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Abstract
Streamflow plays a major role in the optimal management and allocation of
available water resources in each region. Reliable techniques are therefore needed
to be developed for streamflow modeling. In the present study, the performance of
streamflow modeling is improved via developing novel boosted models. The daily
streamflows of four hydrometric stations comprising of the Brantford and Galt
stations located on the Grand River, Canada, as well as Macon and Elkton stations
respectively, located on the Ocmulgee and Umpqua rivers, United States, are used.
Three different types of boosted models are implemented and proposed by cou-
pling the classical multi-layer perceptron (MLP) with the optimization algorithms,
including particle swarm optimization (PSO) and coupled particle swarm
optimization-multi-verse optimizer (PSOMVO) and a time series model, namely
the bi-linear (BL). So, the boosted MLP-PSO, MLP-PSOMVO, and MLP-BL
models are developed. The accuracy of all the boosted models is compared with
the classical MLP and BL by the statistical metrics used. It is concluded that all
the boosted models developed at the studied stations lead to superior modeling
results of the daily streamflows to the classical MLP; however, the boosted MLP-
BL models generally outperformed the MLP-PSO and MLP-PSOMVO ones.

Keywords Daily streamflow .Multi-layer perceptron . Particle swarmoptimization .Multi-verse
optimizer . Bi-linear

1 Introduction

Streamflow is an essential component of the water cycle. It can give significant information to
design water infrastructures and flood control systems, to mitigate the impacts of droughts on
available water resources systems, to optimize management of the irrigation and agriculture at
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any particular region, to generate hydropower, etc. (Yaseen et al. 2016; Anghileri et al. 2016;
Tikhamarine et al. 2019a; Fang et al. 2019). Therefore, knowing the streamflow time series is a
necessity for hydrologists, water resources managers, and decision-makers. Streamflow is
expected to include the non-linear, stochastic, and non-stationary behaviors that make a
complex phenomenon (Bayazit 2015). Given this, robust techniques are required to be used
and developed by the hydrologists to capture the features as mentioned above.

In a general classification, streamflow modeling approaches can be categorized in
main two groups, including the physically-based techniques and the data-driven
models (Peugeot et al. 2003; He et al. 2014; Di et al. 2014; Zhang et al. 2016).
The streamflow time series are simulated in the physically-based models through
modeling the potential interactions among the various factors consisting of the weath-
er information, land surface characteristics, etc. (Wang et al. 2016; Fang et al. 2019).
These models, therefore, seem to be complicated to use in the applications. Further-
more, the data-driven models are another type of streamflow modeling techniques.
They have the capability to model the streamflow process via historical records of
streamflow or other variables without any need to know the physical procedures
governing the streamflow process (Di et al. 2014; Garcia et al. 2016; Zhang et al.
2016). Two well-known and commonly used types of data-driven models in
streamflow forecasting are the time series models and artificial intelligence (AI)
techniques. However, the application of AI techniques has received a widespread
interest; while the time series models have been used lesser than the AI ones in
streamflow modeling.

It is proven that the standalone classical models couldn’t provide appropriate per-
formances for modeling the hydrological time series (e.g., streamflow). Therefore,
major efforts have been made to improve the modeling accuracy of the standalone
models. Recently, implementing boosted models has received remarkable progress by
many researchers. In this context, coupling the standalone models such as AI-based
approaches with the wavelet analysis, the time series models, the optimization algo-
rithms, etc. can be taken into consideration as alternatives to the standalone models
with a reliable level of performance. The boosted models generated via integrating the
AI and time series models could demonstrate higher accuracies since both the outputs
of the models as mentioned above are considered through a boosted AI-time series
model. In fact, the standalone classical AI and time series models focus only on the
modeling/capturing the deterministic and stochastic segments, respectively, while the
boosted models use both terms to improve the modeling performance. Furthermore, the
optimization algorithms are coupled with the AI models in order to find the minimum
cost of the AI function and to improve training phase of the AI models. Recently, the
practice of metaheuristic optimization algorithms demonstrated a considerable potential
solution to alleviate the difficulties exist with training and parameterization of AI
models. These algorithms enable automatically learner of the AI models and improve
the model performance (Pham et al. 2020; Mohammadi 2019a, 2019b; Moazenzadeh
et al. 2018). Various bio-inspired meta-heuristic algorithms have been invented to cope
with optimization issues by imitation of the hydrological phenomena. Some of those
prevalent nature-inspired meta-heuristic algorithms includes shuffled frog leaping algo-
rithm (Mohammadi et al. 2020), particle swarm optimization (Tikhamarine et al.
2019b), bee colony algorithm (Choong et al. 2017), genetic algorithm (Jahani and
Mohammadi 2019), krill-herd algorithm (Moazenzadeh and Mohammadi 2019,
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Mohammadi and Aghashariatmadri 2020), gray wolf optimizer algorithm (Maroufpoor
et al. 2020; Tikhamarine et al. 2019a), firefly algorithm (Aghelpour et al. 2019), whale
optimization algorithm (Mohammadi and Mehdizadeh 2020; Vaheddoost et al. 2020),
and particle swarm optimization (Aghelpour et al. 2020).

