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Abstract
Sensitivity analysis is an important component for modelling water resource and envi-
ronmental processes. Analysis of Variance (ANOVA), has been widely used for global
sensitivity analysis for various models. However, the applicability of ANOVA is restrict-
ed by this biased variance estimator. To address this issue, the subsampling based
ANOVA method are developed in this study, in which multiple subsampling(single-,
multiple- and full-subsampling) techniques are proposed to diminish the effect of the
biased variance estimator of ANOVA. Two case studies including one simplified regres-
sion model and one hydrological model are used to illustrate the applicability of the
proposed approaches. Results indicate that: (1) the subsampling procedures effectively
diminish the biases resulting from traditional ANOVA method; (2) among the proposed
subsampling approaches, the full-subsampling ANOVA has the most robust perfor-
mance; (3) compared with Sobol’s method, the subsampling ANOVA methods can
significantly reduce the calculation requirements while achieve similar sensitivity char-
acterization for model parameters. This study serves as a first basis for the application of
subsampling ANOVA methods to sensitivity analysis for water resource and environ-
mental models.

Keywords Sensitivity analysis .Water resource and environmental models . Subsampling .

ANOVA . Calculation requirement

https://doi.org/10.1007/s11269-020-02608-2

Electronic supplementary material The online version of this article (https://doi.org/10.1007/s11269-020-
02608-2) contains supplementary material, which is available to authorized users.

* G. H. Huang
huang@iseis.org

1 State Key Joint Laboratory of Environmental Simulation and Pollution Control, CEEER-URBNU,
College of Environment, Beijing Normal University, Beijing 100875, China

2 Institute for Energy, Environment and Sustainable Communities, University of Regina, Regina,
Saskatchewan, Canada

3 Department of Civil and Environmental Engineering, Brunel University London, Middlesex,
Uxbridge UB8 3PH, UK

Published online: 13 July 2020

Water Resources Management (2020) 34:3199–3217

http://crossmark.crossref.org/dialog/?doi=10.1007/s11269-020-02608-2&domain=pdf
https://doi.org/10.1007/s11269-020-02608-2
https://doi.org/10.1007/s11269-020-02608-2
mailto:huang@iseis.org


1 Introduction

Water resource and environmental models are widely relied upon supporting water resources
management such as water allocation, reservoir operation, and flood risk assessment (Fan et al.
2016; Lindenschmidt and Rokaya 2019). These models generally use mathematical equations
to represent the temporally dynamic and spatially distributed processes in water resource and
environmental systems (Hipel and McLeod 1994; Li et al. 2015). However, significant
uncertainties, embodied in model parameters, structures, and inputs, are associated with such
descriptions (Fan et al. 2020; Tsakiris and Spiliotis 2017; Zhang et al. 2018; Wu et al. 2019).
Reliable modeling practice requires an evaluation of the confidence in the model outputs,
which includes quantification of the uncertainty in model results (i.e., uncertainty analysis)
(Chowdhury 2019; Liu et al. 2016; Xu et al. 2001) and evaluation of how much each
component (e.g. input/parameter) contributes to the output uncertainty (i.e., sensitivity analy-
sis) (Bahremand and De Smedt 2008; Đukić and Radić 2016). Without a realistic assessment
of various uncertainties, decision makers may suffer from troubles in describing water resource
and environmental processes, assessing regional environmental resources situation, and mak-
ing relevant decisions (Dessai and Hulme 2007; Weng et al. 2010; Maqsood et al.
2005; Tsakiris 1982). Therefore it is of great importance to quantify uncertainties in modelling
water and environmental processes and further characterize the contributions of those uncer-
tainty sources to the output results (Wu et al. 1997; Gamerith et al. 2013; Pianosi et al. 2016).

To analyze the sources of uncertainty, evaluate the contribution of each uncertainty factor,
and identify the dominant uncertainty factors, various sensitivity analysis methods such as
local or global methods, and qualitative or quantitative methods have been proposed in recent
decades (Borgonovo and Plischke 2016; Oladyshkin et al. 2012; Pianosi et al. 2016). Local
sensitivity analysis addresses sensitivity relative to point estimates of parameter values while a
global sensitivity analysis examines the effects of input variations on the outputs in the entire
allowable ranges of the input space (Hamby 1995; Uusitalo et al. 2015). With the ability to
reflect the interactions and nonlinear relationship, global sensitivity analysis is more popular in
hydrological applications (Bennett et al. 2018; Khorashadi Zadeh et al. 2017). A series of
global sensitivity analysis methods including qualitative screening methods (Morris 1991) and
quantitative techniques (Sobol’ 1993; Vega et al. 1998) are available. The choice of sensitivity
analysis method has an important impact on model parameters sensitivities results
(Pappenberger et al. 2008; Saltelli et al. 2019).

