R2, RMSRE, andMAPE are insensitive to outliers (Legates andMccabe 1999;).
The Nash-Sutcliffe coefficient (EN-S) is employed to overcome the limitation of the previously
mentioned indices. Since neither the R2, RMSRE, MAPE, nor EN-S consider the complexity of
the model, the Akaike information criterion (AIC) is used to compare the performance of linear
and non-linear models regarding accuracy and complexity simultaneously.

EN−S %ð Þ ¼
∑
N

i¼1
X obs;i−XP;i
� �2

∑
N

i¼1
X obs;i−X obs

� �2
2664

3775� 100 ð36Þ

AIC ¼ N1n ∑
N

i¼1
X obs;i−XP;i
� �2� �

þ 2k ð37Þ

In the above equations k is the number of parameters, N number of samples, Xobs,i and XP,i are
respectively the ith value of observed and predicted value.

4 Development of Linear and Non-linear Modeling

4.1 Linear Modelling

For linear modelling using the ARIMA model, the time series features need to be well
identified and, if necessary, be static and normal using appropriate pre-processes. Therefore,
at first, the correlations of the daily discharge (DD) series are plotted (Fig. 3a). It can be seen
that the DD time series is volatile and has strong seasonal and non-seasonal correlations. Non-
seasonal correlations of up to 52 primary lags and seasonal correlations of up to four lags with
365-day steps exist. The period should be eliminated by the appropriate methods in the
residual time series.

Table 2 presents different test results for the numerical verification of the DD time-series
features. In this table, it can be seen that the DD time series has seasonal and non-seasonal
trends. Also, based on the fisher and JB test statistic, the all-time series are periodic and have
no normal distribution. As the figure shows, the DD time series has a jump in the validation
period, which is confirmed by the Mann-Whitney test. Despite these features, the DD time
series is non-stationary based on the KPSS numerical test.

The ACF graphs of the series were re-drawn (Fig. 3b) to investigate the changes in the pre-
processed series. In this figure, diff, Std and Sf represent differencing, non-seasonal standardiza-
tion and spectral analysis and the changes from pre-processing in the series are clearly seen. The
degree of seasonal and non-seasonal correlations in the series of differential equations has been
greatly reduced, and the stationary of the pre-processed time series is evident. Standardization and
spectral analysis methods have reduced the amount of seasonal and non-seasonal relations, but
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(a) Daily discharge

(b) Pre-processing series

diff.

Std.

Sf.

Fig. 3 Autocorrelation function plot of pre-processed BRDD data with proposed methods for N/4 of data: a)
daily data, b) Pre-processing data with three methods

Bonakdari H. et al.3700



they have not been able to make the series stationary, and it can be seen that these correlations are
still high. Therefore, the ARMA model cannot be used for modelling. Differencing is done to
examine the possibility of data modelling using the ARIMA model.

The results are presented in Table 2 which shows that both the seasonal and non-seasonal
trends and the jumps in the series have been eliminated. Although the periodic term has been
created in standardization and spectral analysis methods, it can be seen that the series are
considered stationary. Changes in the correlation diagrams of these series are shown in Fig. 4.
Seasonal correlations have been eliminated, and the graphs have been taken up to a maximum
of two lags. Therefore, using the ARIMA linear model with a maximum of the two non-
seasonal parameters p and q and one differencing is very suitable.

Table 2. Test results of applied tests on BRDD data and pre-processed outcomes.

4.2 Nonlinear Modeling

Using the graphs presented in Fig. 2 and considering that in the GS-GMDH method, at least
two variables should be considered as inputs, several models were considered as follows:

M1 : Q tð Þ ¼ Q t−1ð Þ;Q t−2ð Þ

M2 : Q tð Þ ¼ Q t−1ð Þ;Q t−2ð Þ;Q t−3ð Þ

M3 : Q tð Þ ¼ Q t−1ð Þ;Q t−2ð Þ;Q t−3ð Þ;Q t−4ð Þ

M4 : Q tð Þ ¼ Q t−1ð Þ;Q t−2ð Þ;Q t−3ð Þ;Q t−4ð Þ;Q t−5ð Þ
Using the GS-GMDH method and considering the four models above, various relationships
are proposed to predict the Bow River discharge, as shown in Table 3.

5 Results and Discussion

Figure 5 indicates the scatter plot of the ARIMA-based linear method (diff, Std, Sf) and GS-
GMDH (M1-M4) techniques in daily discharge prediction. Comparison of GS-GMDHmodels

Table 2 Test results of applied tests on and pre-processed outcomes

Data Tests Trend Jump Period Stationary Norm.