In recent years, the application of AI-based models has received significant attention in
modeling the streamflow time series on various time scales including the daily and monthly.
Some of detailed information of previous works reviewed in this study is summarized
(Table 1).

As can be concluded from the literature review mentioned in Table 1, the time
series models have received less attention in streamflow modeling. In addition, the
boosted models have illustrated superior performances compared to the standalone
models that confirms the need to develop boosted models to precisely modeling of
streamflow time series.

The chief purpose of this research work is to enhance the modeling accuracy of daily
streamflow time series at two hydrometric stations in Canada, and two others in United States.
In this process, an AI-based model including the multi-layer perceptron (MLP) is coupled with
the particle swarm optimization (PSO), particle swarm optimization coupled on multi-verse
optimizer (PSOMVO), and bi-linear (BL) models. Besides developing the aforementioned
boosted models, the performance of classical MLP and BL is also evaluated in modeling the
daily streamflows and then compared to the boosted models proposed. The innovative aspects
of this study are to develop the boosted MLP-PSOMVO and MLP-BL, as well as the classical
BL time series model. To the best of authors’ knowledge, this study is the first attempt in
literature for the daily streamflow modeling through the boosted MLP-BL and MLP-
PSOMVO models. Main reason to select the non-linear BL model is that it includes the
potential for capturing the stochastic term of streamflow as a non-linear phenomenon in
hydrologic cycle. Additionally, according to literature and reviews MLP model has good
performance for predicting streamflow. And nature-inspired optimization such as PSO and
MVO algorithm can be improved ability of classic MLP, then MLP-PSOMVO can be a
proposed model for predicting streamflow by high accuracy in compression classic MLP
model.

2 Materials and Methods

2.1 Study Area and Data Used Description

To carry out this research work, the daily streamflow information of two hydrometric
stations in the Canada and two other ones in the United States are used. The Brantford
and Galt stations located on the Grand River in Canada are considered. The Grand
River with a length of 280 km is one of the large rivers in southwestern Ontario. It is
completely within the boundaries of southern Ontario. Furthermore, the Macon station
located on Ocmulgee River and near Elkton station located on Umpqua River, United
States, are selected. The Macon and Elkton stations are respectively located in Georgia
State of the southeastern United States and Oregon State of the northwestern United
States. The geographical information of studied hydrometric stations and statistical
properties of the observed daily streamflows including the minimum (Xmin), maximum
(Xmax), mean (Xmean), standard deviation (Xsd), and coefficient of variation (Xcv) for
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both the train and test phases are presented (Table 2). The geographical locations of the
studied hydrometric stations in the Canada and United States are depicted (Fig. 1).

The daily streamflow time series of the studied sites span the water years from 1
Oct. 1998 to 30 Sep. 2018 (i.e., 20-year). The daily streamflow data of the Canadian
and American stations are acquired from (https://wateroffice.ec.gc.ca) and (http://water.

Table 1 Information of previous studies published in literature reviewed in the current study

Reference Case study Time scale Models used Best model

Abudu et al.
(2010)

Kizil River, China Monthly ANN, ARIMA, SARIMA Similar results were
reported

Adamowski
et al.
(2012)

mountainous watershed of
Sainji in the Himalayas

Daily MARS, ANN, W-ANN MARS, W-ANN

Kisi et al.
(2012)

Ergene River and Seytan
Stream, Turkey

Daily ANN, ANFIS, SVM, LLR, DLLR ANN, ANFIS

Liu et al.
(2014)

Fork White River and Eel
River, USA

Daily and
monthly

SVR, W-SVR W-SVR

Uysal et al.
(2016)

Karasu River, Turkey Daily MLP, RBFNN MLP

Abdollahi
et al.
(2017)

Behesht-Abad and Joneghan
rivesr, Iran

Daily ANN, GEP, W-ANN, W-GEP W-ANN

Siqueira et al.
(2018)

Brazilian hydroelectric plants Monthly ELM, ESN, MLP, PAR ESN

Hadi and
Tombul
(2018)

Goksu-Gokdere Basin,
Turkey

Monthly ANN, MGGP, W-ANN, W-MGGP MGGP

Tongal and
Booij
(2018)

North Fork, Chehalis, Carson
and Sacramento rivers

Daily ANN, SVM, RF ANN, RF

Al-Sudani
et al.
(2019)

Tigris River, Iraq Monthly MARS, LSSVR, MARS-DE MARS-DE

Mehdizadeh
et al.
(2019a)

Sefidrood River, Iran and
Saugeen River, Canada

Monthly AR, MA, AR-ARCH, MA-ARCH,
MARS, GEP

MARS and GEP
under external
analysis

Mehdizadeh
et al.
(2019b)