Among quantitative global sensitivity analysis methods, the analysis of variance (ANOVA)
method has been widely used for identifying important uncertainty sources, quantifying
individual and interactive impacts of contributors in hydrological models (Khaiter and
Erechtchoukova 2019; Vitale et al. 2019). This method has been used to investigate the
influence of pollutants and seasonality on the river water quality (Vega et al. 1998), the
contribution of hydrological model parameters to the discharge projection uncertainty, and the
impact of climate changes on flow frequency (Fan et al. 2019; Giuntoli et al. 2015). Compared
with other approaches, ANOVA is handy for handling small samples and more computation-
ally efficient in uncertainty quantification (Tang et al. 2006). However, it has been argued that
the estimated variance contributions in the ANOVA method would be biased, depending on
the sample size differences (Bosshard et al. 2013). To diminish the effect of the sample size,
Bosshard et al. (2013) proposed a subsampling scheme to adjust the biased estimations in
ANOVA (here, we refer this method as single-subsampling ANOVA). By calculating the
multiplicative bias of the variance ratio in the synthetic experiment, the results indicated that
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the bias resulting from the variance estimator of ANOVA can be diminished effectively by the
subsampling procedure. Qi et al. (2016c) used the single-subsampling ANOVA method to
dynamically quantify the individual and interactive effects of algorithm parameters on
hydrological model calibration. Qi et al. (2016a) also evaluated global fine-resolution precip-
itation products and their uncertainty quantification in ensemble discharge simulations by
using the single-subsampling ANOVA method. In these investigations, single-subsampling-
ANOVA has shown good performance in quantifying respective contributions of various
uncertainty sources to the overall output variance. However, one single factor is merely
subsampled in the above studies and there are still some issues to be addressed. Firstly, there
lacks a holistic comparison for the sensitivity analysis results when different factors are
subsampled in ANOVA. Secondly, the resulting parameter sensitivities may also be signifi-
cantly varied if multiple factors are subsampled but no studies ever addressed this issue.
Thirdly, it is also unclear how the results will change if all the factors are subsampled. Finally,
the applicability of the subsampling ANOVA approach needs to be further demonstrated by
comparison with some widely used benchmark methods.

Therefore, as an extension of previous studies, the objective of this study is to develop
single-, multiple- and full-subsampling ANOVA approaches for enhancing applicability of
ANOVA in the sensitivity analysis. Meanwhile, the influence of different subsampling
schemes in the subsampling ANOVA approaches will be explored. The applicability of
different subsampling ANOVA methods is illustrated through two case studies based on a
three-parameter simplified model (Chen et al. 2019) and a four-parameter daily lumped
rainfall-runoff model (GR4J model) (Perrin et al. 2003). The Sobol’s method is used as the
benchmark method to evaluate the performance of different subsampling ANOVA
approaches.

2 Methodology

2.1 ANOVA-Based Sensitivity Analysis Techniques

In order to use the same terminology to present each sensitivity technique, a generic water or
environmental model is defined as:

Y ¼ F X 1;X 2…X kð Þ ð1Þ
Where X1, X2, …, Xk represent the independent variables (such as model parameters, or model
structure) andY represents the response (such as themodel performance). Variance-basedmethods
use a variance ratio to estimate the importance of each factor (i.e. X1, X2, …, Xk) under consider-
ation. According to the ANOVA theory, the total sum of squares (SST) can be divided into the sum
of squares due to individual factors and their interactions as follows (Saltelli et al. 2010).

SST ¼ ∑
k

i¼1
SSi þ ∑

k

i¼1
∑
k

j>i
SSij þ…þ SS1;2;…;k ð2Þ

where SSi represents the squares due to the individual effect of Xi and SSij to SS1,2,…,k represent
the squares due to interactions among the k factors (i.e. X1, X2, …, Xk). In this model, we
summarize all interaction terms into the term SSI.
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SSI ¼ ∑
k

i¼1
∑
k

j>i
SSij þ…þ SS1;2;…;k ¼ SST− ∑

k

i¼1
SSi ð3Þ

Then, for each effect, the variance fractions η2 are derived as follows:

η2i ¼
SSi
SST

ð4Þ

η2I ¼
SSI
SST

ð5Þ

where:

SST ¼ ∑
t1¼1

T1

∑
t2¼1

T2

⋯ ∑
tk¼1

Tk

Y t1;t2⋯tk−Y 0;0⋯0
� �2 ð6Þ

SSi ¼ ∑
t1¼1

T1

∑
t2¼1

T2

⋯ ∑
tk¼1

Tk

Y 0;0;⋯ti⋯0−Y 0;0⋯0
� �2 ð7Þ

The symbol “o” indicates the average over the particular index. The value of η2 varying
between 0 and 1, indicating a contribution of an effect to the total ensemble variance
(uncertainty):