Original data MK% SMK% MW% (F*)* KPSS% JB*
DD 0.01 0.01 0.03 39,130 4.00 3,590,440.16
diff 55.77 85.22 99.02 0 99.51 9.45
Std 0.01 0.01 0.03 −146,729 0.21 9.45
Sf 26.05 0.01 27.73 0 0.18 23.94

Subtracted data diff 25.08 31.09 28.72 0 100.00 49,435.19
Std 55.77 85.22 99.02 67,042 99.51 21,824.23
Sf 50.89 79.73 93.18 266 98.92 21,817.62

*. TEST statistics; Fisher critical value: 3; JB critical value: 5.99

A Comparative Study of Linear Stochastic with Nonlinear Daily River... 3701



with linear models shows a relatively similar function to the non-linear and linear method, with
the difference that the maximum discharge for model testing in the GS-GMDH method has a
better performance compared with linear methods (Std, Sf).

Figure 6a depicts the box plot of the observed and predicted daily discharge. It is observed
that the performance of all methods (linear and non-linear) in different domains is approxi-
mately the same, so that the average values estimated with the average observed amounts are
approximately equal. The scattering of these values (observed and estimated) in the first and
third quantile is also similar. As observed in the scatter plot, the main difference between the
performances of the models is in the peak discharges.

The qualitative comparison of the two sets of models presented in this study (Figs. 5 and
6a) depicts the good and similar performance of both models in estimating the Bow River daily
discharge.

Figure 6b presents the box plot for a relative error of the ARIMA (diff, Std, Sf) and GS-
GMDH (M1-M4) models for estimation of the Bow River daily discharge. The distribution of
the relative error in non-linear and linear methods shows that the average value of the relative

(a) differentiation 

(b) standardization 

(c) spectral analysis 

Fig. 4 Autocorrelation function plot of subtracted (ARIMA differencing operator) pre-processed BRDD data
with proposed methods: a. diff., b. Std., c. Sf, for N/4 of data
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error for all purposes is less than 10%. Regardless of the outlier errors, the maximum relative
error of the methods used is less than 20%. The performance of the models with respect to
outlier relative errors shows that the maximum error is due to linear methods, and especially
due to the diff method. The minimum value associated with the maximum error measured for
outlier relative errors is related to the GS-GMDH (M1) method.

The performance evaluation of the ARIMA (diff, Std, Sf) and GS-GMDH (M1-M4)
methods qualitatively confirmed the ability of these two methods for the prediction of Bow
River daily discharge. For a closer comparison of these two models and determination of the
superior model, several quantitative studies are required. The indices presented in Table 4

Fig. 5 Scatter plot of the linear (diff, Std, Sf) and non-linear (M1-M4) models in daily discharge prediction
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confirm the significant performance of the proposed models in this study, which were
qualitatively examined. The average relative error of these models is about 6%, and all models
have a very high correlation coefficient. An obvious point in choosing the superior model is
the use of an index that has a great deal of accuracy and simplicity.

The complexity of the model is evaluated using the AIC index. The more superior model
will have the smaller lower and upper limits of this index. For linear models, the values of p
and q used in the ARIMA model are considered as k in the definition of the AIC relationship,
while for the GS-GMDHmodel, the coefficients are used to estimate the GS-GMDHmodel. In
linear methods, the lowest AIC is the Std method. The AIC value in this method is slightly
better than Sf, but its difference is significant compared to diff.

In non-linear methods, the values of all indices, except for AIC, are constant in all models,
so that with increasing inputs, not only is the accuracy of the model not significantly changed,

(a) daily discharge 

(b) pre-processed data 
Fig. 6 The box plot for a relative error of the ARIMA: a) observed and predicted daily discharge; and b) pre-
processed data (diff, Std, Sf) and GS-GMDH (M1-M4) models
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but this also leads to the increased complexity of the model relative to the model with lower
input parameters. Therefore, considering that the GS-GMDH (M1) method has the lowest AIC
among both linear and non-linear methods, this model is selected as the superior model for
predicting the Bow River daily discharge.

6 Conclusions

In this study, the accuracy of a linear stochastic model and non-linear GMDH daily discharge
forecast models were compared. The linear stochastic method incorporates three input data
pre-processing methods of differencing (diff), standardization (Std), and spectral analysis (Sf).
In addition to the linear methodology, a non-linear method based on the GMDH was
developed. A summary of the most notable results are listed as follows:

& The proposed GS-GMDH improved the results of classical GMDH by considering more
than two input parameters in each neuron, admissibility of the input of each neuron from
nonadjacent layers and employing second- and third-order polynomials to build the
structure between the input and output variables.

& Comparison of the linear stochastic and the non-linear GMDH methods showed that all
linear methods (diff, Std and Sf) and non-linear methods (M1-M4) have high accuracy in
forecasting the Bow River daily discharge with an average relative error below 6%.

& This study showed that an appropriate pre-processing process can improve the results of a
stochastic model and it can provide a similar forecast accuracy of the daily discharge
compared to the more complex non-linear GMDH model.

& Comparison of all methods using an index that considers simultaneously the accuracy and
simplicity of the model (AIC) showed that the GS-GMDH (M1) method has the best
performance among all considered methods and can be used in practical applications.
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