Ocmulgee and Umpqua
rivers, USA

Monthly MARS, GEP, MLR, MARS-FARIMA,
MARS-SETAR, GEP-FARIMA,
GEP-SETAR, MLR-FARIMA,
MLR-SETAR

MLR-FARIMA and
MLR-SETAR

Fathian et al.
(2019)

Grand River, Canada Monthly ANN, MARS, RF, ANN-SETAR,
ANN-GARCH, MARS-SETAR,
MARS-GARCH, RF-SETAR,
RF-GARCH

MARS-SETAR

Tikhamarine
et al.
(2019a)

Aswan High Dam, Iraq Monthly ANN, SVR, MLR, ANN-GWO,
SVR-GWO, MLR-GWO

SVR-GWO

ANN: artificial neural networks, ARIMA: autoregressive integrated moving average, SARIMA: seasonal
ARIMA, MARS: multivariate adaptive regression splines, W-ANN: wavelet-artificial neural networks, ANFIS:
adaptive neuro-fuzzy inference system, SVM: support vector regression, LLR: local linear regression, DLLR:
dynamic local linear regression, SVR: support vector regression, W-SVR: wavelet-support vector regression,
MLP: muti-layer perceptron, RBFNN: radial basis function neural network, GEP: gene expression programming,
W-GEP: wavelet-gene expression programming, ELM: extreme leaning machine, ESN: echo state network,
PAR: partial autoregressive, MGGP: multigene genetic programming, W-MGGP: wavelet-multigene genetic
programming, RF: random forests, LSSVR: least square support vector regression, MARS-DE: multivariate
adaptive regression splines-differential evolution, AR: autoregressive, MA: moving average, ARCH:
autoregressive conditional heteroscedasticity, MLR: multiple linear regression, FARIMA: fractionally ARIMA,
SETAR: self-exciting threshold autoregressive, GARCH: generalized ARCH, GWO: gray wolf optimization
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usgs.gov/waterwatch/), respectively. In this study, whole the data are split into the
train (i.e., 75% of the data between 1 Oct. 1998 and 30 Sep. 2013) and test (i.e., 25%
of the data between 1 Oct. 2013 and 30 Sep. 2018) datasets (Fig. 2). As clearly can
be seen in Table 2, the statistical parameters of the daily streamflows at the studied
locations are almost the same for the train and test stages.

The following equation is used in this study to standardize the observed daily streamflows
of the studied sites as:

Qs ¼
Qo−Qo

σQo

ð1Þ

where Qs illustrates the standardized daily streamflow, Qo is the observed daily streamflow,

Qorepresents the mean of observed daily streamflows for each train and test periods, and
σQo

denotes the standard deviation of the observed daily streamflows for each train and test
phases.

2.2 Bi-Linear (BL) Time Series Model

Non-linear BL model was initially proposed by Granger and Andersen (1978). It is developed
based on the ARMA models. The BL model is extracted from the second-order extension of
Taylor series and displayed as BL(p, q, r, s) (Fan and Yao 2003). It can be formulated as the
following equation:

Zt ¼ ∑
p

i¼1
φi:Zt−ið Þ− ∑

q

j¼1
θ j:εt− j
� �þ ∑

r

i¼0
∑
s

j¼1
βij:Zt−i− j:εt− j
� �þ εt ð2Þ

where Ztis a standardized time series, p, q, r, sare the positive integers indicating the BL order,
φ, θ, β are the model coefficients, and εt is a standardized stochastic series.

Considering ∑
r

i¼0
∑
s

j¼1
βij:Zt−i− j:εt− j
� �

(i.e., the product of Zt and εt(in Eq. (2) causes the BL to

be considered as a non-linear model (Ainkaran 2004); hence, it can be used in modeling non-
linear phenomena such as streamflow.

Interested readers can refer to Fan and Yao (2003) for more details regarding the required
steps of fitting a non-linear BL.

Table 2 Statistical parameters of the observed daily streamflow data for the studied sites during train and test
phases

Stations River Longitude
(°W)

Latitude
(°N)

Phases Xmin Xmax Xmean Xsd Xcv

Brantford Grand 80.27 43.12 Train 8.000 1000.000 60.260 69.998 1.162
Test 16.400 728.000 69.036 76.070 1.102

Galt Grand 80.30 43.35 Train 5.190 549.000 41.431 50.597 1.221
Test 6.450 780.000 46.093 58.627 1.272

Macon Ocmulgee 83.62 32.83 Train 5.748 957.115 61.967 84.503 1.364
Test 6.060 1449.830 71.540 111.773 1.562

Elkton Umpqua 123.55 43.58 Train 24.324 4247.550 195.569 270.832 1.385
Test 21.917 3143.187 195.742 288.197 1.472
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Fig. 1 Geographical locations of the hydrometric stations considered in this study
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2.3 Multi-Layer Perceptron (MLP) Neural Network

MLP is known as one of the most common examples of feed-forward neural networks,
the potential of which in modeling many engineering problems has been confirmed in
recent years (Kisi et al. 2017; Jahani and Mohammadi 2019). In general, MLP consists
of a sequential multi-layer network structure, including input layer, hidden/middle
layer(s), and output layer. After obtaining information in the input layer, the informa-
tion processing and model learning process begin in the hidden layer(s) with a number
of neurons and activation functions. The type of activation function is selected with
respect to the user experience, where sigmoid and linear functions are often used for
the hidden and output layers, respectively.