∑
k

i¼1
η2i þ η2I ¼ ∑

k

i¼1

SSi
SST

þ SSI
SST

¼
∑
k

i¼1
SSi þ SSI

SST
¼ 1 ð8Þ

2.2 Subsampling

To diminish the effect of the sample size on the variance estimation (e.g. SST, SSi, SSI) in
ANOVA, Bosshard et al. (2013) proposed a subsampling scheme as follows: Assume that
there are Ti elements (or levels) for each factor Xi, represented as xi;1; xi;2; xi;3⋯xi;Ti . In each
subsampling iteration, two elements are selected out of the total Ti elements which results in a

total of C2
Ti
(specify that C is the combination symbol) possible element pairs for Xi. Therefore,

for element xi;ti , the ti is replaced by g (h, j) which is a 2� C2
Ti

matrix.

g h; jð Þ ¼ 1
2

1
3

⋯
⋯

1
Ti

2
3
2
4

⋯
⋯

Ti−2
Ti−1

Ti−2
Ti

Ti−1
Ti

� �
ð9Þ

Here h means the row number and j means the column number. The total number of columns

is defined as Ji. Therefore, h = 1 or 2 and j = 1, 2, 3,……,Ji, where Ji ¼ C2
Ti
for the subsampled

parameter/factor Xi. For more details of subsampling scheme, please refer to the literature
(Bosshard et al. 2013).
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2.3 Single-Subsampling ANOVA

Single-subsampling ANOVA means that only one parameter from the parameter vector (X1,
X2, … Xk) is subsampled. Assuming that the Xn is subsampled, which mean two elements
selected from vector xn;1; xn;2; xn;3…⋯xn;Tnare used for Xn in each subsampling iteration. As
for the rest parameters Xi, there are still Ti elements for each of them. We estimate the terms in
Eqs. (2) and (3) using the subsampling procedure as follows:

SST j ¼ ∑
t1¼1

T1

∑
t2¼1

T2

⋯ ∑
2

h¼1
⋯ ∑

tk¼1

Tk

Y t1;t2⋯g h; jð Þ⋯tk−Y 0;0⋯g 0; jð Þ⋯0
� �2

ð10Þ

For i = n:

SS j
i ¼ T 1T2⋯Tn−1Tnþ1⋯Tk ∑

2

h¼1
Y t1;t2⋯g h; jð Þ⋯tk−Y 0;0⋯g 0; jð Þ⋯0

� �2
ð11Þ

For i ≠ n:

SS j
i ¼ 2� T 1T2⋯Ti−1Tiþ1⋯Tn−1Tnþ1⋯Tk ∑

ti¼1

Ti

Y 0;0⋯ti⋯g 0; jð Þ⋯0−Y 0;0⋯g 0; jð Þ⋯0
� �2

ð12Þ

The symbol o indicates the average over the particular index and j is in 1,…, J, where
J ¼ Jn ¼ C2

Tn
in the single-subsampling ANOVA. Then, the variance fraction η2 describing

the factors’ effects is derived as follows:

η2i ¼
1

J
∑
J

j¼1

SS j
i

SST j ð13Þ

η2I ¼ 1− ∑
k

i¼1
η2i ð14Þ

2.4 Multiple-Subsampling ANOVA

As an extension of the single-subsampling ANOVA, a multiple-subsampling ANOVA ap-
proach is introduced here. The multiple-subsampling ANOVA means that more than one
parameter from the parameter vector (X1,X2,…Xk) are going to be subsampled at the same time.
Assume that Xp, Xq are subsampled, tp, tq are replaced by g(hp, jp),⋯g(hq, jq) respectively. We
estimate the terms in Eqs. (2) and (3) using the subsampling procedure as follows:

SST j ¼ ∑
t1¼1

T1

∑
t2¼1

T2

⋯ ∑
2

hp¼1
⋯ ∑

2

hq¼1
⋯ ∑

tk¼1

Tk

Y t1;t2⋯g hp; jpð Þ⋯g hq; jqð Þ⋯tk−Yo;o⋯g o; jpð Þ⋯g o; jqð Þ⋯o
� �2 ð15Þ

For i = p⋯q:
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SS j
i ¼ T1 � T2 �⋯� Tk ∑

2

hp¼1
⋯ ∑

2

hq¼1
Y t1;t2⋯g hp; jpð Þ⋯g hq; jqð Þ⋯tk−Yo;o⋯g o; jpð Þ⋯g o; jpð Þ⋯o

� �2 ð16Þ

For i ≠ p⋯q:

SS j
i ¼ 2�⋯� 2� T1 � T2⋯Ti−1 � Tiþ1⋯Tk ∑

ti¼1

Ti

Y o;o⋯ti⋯g o; jpð Þ⋯g o; jqð Þ⋯o−Yo;o⋯g o; jpð Þ⋯g o; jqð Þ⋯o
� �2

ð17Þ
Where j is in 1, …, J, and J ¼ Jp �…� Jq ¼ C2

Tp
�…� C2

Tq
in the multiple-subsampling

ANOVA.
Then, the variance fraction η2 for each effect is derived as follows:

ηi
2 ¼ 1

J
∑
J

j¼1

SS j
i

SST j ð18Þ

ηI
2 ¼ 1− ∑

k

i¼1
ηi

2 ð19Þ

2.5 Full-Subsampling ANOVA

Moreover, a full-subsampling approach can be formulated when all parameters are going to be
subsampled. In detail, the full-subsampling ANOVA means that all parameters X1,X2,…Xk are
subsampled before ANOVA is calculated. Consequently, t1,t2⋯tk are replaced by
g(h1,j1),g(h2,j2),⋯g(hk,jk) respectively. We estimate the terms in Eqs. (2) and (3) using the
subsampling procedure as follows:

SST j ¼ ∑
2

t1¼1
∑
2

t2¼1
⋯ ∑

2

tk¼1
Yg h1; j1ð Þ;g h2; j2ð Þ⋯g hk; jkð Þ−Yg o; j1ð Þg o; j2ð Þ⋯g o; jkð Þ

� �2
ð20Þ

SS j
i ¼ ∑

2

h1¼1
∑
2

h2¼1
⋯ ∑

2

hk¼1
Yg h1; j1ð Þ;g h2; j2ð Þ⋯g hk; jkð Þ−Yg o; j1ð Þ;g o; j2ð Þ;⋯g o; jkð Þ

� �2
ð21Þ

where j is in 1, …, J, and J ¼ J1 �…� Jk ¼ C2
T1

�…� C2
Tk

in the full-subsampling

ANOVA
Then, for each effect, the variance fraction η2 is derived as follows:

ηi
2 ¼ 1

J
∑
J

j¼1

SS j
i

SST j ð22Þ

ηI
2 ¼ 1− ∑

k

i¼1
ηi

2 ð23Þ
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3 Case Study I: Simplified Model

3.1 Problem Statement

A simple model with three unknown parameters is employed to illustrate the proposed
subsampling ANOVA approaches, which is expressed as follows:

F3 X 1;X 2;X 3ð Þ ¼ X 1*X 3 þ X 1*sin
π
2
*X 2

� �
þ X 2*e X 3j j þ X 1*X 2*X 3 ð24Þ

where X1,X2 and X3 are independent variables uniformly distributed within [0, 1]. This
simplified model is proposed by (Chen et al. 2019). The purpose of this model is to explore
changes of parameter sensitivities for different subsampling methods in the ANOVA-based
sensitivity analysis. In our study, we define ″5″ as the five levels are selected equidistantly
within the initial parameter range. Then the five levels are subsampled and totally 10

(C2
5 ¼ 5*4

2*1 ¼ 10) combinations of different level pairs are obtained for the two-level ANOVA.
Similarly, ″2″ represents only two levels (maximum and minimum values) of the parameter
values are selected from its range without subsampling. For example, ″522″ means that five
levels of X1 are selected equidistantly from the range before subsampling, meanwhile only two
levels for the X2 and X3 are selected from their corresponding ranges. In turn, we define 252,
225, 552, 525, 255, 222, 333, 444 and 555 for different subsampling ANOVA approaches. For
522, 252 and 225, only one of the three parameters is subsampled, which is used to illustrate
the performance of single-subsampling ANOVA. For 552, 525 and 255, two of the three
parameters are subsampled, which will demonstrate the applicability of multiple-subsampling
ANOVA scheme. Similarly, 222, 333, 444, and 555 represent full-subsampling ANOVA with
different parameters levels.

3.2 Results of Single- and Multiple-Subsampling ANOVA

Figure 1 presents sensitivity indices of individual and interactions of the three parameters
under different subsampling ANOVA approaches. Figure 1a, b respectively shows the results
for single-subsampling (i.e. one parameter subsampled) and multiple-subsampling (i.e. two
parameters subsampled) ANOVA methods. Firstly, it can be observed that the parameters’
sensitivities vary significantly for different subsampling schemes. In detail, the sensitivities of
X1,X2,X3 and their interactions range within 4.1–41.2%, 25.1–78.5%, 7.5–47.3%, and 7.0–
15%, respectively under different subsampling schemes. In most cases, X2 is more likely to be
the most sensitive parameter. Secondly, for a specific parameter, its individual sensitivity
varies significantly with different subsampling schemes. For single-subsampling ANOVA, the
minimum sensitivity (the red bar) of X1 is obtained in 522 where only X1 is subsampled.
Similarly, the minimum sensitivities (the red bar) of X2 and X3 are obtained in 252 and 225,
respectively. The results indicate that the individual sensitivity of the parameter will reduce
remarkably when this parameter is subsampled in single-subsampling ANOVA. As for
multiple-subsampling ANOVA in Fig. 1b, similar results can be observed with those from
single-subsampling ANOVA. The maximum sensitivity for one parameter is obtained when
this parameter is not subsampled. For instance, the maximum sensitivity value (blue bar) of X1