Fig. 1 (continued)

Developing Novel Robust Models to Improve the Accuracy of Daily... 3393



Fig. 2 Time series plots of the observed streamflows at the studied stations
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Considering φ as an activation function of the jth neuron in the hidden layer, the output of
the neuron can be expressed as follows:

yi ¼ φ ∑Wjixi þ bi
� � ð3Þ

where xi is the input,W and b stand for the synaptic weight vector and bias, respectively. In this
research, the Levenberg-Marquardt method is used to optimize the classic MLP structure (Kisi
et al. 2016).

2.4 Particle Swarm Optimization (PSO)

The PSO meta-heuristic algorithm is firstly proposed by Eberhart and Kennedy (1995)
for optimization of the complicated processes. It is a universal minimization method
that can be used to deal with problems that are answered at one point or level in the
next n-space. In such a space, hypotheses are made and an initial velocity is given to
them. These particles then move in the response space, and the results are calculated
based on a “merit criterion” after each time interval (Assareh et al. 2010). Over time,
the particles accelerate toward particles that have a higher merit criterion and are in
the same communication group. Although, each method works well in a range of
issues, this method has shown great success in solving continuous optimization
problems. Steps of the PSO algorithm in cloud: (i) Establishing and evaluating the
primary population. (ii) Determine the best personal memories and the best collective
memories. (iii) Speed and position update. (iv) If the conditions for stopping are not
met, we will go to step 2.

2.5 Multi-Verse Optimizer (MVO)

This section introduces a brief overview of a newely developed nature-inspired
algorithm named multi-verse optimizer (MVO), which was firstly proposed by
Mirjalili et al. (2016). This algorithm is inspired focusing on three concepts in
cosmology: the white hole, the black hole, and the wormhole. The mathematical
relationships of these concepts are designed to perform local exploration, exploitation
and search, respectively (Mirjalili et al. 2016). The fore mentioned concepts accom-
plish exploration, exploitation and local inspection based on the mathematical formu-
lation so that there are two basic coefficients consisting of wormhole existence
probability and travelling distance rate. The result of four challenging test problems
on MVO algorithm show that the proposed algorithm is capable of delivering highly
competitive results and is better than the best algorithms available in the literature in
most tests (Faris et al. 2016). An interested reader can refer to Mirjalili et al. (2016)
for more details about the MVO structure.

2.6 Models Development

As mentioned, the daily streamflow time series of the considered locations are modeled
through the classical BL and MLP, as well as the boosted MLP-PSO, MLP-PSOMVO, and
MLP-BL models. The below steps are followed for developing the classical and boosted
models:
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For the case of classical BL, various BL models containing the different orders are
initially tested and fitted to the standardized daily streamflow data. Then, the optimal
BL models are selected at each location focusing on the minimum values for the
Akaike Information Criterion (AIC).

The classical MLP models at the study sites are developed by using the antecedent
daily streamflows. In this regard, one-day to three-day lagged streamflow data (i.e.,
Qt-1, Qt-2, Qt-3) is used for modeling the streamflow of present day (i.e., Qt). The
same input and output parameters are also employed when implementing the boosted
models. Table 3 summarizes the input and output variables considered in the model-
ing procedure.

Regarding to use the PSO as an updator tool for weight of MLP, training phase of
MLP should be improved and this is a reason for better training of classical MLP. In
the boosted model of MLP-PSO, the PSO has an optimization role to find best
optimal biases an weights for classical MLP model. In the boosted MLP-PSOMVO
model, the search agents of weights and biases of the MLP model are calculated
using the PSO and MOVO algorithms while the MLP uses benefits of PSO and MVO
algorithms at same time. Then, PSOMVO can help to MLP for finding the optimal
weights and biases and also the PSOMVO can find probable answers that the classical
MLP and PSO have failed to provide it. So, these are reason for improving accuracy
of MLP by new boosted PSOMVO method. Figure 3 shows a schematic diagram for
input, output and modeling process via the classical MLP and boosted MLP-PSO and
MLP-PSOMVO models implemented.

Finally, the modeled outputs of the classical MLP are summed with the residuals or
stochastic errors of the classical BL to develop the boosted MLP-BL models as follows:

QHyb ¼ QMLP þ QBL ð4Þ
where QHyb presents the modeled daily streamflow via the boostedMLP-BLmodel,QMLP is the
modeled daily streamflow by the classical MLP, and QBL illustrates the error of classical BL.

As already mentioned, the classical models are not able to capture the observed hydrolog-
ical parameters time series such as streamflow with reliable precision. The classical time series
(e.g., BL) and AI (e.g., MLP) models could have capability to modeling the stochastic and
deterministic terms, respectively. The powerful modeling approaches are therefore needed to
consider both the mentioned terms in the modeling procedure of hydrological parameters. The
proposed MLP-BL models in this study apply both terms when modeling the daily streamflow.