is obtained in 255 where only X1 is non-subsampled. These results suggest that, for both
single- and multiple-subsampling ANOVA methods, the subsampling procedure would
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Fig. 1 The influence of subsampled parameter on individual and interactions sensitivity indices of parameters: (a) single-
subsampling, (b) multiple-subsampling, and (c) full –subsampling. Red bar indicates that the parameter is divided into five
levels first and then subsampled; blue bar represents that the parameter is only divided into two levels,without subsampling
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significantly underestimate the sensitivities for parameters to be subsampled but overestimate
the sensitivities for parameters without subsampling. Thirdly, the black bars in Fig. 1 represent
sensitivity indices of individual and interactions for the three parameters obtained by Sobol’s
method. Compared with Sobol’s results, the subsampling process will underestimate the
sensitivities of those subsampled parameters and overestimate the sensitivities of non-
subsampled parameters. Finally, the subsampling process would not only change the value
of parameter sensitivities but also change the order of the parameters’ sensitivities (Figs. S1–
S3). For example, under the subsampling scheme of 522, the order of the parameters’
sensitivities would be X2 > X3 > interaction > X1 while under the subsampling scheme of
252, the corresponding parameter sensitivities yield a different order: X3 > X1 > X2 >
interaction. These results indicate that both single- and multiple-subsampling schemes are
biased and thus may lead to discrepant results.

3.3 Results of the Full-Subsampling ANOVA

In the full-subsampling ANOVA approach, all the parameters are subsampled with different
levels within their variation ranges. In this study, four scenarios would be tested with each
parameter having 2, 3, 4, or 5 levels (i.e. 222, 333, 444, and 555) respectively. As presented in
Fig. 1c, the individual and interactions sensitivities of three parameters change with the
varying parameters levels. With parameters’ levels increasing from 222 to 555, the individual
sensitivity of X1 and X3 gradually increase from 11.7% and 19.4% to 19.1% and 24.1%,
respectively. At the same time, the interactive parameter sensitivity gradually decreases from
18.1% to 5.5%. The individual sensitivity of X2 keeps relatively stable, ranging from 50.9% to
52.2%. The results show that for the full–subsampling ANOVA method, the individual and
interactive parameters sensitivities are affected by the subsampled parameter levels. The
increased parameter levels would slightly increase the sensitivity values for low sensitive
parameters and decrease the interactive sensitivity. Another thing to be noticed is that the order
of parameters sensitivities would change when the parameter level increases from 2 to 3. This
is because that the selection of 2 levels for all parameters would lead to a traditional ANOVA
without any subsampling. While the 3 or more parameter levels are chosen, the variations of
the obtained results are relatively small and the order of parameters sensitivities remain
consistent with that from Sobol’s method. As a whole, the full-subsampling ANOVA ap-
proach with more than 3 levels is more robust than the single- and multiple-subsampling
ANOVA methods.

4 Case Study II: Sensitivity Analysis for Hydrologic Models

4.1 Problem Statement

To further demonstrate the applicability of the subsampling ANOVA methods in hydrological
simulation, the proposed approaches are applied for parameter sensitivity analyses of the
conceptual hydrological model GR4J (Fig. 2b). The studied area is Zengjiang River which
is one tributary of Dongjiang River located in the Pear River Delta, China (Fig. 2a). The
meteorological data (daily evaporation and daily precipitation) are collected from Qilinzui
Hydrological Station for the period of 2009–2015. The total drainage area above the Qilinzui
Hydrological Station is 2866 km2, accounting for 91% of the Zengjiang River basin
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(3160 km2). The mean annual temperature and precipitation are 21.6 °C and 2188 mm,
respectively. More details about Zengjiang River basin can be found in (Tao et al. 2011).

GR4J model is a rainfall-runoff model which is based on four free parameters from daily
rainfall data. In GR4J, the production components include an interception of raw rainfall and
potential evapotranspiration, a soil moisture accounting procedure to calculate effective rainfall
and a water exchange term to model water losses to or gains from deep aquifers. Its routing
module includes two flow components with constant volumetric split (10–90%), two unit
hydrographs, and a non-linear routing store (as shown in Fig. 2). The descriptions and initial
fluctuating ranges of GR4J model parameters are presented in Table S2. For more details of
GR4J model, please refer to the literature (Perrin et al. 2003). However, for a specific
watershed, the appropriate parameter ranges should be obtained through the calibration process
that produce an acceptable model performance (Shin et al. 2013). It has been reported that the
parameters sensitivities were strongly influenced by the ranges of parameter values (Shin et al.
2013). It is important to obtain an appropriate parameter range corresponding to satisfactory
model performance before sensitivity analysis (SA) (Saltelli et al. 2019; Shin et al. 2013).
Therefore, in this study, the model parameter ranges are calibrated based on the Metropolis-
Hastings algorithm (MH) prior to SA in order to identify the input variability space. The details
about MH algorithm are presented in supporting materials. Nash–Sutcliffe efficiency (NSE) is
used to assess the accuracy of model results which involves standardization of the residual
variance. Here, the objective functions adopted can be represented as follows (Nash and
Sutcliffe 1970):

Pear River Delta

En

Es

Pn

Ps Pn-Ps

X11 S

Perc Pr

UH1 UH22

0.9 0.1

X4 2*X4

Q9 Q1

X33 R

Qr Qd

F(X2) F(X2)

Fig. 2 The location of the studied catchments (a) and diagram of the GR4J model (b)
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NSE ¼ 1−
∑n

i¼1 Qobs;i−Qsim;i

� �2

∑n
i¼1 Qobs;i−Qobs

� �2 ð25Þ

where Qsim is the simulated runoff, Qobs is the observed runoff, Qobs is the mean value of the
observed runoff and n is the sample size.

The posterior distributions of GR4J parameters are presented in Fig. 3a. The predictive
intervals of streamflows are presented in Fig. 3b. It can be observed that the parameters in
GR4J are well identified after a number of iterations, and the obtained predictive intervals can
generally bracket the observations, except for some overestimations in high-flow periods.
Based on the posterior distributions, the proposed subsampling ANOVA methods are applied

Fig. 3 (a) Posterior distributions of the parameters in GR4J model obtained by MH; and (b) predictive interval
and real observations of stream
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for analyzing parameters sensitivities of GR4J model in Zengjiang River basin. Similar to Sect.
3, different subsampling ANOVA approaches, including single-subsampling ANOVA (5222,
2522, 2252, and 2225), multiple-subsampling ANOVA (5522, 5252, 5225, 2552, 2525, 2255,
5552, 5525, 5255, and 2555), and full-subsampling ANOVA with different parameters level
(2222, 3333, 4444, and 5555) are going to be tested.

4.2 Performances of Single- and Multiple-Subsampling ANOVA Approaches

With one parameter to be subsampled, the contributions of individual and interactive effects
for the four parameters in GR4J model are shown in Fig. 4a. There are several findings as
follows. Firstly, taking Sobol’s results as the reference results, X1 makes the largest contribu-
tion to GR4J model uncertainty in Zenjiang River, followed by the interactive effects of the
four parameters. The high sensitivity of X1 indicates that runoff generation in Zengjiang basin
is highly affected by the maximum capacity of the production store. The X1 increases to handle
an overestimation of rainfall and decreases to handle an underestimation, thus adapts its
capacity to hold and evaporate different amounts of water (Oudin et al. 2006). Secondly, the
subsampling procedure would lead to a lower sensitivity value for the subsampled parameter
which is similar to the results in Sect. 3.2. For example, the contributions of X1 are 0.109,
0.230, 0.275, and 0.205 for the four single-subsampling schemes of 5222, 2522, 2252, and
2225. The lowest sensitivity value for X1 is obtained in 5222, in which X1 is decomposed into
five levels and then subsampled. Thirdly, the ranking of parameter sensitivity is influenced by
different single-subsampling schemes (Fig. S4–S6). For instance, the sensitivity order in
subsampling scheme of 5222 is Interactions >X3 > X4 > X1 > X2, while in the scheme of
2252, the sensitivity order is Interactions >X1 > X3 > X4 > X2. These results indicate that the
single-subsampling ANOVA approach may generate unreliable sensitivity values, which is
highly influenced by the parameter to be subsampled.

The individual and interactive effects for GR4J model parameters under different multiple-
subsampling schemes are presented in Figs. 4b, c. It can be found that, for each parameter, the
values of red bars, which indicate the schemes with the parameter being subsampled, are
significantly lower than that of blue bars. The mean values of the red bars for X1, X2, X3, and
X4 are 0.184, 0.033, 0.124, and 0.078, respectively. Meanwhile the mean values for the blue
bars for X1, X2, X3, and X4 are 0.306, 0.098, 0.264, and 0.225, respectively. For each
parameter, the mean value without subsampling (blue bars) is more than twice than the mean
value with subsampling (red bars). These also suggest that the subsampling-procedure would
significantly underestimate the individual sensitivity value for the subsampled parameters in
the multiple-subsampling ANOVA approach.