As noted, whole the streamflow datasets are standardized before the modeling using Eq.
(1). It is apparent that the modeled outputs of the daily streamflows via the classical and
boosted models will be in the standardized forms. In other words, they must be de-
standardized by multiplying the outputs of any modeling techniques by the corresponded
standard deviations and then summing the resulting values by the corresponding averages.

Table 3 Input and output parameters used to develop the classical and boosted models

Models Models No. Inputs Output

MLP1, MLP1-PSO, MLP1-PSOMVO, MLP1-BL M1 Qt-1 Qt

MLP2, MLP2-PSO, MLP2-PSOMVO, MLP2-BL M2 Qt-1, Qt-2 Qt

MLP3, MLP3-PSO, MLP3-PSOMVO, MLP3-BL M3 Qt-1, Qt-2, Qt-3 Qt
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2.7 Performance Evaluation Metrics

The root mean square error (RMSE), mean absolute error (MAE), and coefficient of determi-
nation (R2) are used in the present study to evaluate the accuracy of classical and proposed
models in daily streamflow modeling as below:

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
N

i¼1
Qo;i−Qm;i

� �2
N

vuuut ð5Þ

MAE ¼
∑
N

i¼1
Qo;i−Qm;i

�� ��
N

ð6Þ

R2 ¼
∑
N

i¼1
Qo;i−Qo

� �
⋅ Qm;i−Qm

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
N

i¼1
Qo;i−Qo

� �2
⋅ ∑
N

i¼1
Qm;i−Qm

� �2
s

2
66664

3
77775

2

ð7Þ

where Qo, i, Qm, i, Qo and Qmindicate the ith observed daily streamflow, the ith
modeled daily streamflow, the average of the observed daily streamflows, and the
average of the modeled daily streamflows, respectively. Obviously, lower values
achieved for the RMSE and MAE metrics, and the higher values obtained for the R2

illustrate the better performance of the applied modeling techniques in daily streamflow
modeling.

Fig. 3 The schematic diagram of modeling process by the classical MLP, and boosted MLP-PSO and MLP-
PSOMVO techniques
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3 Results

Firstly, the superior BL time series models are fitted to the observed streamflow data at the
studied locations in their standardized forms. It is found that BL(13,4,1,1), BL(10,6,1,1),
BL(10,0,1,1), and BL(12,1,1,1) are the best-performing BL models at the Brantford, Galt,
Macon, and Elkton, respectively, with the minimum values for the AIC. The values of RMSE,
MAE, and R2 metrics for both the train and test phases are calculated (Table 4). The highest
and lowest accuracy levels of the developed BL models are respectively observed at the Galt
and Elkton stations, respectively. The poorer performance of BL at the Elkton station (i.e.,
higher values of the RMSE and MAE, as well as the lower value of the R2) can be attributed to
high streamflows of this location than the other stations.

Scatter plots for the observed against the modeled streamflow data via the BL model for
each location during the test phase is depicted (Fig. 4). The dotted red lines in this
Figure demonstrate the regression lines fitted to the observed and modeled streamflows.
Furthermore, the equations provided in the form of y = ax + b are the equations of the
regression lines in which y is the modeled streamflow, x is the observed streamflow, a is the
slope, and b is the intercept. The better performance of each model is obtained when the values
of a and b are closer to 1 and 0, respectively. This issue can be seen in the Brantford and Galt
stations, while it cannot be concluded for the Macon and Elkton stations, specifically the
Elkton, indicating the lower accuracy of the BL models developed at these locations.

The classical MLP is then used for modeling the daily streamflows of the studied locations
with considering the input and output parameters mentioned in Table 3. In this context,
different numbers for the hidden layer neurons are tested and then the optimal hidden layer
neurons at each station are selected. It was found that the optimal numbers of neurons in the
hidden layer for the classical MLP-based M1, M2, M3 models are 2, 30, 6 at Brantford, 14, 7,
20 at Galt, 18, 14, 20 at Macon, and 18, 3, 7 at Elkton, respectively. The values of RMSE,
MAE, and R2 statistics computed for the conventional MLP during both train and test phases
are listed in the first sections of Tables 5, 6, 7 and 8. The results denote the applicability of
antecedent daily streamflow values for the streamflow modeling of each day at any location.
Moreover, assessing the accuracy of MLP models developed under models No. M1-M3
indicates that the modeling accuracy of daily streamflow improves with increasing the number
of lags.

As previously mentioned, the main aim of the current study is to increase the performance
of classical MLP for modeling the daily streamflow. To that end, the boosted MLP-PSO,
MLP-PSOMVO, and MLP-BL models are developed. The values of statistical metrics
obtained for the aforementioned boosted models are tabulated in the second to fourth sections
of the Tables 5, 6, 7 and 8. As clearly can be seen, the higher values of the RMSE andMAE, as

Table 4 Values of RMSE, MAE, and R2 statistics obtained for the BLmodels at the studied sites during train and
test phases

Stations Models Train Test
RMSE (m3/s) MAE (m3/s) R2 RMSE (m3/s) MAE (m3/s) R2

Brantford BL(13,4,1,1) 33.192 17.835 0.805 32.983 17.829 0.835
Galt BL(10,6,1,1) 25.608 12.949 0.771 24.556 12.747 0.841
Macon BL(10,0,1,1) 35.370 20.054 0.849 44.981 22.442 0.870
Elkton BL(12,1,1,1) 144.436 66.793 0.724 162.507 74.214 0.692
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well as the lower values of R2 are significantly improved through the proposed models than
those of the corresponding metrics in the classical MLP.

Here, the performance of all the classical and boosted models implemented in this study is
evaluated for the daily streamflow modeling of the considered locations. The BL time series
models developed at all stations perform weaker than the classical MLP. A comparative
assessment of the classical MLP and boosted MLP-based models illustrates that the boosted
models including the MLP-PSO, MLP-PSOMVO, and MLP-BL outperform the classical
MLP in daily streamflow modeling. In this context, the MLP-PSOMVO models present

Fig. 4 Scatter plots for the observed versus modeled streamflow data by the BL models at the studied stations
during the test phase

Table 5 Values of RMSE, MAE, and R2 statistics obtained at the Brantford station during train and test phases

Models Models No. Train Test
RMSE (m3/s) MAE (m3/s) R2 RMSE (m3/s) MAE (m3/s) R2

MLP M1 27.556 12.859 0.845 27.294 13.246 0.872
M2 23.604 11.360 0.886 24.382 11.987 0.897
M3 22.823 10.957 0.894 23.254 11.476 0.907

MLP-PSO M1 25.337 12.200 0.869 23.744 12.025 0.903
M2 19.187 9.329 0.925 16.728 8.926 0.952
M3 19.579 9.493 0.922 17.523 9.265 0.947

MLP-PSOMVO M1 18.148 8.858 0.933 15.802 8.285 0.957
M2 18.092 8.956 0.933 16.253 8.865 0.954
M3 18.155 9.142 0.933 16.717 9.168 0.952

MLP-BL M1 11.768 5.775 0.972 12.223 5.930 0.974
M2 7.987 4.189 0.988 8.402 4.529 0.989
M3 5.998 3.251 0.993 6.426 3.530 0.994

Developing Novel Robust Models to Improve the Accuracy of Daily... 3399



superior performances in comparison to the MLP-PSO ones at all the study locations;
however, the boosted MLP-BL models are the best-performing boosted paradigms with the
highest degree of precision. The only exception is observed at the Macon station, where the
boosted MLP-PSOMVO models present the best results. The superior models for high-
performance streamflow modeling are related to the models no. of M3 (MLP-BL) at the
Brantford, M2 (MLP-BL) at the Galt, M3 (MLP-PSOMVO) at the Macon, and M2 (MLP-BL)
at the Elkton. As an example, the RMSE values of aforementioned superior boosted models in
comparison to the corresponding models of classical MLP are reduced in the train and test
phases by 73.719% and 72.366% for the Brantford, 72.513% and 68.707% for the Galt,
31.147% and 37.719% for the Macon, 73.823% and 72.719% for the Elkton.

In order to graphically assess the efficiencies of classical MLP and boosted MLP-based
models, the scatter and radar diagrams are prepared (Figs. 5, 6 and 7). In doing so, the best-
performing classical MLP and boosted MLP-PSO, MLP-PSOMVO, and MLP-BL models at
each station during the test phase is selected to prepare the scatter plots. The error criteria of the
superior models are highlighted in boldface in Tables 5, 6, 7 and 8. Clearly, lesser dispersions
of the data, higher values of the slopes, and lower values for the intercepts in the fitted
regression lines of the boosted models than those of the classical MLP ones denote the

Table 6 Values of RMSE, MAE, and R2 statistics obtained at the Galt station during train and test phases

Models Models No. Train Test
RMSE (m3/s) MAE (m3/s) R2 RMSE (m3/s) MAE (m3/s) R2

MLP M1 21.388 9.588 0.821 21.376 9.735 0.868
M2 19.053 8.693 0.858 19.388 9.039 0.892
M3 18.527 8.598 0.866 19.069 8.979 0.894

MLP-PSO M1 19.285 9.114 0.855 18.196 9.021 0.905
M2 14.762 7.085 0.915 12.941 6.698 0.952
M3 15.408 7.389 0.908 13.442 7.047 0.948

MLP-PSOMVO M1 13.406 6.567 0.930 11.752 6.109 0.960
M2 13.691 6.674 0.927 12.111 6.407 0.957
M3 12.812 6.287 0.936 11.358 6.139 0.962

MLP-BL M1 7.879 3.771 0.976 8.344 3.957 0.980
M2 5.237 2.857 0.990 6.067 3.190 0.990
M3 5.490 2.771 0.989 6.386 3.117 0.990