4.3 Performance of Full-Subsampling ANOVA

In the full-subsampling ANOVA approach, different levels for each parameter can be chosen
before the subsampling procedure. Similar with Sect. 3, four scenarios (2–5 levels) are going to

Fig. 4 Contributions of individual and interactions for GR4J model parameters under different subsampling
methods. (a) one of the four parameters are subsampled; (b) two of the four parameters are subsampled; (c) three
of the four parameters are subsampled. (d) full-subsampling ANOVA methods with different subsampled
parameter’s level. Red bar indicates that the parameter is divided into five levels first and then subsampled;
blue bar represents that the parameter is only divided into two levels, without subsampling

R
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be chosen for each parameter in GR4J. The contributions of individual and interactions for
GR4J model parameters under different levels in full-subsampling ANOVA are presented in
Fig. 4d. As the parameter level increases from 2222 to 5555, the sensitivities of X1, X2, and X4

gradually increase from 20.1%, 3.7%, and 4.7% to 31.0%, 7.6%, and 15.8%, respectively. At
the same time, the contribution of X3 and interaction gradually decrease from 21.7% to 17.8%
and 48.9% to 25.9%. The results indicate that the parameters levels will affect the individual
and interactive sensitivities in the full-subsampling ANOVA approach. In details, the sensi-
tivity of the most sensitive parameter and interaction would generally decrease, while the
sensitivities of the other parameters increase when the parameter level increases. However,
most changes would happen when the parameter level increases from 2 to 3. This is because
that when 2 parameters levels are chosen, the full-subsampling ANOVA method would
become the traditional ANOVA without subsampling. In comparison, the obtained results
would not show noticeable variation and the order of parameters sensitivity would not change
when the parameter levels are higher than three. This means that the full-subsample ANOVA
approach can generate relatively robust results when the parameter level is larger than 3.

5 Discussion

In this study, the Sobol’s method (Sobol’ 1993; Wang et al. 2018) is considered as the
benchmark to evaluate the performance of the developed subsampling ANOVA approaches.

The deviation between subsampling ANOVA and Sobol’s approaches can be evaluated as ∑
I

i¼1

η*i −ηsobol
0s

i

� �
2, where η*i is the sensitivity indices calculated by the subsampling ANOVA

approaches, ηsobol
0s

i is the sensitivity indices calculated by Sobol’s method. Figure 5 presents
deviations for parameter sensitivity values between the subsampling ANOVA and Sobol’s
approaches. It can be concluded that the full-subsampling ANOVA approach is able to
generate more reliable results than the single- and multiple-subsampling ANOVA approaches.
Moreover, in order to get reliable parameter sensitivity results, the three or more parameter
levels in the full-subsampling ANOVA approach are recommended. For instance, the devia-
tions between results of subsampling ANOVA and Sobol’s methods vary within [0.0008,
0.114] for different subsampling schemes with different parameters levels for the three
parameters model (Fig. 5a). As for the GR4J model, the corresponding deviations range from

Fig. 5 The deviations of parameter sensitivity between subsampling ANOVA and Sobol’s: (a) three parameters
model and (b) four parameters GR4J model
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0.024 to 0.114 for single-subsampling ANOVA and multiple-subsampling ANOVA ap-
proaches (Fig. 5b). Such noticeable deviations indicate that biased/discrepant sensitivity
indices may be obtained through the single/multiple-subsampling ANOVA methods. In
comparison, significantly better performances are obtained through the full-subsampling
ANOVA method. The deviations are lower than 0.002 when 3 or more parameter levels are
chosen in the full-subsampling ANOVA. The negligible bias show that the parameters
sensitivities are very close to the “true value” when the subsampled parameter level is 3 or
more in full-subsampling ANOVA method. Therefore, in order to get reliable parameter
sensitivity results, the full-subsampling scheme with 3 or more parameter levels would be
recommended for the application of subsampling ANOVA methods.

Many research works have reported that Sobol’s method is computationally expensive (Tang
et al. 2008; Tian 2013). However, the subsampling ANOVA method is more computationally
efficient than the Sobol’s method. To illustrate the computational efficiency of the subsampling
ANOVAmethods, the number of model runs and the number of calculations of variance required
by subsampling ANOVA and Sobol’s methods are presented in Table 1. The details about the
calculation requirements are presented in supplementary materials. For the simple three-
parameter model, the Sobol’s method needs 2000 × (3 + 2) runs while it would require
3,000,000× (5 + 2) runs for the GR4J model to get stable results for parameters sensitivities,
which is a very large computational requirement. However, the subsampling ANOVA methods
can significantly reduce the calculation requirements to achieve a similar calculation accuracy for

Table 1 The number of model running and the number of calculations of variance required by subsampling
ANOVA and Sobol’s