Table 7 Values of RMSE, MAE, and R2 statistics obtained at the Macon station during train and test phases

Models Models No. Train Test
RMSE (m3/s) MAE (m3/s) R2 RMSE (m3/s) MAE (m3/s) R2

MLP M1 31.226 14.981 0.864 40.380 18.764 0.870
M2 27.852 13.720 0.891 36.907 16.948 0.891
M3 27.071 13.426 0.897 34.991 16.300 0.902

MLP-PSO M1 26.961 13.734 0.899 33.529 16.173 0.910
M2 22.740 11.421 0.928 28.564 13.600 0.935
M3 21.290 11.141 0.937 27.276 13.268 0.941

MLP-PSOMVO M1 20.475 10.536 0.941 25.903 12.203 0.946
M2 19.177 10.198 0.949 22.986 11.425 0.958
M3 17.975 9.912 0.955 24.954 12.065 0.951

MLP-BL M1 21.058 11.671 0.968 27.167 12.901 0.973
M2 19.674 10.939 0.983 25.552 12.397 0.988
M3 19.186 10.833 0.986 24.441 11.825 0.990
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dependable performances of the boosted models for the daily streamflow modeling. In
addition, radar diagrams are provided to illustrate how the values of RMSE metric change
in the classical MLP and implemented proposed models (Fig. 7). For this goal, the RMSE
values of all the models under models no. M1-M3 during the test phase are used. The radar
diagrams in this study are as a triangular since three types of models (i.e., M1, M, M3) are
considered when modeling the daily streamflow. As obviously can be seen, triangles made for
the classical MLP models at the studied locations are large indicating the highest values of
RMSE and therefore lowest accuracy of the classical MLP. However, these triangles are much
denser in the boosted models, especially for the boosted MLP-BL and MLP-PSOMVO
models. This point confirms the suitability of boosted models compared to the classical
MLP for modeling the daily streamflow time series with a reliable precision.

4 Discussion

As concluded, the performance of classic MLP at the studied stations was found to be better
than the classic BL. This result could be due to the time scale of the data used (i.e., daily), so
that contradictory results may be achieved considering other time scales including the monthly,
seasonally, etc. Superior performances of the linear and non-linear types of time series models
compared to the AI techniques were reported by some researchers on a monthly time scale. In
this regard, the linear AR model illustrated higher accuracy than the AI-based models (GEP,
FFNN, RBFN, ANFIS) applied to monthly streamflow modeling (Terzi and Ergin 2014).
Moreover, the capability of linear FARIMA as well as non-linear SETAR and GARCH time
series-based models for monthly streamflow modeling was better than the MARS, GEP, ANN,
and RF (Mehdizadeh et al. 2019b; Fathian et al. 2019).

As is apparent, the modeled streamflow data using any modeling techniques such as MLP
could show deviations from the observed data. Hence, the main purpose of this study was to
improve the daily streamflow modeling via coupling the MLP with three techniques including
the time series-based BL, as well as two optimization-based PSO and PSOMVO. Superior
performances of the boosted MLP-PSO and MLP-PSOMVO models than the classical MLP
can be explained taking into account the fact that PSOMVO with global and local search
capability at the same time can train MLP by minimum error. As a result, the proposed method

Table 8 Values of RMSE, MAE, and R2 statistics obtained at the Elkton station during train and test phases

Models Models No. Train Test
RMSE (m3/s) MAE (m3/s) R2 RMSE (m3/s) MAE (m3/s) R2

MLP M1 124.468 42.702 0.791 132.775 45.907 0.789
M2 120.661 41.149 0.804 126.589 43.563 0.808
M3 113.361 40.313 0.826 127.664 43.441 0.804

MLP-PSO M1 79.062 27.974 0.915 97.713 29.921 0.885
M2 84.867 31.089 0.902 101.381 32.856 0.878
M3 89.308 32.244 0.892 100.499 33.640 0.882

MLP-PSOMVO M1 66.075 24.226 0.941 90.310 26.205 0.902
M2 67.859 23.968 0.938 83.396 24.488 0.917
M3 76.068 26.629 0.922 81.258 27.313 0.921

MLP-BL M1 42.910 16.019 0.975 46.293 17.984 0.974
M2 31.585 13.938 0.987 34.535 14.878 0.986
M3 34.692 13.495 0.984 38.118 15.064 0.983
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Fig. 5 Scatter plots for the observed versus modeled streamflow data by the best-performing classical MLP and
boosted MLP-based models at the Canadian stations (Brantford and Galt) during the test phase
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Fig. 6 Scatter plots for the observed versus modeled streamflow data by the best-performing classical MLP and
boosted MLP-based models at the USA stations (Macon and Elkton) during the test phase
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can find the optimal values of the desired function and is a suitable learning algorithm for the
classical MLP. The classical MLP has better learning with PSOMVO which leads to higher
accuracy of streamflow modeling. On the other hand, considering both the stochastic and
deterministic terms via the boosted MLP-BL can be the most important reason for the higher
modeling accuracy of the boosted models compared to the classical MLP when modeling the
daily streamflow.

One of the results of boosted models (i.e., reliable accuracy of the boosted MLP-BL than
the classical MLP) supports the outcomes concluded in previous works. For example, MARS
and GEP models were coupled on the ARCH time series model for reference evapotranspi-
ration estimation (Mehdizadeh 2018). The linear AR, MA, and ARMA time series models
were hybridized with the MARS and K-nearest neighbors (KNN) approaches to precipitation

Fig. 7 Radar diagrams for the RMSE values of the classical MLP and boosted MLP-based models at the studied
stations during the test phase
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modeling (Mehdizadeh 2020). The performance of GEP and Bayesian network (BN) models
was improved for streamflow modeling through coupling the mentioned AI models with the
linear AR and ARMA (Mehdizadeh and Kozekalani Sales 2018). In other studies, hybrid
models were proposed by combining the various time series models including the linear
FARIMA as well as non-linear ARCH, GARCH, and SETAR with the diverse types of AI
models such as MARS, GEP, and ANN to precipitation and streamflow modeling
(Mehdizadeh et al. 2017, 2018, 2019b). Improvements in the performance of AI techniques
via the boosted AI-time series models were reported by the scholars.

Furthermore, higher performance of the boosted models developed through coupling the AI
and optimization-based models compared to the standalone AI models was confirmed and
reported by some scholars. For example, a new boosted model based on coupling shuffled frog
leaping algorithm (SFLA) and ANFIS was implemented for predicting streamflow in two
rivers in Vietnam (Mohammadi et al. 2020). A boosted technique was proposed by integrating
the MARS and DE as an optimization approach (i.e., MARS-DE) for monthly streamflow
estimation of Tigris River, Iraq (Al-Sudani et al. 2019). The proposed boosted model achieved
better estimates of the streamflow than the standalone MARS. In another study, boosted
models were developed via coupling the GWO method with the AI-based SVM, ANN, and
MLR for estimating the monthly streamflow of Aswan High Dam, Egypt (Tikhamarine et al.
2019a). The results denoted the superior performance of the proposed models than the
standalone ones. Also, there are other nature-inspired algorithms as they recently developed
by researchers in hydrological studies. For example, the SVR model was developed by Krill
Herd algorithm (SVR-KHA) for daily solar radiation estimation in Iran (Mohammadi and
Aghashariatmadari 2020). The ANFIS model was modified by Grey Wolf Optimizer algo-
rithm (ANFIS-GWO) for soil moisture simulating (Maroufpoor et al. 2020). The MLP model
was extended by Whale Optimization Algorithm (MLP-WOA) for predicting of field capacity
and the permanent wilting point (Vaheddoost et al. 2020).

One of the main flaws of the classical AI models such as MLP applied in the current study
is their weaknesses in modeling the extreme values of the hydrological time series such as
streamflow. The extreme values of the streamflow time series include the droughts and floods.
Knowing the extreme streamflows (i.e., high and low values) in each river is very important
and could be of use to design water resources structures like dam spillway and sluiceway
operations (Kisi and Sanikhani 2012). Evaluating the performance of classical MLP models in
modeling the extreme values demonstrate that the classical MLP models developed at whole
the study stations provide the over-estimation and under-estimation in modeling the low and
peak streamflow data. However, the boosted models developed show superior performances in
capturing the observed daily streamflow time series, specifically for the high values (i.e.,
floods). In this regard, one of the most important reasons for the low performance of the
classical MLP models is their poorer ability to model the high values, while the boosted
models illustrate an acceptable capability for modeling the peak values of the streamflow time
series. This is clearly observed in the scatter plots illustrated in Figs. 5 and 6.

5 Conclusions

In the present study, the daily streamflow time series of four hydrometric stations consisting of
the Brantford and Galt in Canada, as well as Macon and Elkton in United States were modeled.
Two classical models and three boosted paradigms are used as modeling techniques. Assessing
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the accuracy of classical models, namely the time series-based BL and an AI-based MLP
illustrated that the MLP performed better than the BL for the daily streamflow modeling of the
studied sites. The boosted models were then developed and proposed for improving the
streamflow models (i.e., MLP-PSO, MLP-PSOMVO, and MLP-BL) were found to provide
better results compared to the classical MLP. In general, the boosted MLP-BL outperformed
both the other boosted models at the studied locations, except for the Macon station where the
MLP-PSOMVO was the bet-performing boosted model.

As clearly concluded, the proposed models showed reliable performances than the classical
models used in this study. More boosted models are suggested to be implemented in future
research works to improve the modeling accuracy of hydrological variables time series such as
streamflow. In this context, coupling the AI-based models with the wavelet analysis, other
types of the time series models and optimization algorithms could be of use. The modeling
accuracy of proposed models could also be examined on the other time scales such as the
monthly and seasonally. in modeling the streamflow. Additionally, it is suggested to test the
performance of proposed models for modeling the other hydrological variables including
rainfall, evaporation, evapotranspiration, etc.
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