Three parameters model GR4J model

N1 N2 N1 N2

522 20 10 5222 40 10
252 20 10 2522 40 10
225 20 10 2252 40 10
552 50 100 2225 40 10
525 50 100 5522 100 100
255 50 100 5252 100 100
222 8 1 5225 100 100
333 27 27 2552 100 100
444 64 216 2525 100 100
555 125 1000 2255 100 100
Sobol’s 2000 × (3 + 2) 1 5552 250 1000

5525 250 1000
5255 250 1000
2555 250 1000
2222 16 1
3333 81 81
4444 256 1296
5555 725 10,000
Sobol’s 3,000,000 × (4 + 2) 1

Note: N1 represent the number of model running and N2 represent the number of calculations of variance. For
example, in the full-sampling scheme ″4444″ of GR4J model, the model only need to run 256 times (256 = 4 ×
4 × 4 × 4). Meanwhile, 1296 sets variance results can be obtained through subsampling process where
1296=C2

4 � C2
4 � C2

4 � C2
4and C2

4 ¼ 4�3
2�1 ¼ 6. The final sensitivity results are obtained by averaging and ho-

mogenizing the 1296 sets of variance
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the GR4J model. For instance, in the full-sampling scheme of ″4444″, the only 256 runs is
required to get similar sensitivity results with a negligible deviation of 0.0006. Through reducing
the number of model runs, the proposed full-subsampling ANOVA methods are effective and
feasible for sensitivity analysis with relatively low computational requirements.

Even though the subsampling ANOVA approaches may not produce better results than the
Sobol’s method, the proposed subsampling ANOVA approaches, especially for the full-
subsampling ANOVA method, have their own essential strengths. Firstly, the Sobol’s algorithm
has high computational cost. The number of model evaluations required for the Sobol’s indices to
converge increases rapidly with the number of parameters, making its efficiency questionable for
complex water resources and environmental models (Herman et al. 2013; Khorashadi Zadeh et al.
2017). In comparison, the proposed subsampling ANOVA approaches can produce results with
satisfactory accuracy levels with a much lower computational demand (Table 1). The number of
model evaluations is equal to the number of combinations with all parameter levels. Meanwhile,
the full-subsampling ANOVA approach can generate acceptable results with three or four levels
for each parameter. Secondly, besides sensitivity analysis for parameters with continuous values
(Qi et al. 2016c), the single-subsampling ANOVA algorithms has already been applied to analyze
the sensitivity of discrete or non-numeric elements such as the statistical post processing scheme,
precipitation products and the hydrological model (Bosshard et al. 2013; Qi et al. 2016b).
Consequently, the developed multiple-/full-subsampling ANOVA approaches can also charac-
terize sensitivities for both numeric and non-numeric variables in water resources and environ-
mental models, which can hardly be treated by the Sobol’s approach.

6 Conclusion

In this study, three kinds of subsampling-ANOVA schemes (single-, multiple- and full-
subsampling) have been proposed to characterize individual and interactive sensitivities for
parameters in water resources and environmental models. The applicability of the subsampling
ANOVA approaches are demonstrated through one simplified model and a rainfall-runoff
conceptual model. To evaluate the performance of different subsampling ANOVA schemes,
the traditional Sobol’s method is also used as the benchmark in the study. Based on the case
studies, the main findings can be concluded:

1. The subsampling schemes can effectively diminish the bias estimation in traditional
ANOVA approach. In the applications of the single- and multiple-subsampling ANOVA
methods, the parameter’s individual sensitivity is related to the subsampling scheme. The
subsampling process would underestimate the individual sensitivity of the parameter to be
subsampled and overestimate the individual sensitivities non-subsampled parameters.

2. Among the proposed methods, the full-subsampling ANOVA have the most robust
performance and the deviation would decrease with the increase of parameter levels.
The variation of the obtained parameters sensitivities is not apparently visible and the
order of parameters influences (i.e. sensitivity) would not change for three 3 or more
parameter levels.

3. Compared with Sobol’s method, the subsampling ANOVA methods can significantly
reduce the calculation requirements to achieve a similar calculation accuracy. Particularly,
in order to get reliable parameter sensitivity results, the full-subsampling scheme would be
adopted, and 3 or more parameter levels are recommended.
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The main innovation of this research is the development of multiple- and full-subsampling
ANOVA approaches to reduce bias estimation and enhance the applicability of ANOVA in
sensitivity analysis. The influence of subsampling schemes in the single-, multiple- and full-
subsampling ANOVA approaches are illustrated through two case studies. The proposed
approaches in this study just serve as a first basis for the application of subsampling ANOVA
in parameter sensitivity analysis for water resources and environmental models. The number of
levels would probably be higher than three to ensure robustness for subsampling ANOVA
methods for a more complex model. The subsampling ANOVA algorithms not only reduce the
computing cost greatly, but also analyze the sensitivity of discrete or non-numeric elements.
Further research is encouraged to examine the applicability of the subsampling ANOVA
approaches in other non-numeric elements sensitivity analysis.
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