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Abstract
Dam inflow prediction is important in terms of optimal water allocation and reduction of
potential risks of floods and droughts. It is necessary to select a suitable model to reduce
uncertainties in long-term and short-term predictions. In this study a probabilistic model
of Bayesian Networks (BNs) was used to evaluate its efficiency in predicting inflow into
reservoirs considering the uncertainties. For this purpose, continuous BNs as well as
integration of K-means clustering and discrete BNs were applied for predicting magni-
tude and range of inflows, respectively in terms of annual and monthly prediction
scenarios. In this regard, the Zayandehrud Dam reservoir in Iran was selected to test this
model. To achieve the best network structure in these scenarios, different patterns were
defined based on the combination of predictors. According to the magnitude predictions,
the MAPE and R2 indicators in annual model were respectively 21% and 0.62 and in
monthly model were respectively 49% and 0.71. According to the results of the inflow
range prediction, the prediction accuracy of the annual and monthly patterns was 75%
and 83%, respectively. Modelling results showed that BN performs better in predicting
the inflow range than its numerical prediction. The proposed model can improve the
decision making of reservoirs operation.

Keywords Dam inflow prediction . Bayesian networks . Uncertainty . Clustering . Zayandehrud
dam

1 Introduction

Operation of dam reservoirs is of great importance due to an increase in the population of the
world and consequently the need for development and optimal utilization of water resources.
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Hence the access to accurate information is important to predict inflow to the reservoir to plan and
control the rule curve of dams (Bae et al., 2007). Short-term (e.g. Monthly) and long-term (e.g.
Annual) prediction cannot easily be done, because the pattern of inflow is associated with many
complications. Therefore, the development of a model that can take into account this complexity
is essential to provide accurate predictions (Allawi et al., 2018). Accurate analysis of short-term
predictions is necessary for preventing flood events and water supply. In addition, long-term
predictions are necessary for water resources planning (Awan and Bae, 2014).

According to the literature, there are many different approaches to predict dam inflow.
Awan and Bae (2013) developed a model based on Adaptive Network-based Fuzzy Inference
System (ANFIS) to predict inflow to three dam reservoirs in South Korea. Using this model,
they predicted monthly inflow to dams in the next month using predictor parameters of
precipitation, temperature and dam inflow. Kumar et al., (2015) used Bootstrap wavelet-
based ANN model (BWANN) to predict the daily inflow of the Panchut dam in India. The
results of this method were compared with several models such as wavelet-based multiple
linear regression (WMLR) and Bootstrap analysis.

Atiquzzaman and Kandasamy (2016) studied the accuracy of the Genetic Programming
in long-term prediction of inflow to a dam in Australia. In this study, precipitation and
inflow to the dam in previous time steps were used in predictions. Li et al., (2016)
introduced the Deep Restricted Boltzmann Machine-based Neural Networks (DRBM-
NN) and Stack Auto Encoder-based Neural Networks (SAE-NN) models to predict daily
inflow of two dams in China. The results of this study were compared with those obtained
from ARIMA and a Feed Forward Neural Network. For the operation of Ubonratana Dam
reservoir in Thailand, Chiamsathit et al., (2016) predicted inflow to the dam reservoir
using a Multilayer Perceptron Artificial Neural Network. Simulations were performed
under the role curve of the dam. Esmaeilzadeh et al., (2017) used different combinations of
precipitation time series, evaporation and upstream discharge of the river at different time
steps to predict inflow to Sattarkhan Dam in Iran. They compared the performance of
Artificial Neural Networks (ANN), Support Vector Regression (SVR), Wavelet Neural
Networks (WANNs) and M5 tree models.

Different models with different parameters are being used in predictions. However,
methods that can reduce uncertainty are more reliable. BNs are one of the efficient probabi-
listic models in this regard. Bayesian models have been increasingly developed due to high
processing speed, graphical representation, no limitation in the number of variables and
parameters, a combination of different data sources and management of uncertainties.

According to the literature, this model is a powerful tool for solving complex problems and
is able to effectively discuss relationships between them (Leu and Bui, 2016). This model has
been used in various areas of water resource management such as water allocation (Ahmadi
et al., 2010; Xue et al., 2016), irrigation water management (Rahman et al., 2016; Sherafatpour
et al., 2019); supply and demand management (Phan et al., 2016; Asadilour et al., 2012),
groundwater management (Mohajerani et al., 2017; Roozbahani et al., 2018), water quality
management (Liu et al., 2018; Couture et al., 2018), integrated water resources management
(Molina et al., 2010; Xue et al., 2017), urban water management (Anbari et al., 2017; Tabesh
et al., 2018) and many other fields of study. In the meantime, this efficient approach has
recently received much attention in predicting water resources. For example, it has been used
in drought prediction (Madadgar and Moradkhani, 2014; Bae et al., 2017), water consumption
prediction (Froelich, 2015; Magiera and Froelich, 2015), runoff prediction (Nagarajan et al.,
2010; Humphrey et al., 2016), water environmental risk prediction (Sharifahmadian and Latifi,
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2013), water pollution prediction (Hall and Le, 2017; Nodoushan, 2018), pipe failure predic-
tion (Kabir et al., 2015), prediction of pipe leakage (Leu and Bui, 2016), flood prediction
(Sikorska and Seibert, 2016; Goodarzi et al. 2019), etc.

According to the literature, this approach has been rarely used to predict dams’ reservoirs
related backgrounds, in particular, prediction of inflow to dams. For instance, BNs have been
used in predicting the optimal utilization of dam reservoir (Mediero et al., 2007), reservoir
water dynamics (Das et al., 2017) and the water level in reservoirs (Das et al., 2016), changes
in the reservoirs fullness (Ropero et al., 2017) and the seasonal prediction of dam inflow (Kim
et al., 2018).

Due to the random and uncertain nature of dams’ inflow, the BN is used in the current
research. The possibility to enter classified variables numerically is among prominent features
of the BNs. Monthly and annual inflow predictions as well as the prediction of inflow range
are introduced in this study for the first time. The model is tested for the Zayandehrud Dam as
one of the most important dams in Central Iran. The real data were used directly in magnitude
predictions and the clustered data were used for predicting the inflow range. The results of this
study can be used to help decision-makers in allocating water to various uses or other goals
such as long-term water sales contracts, hydraulic power and drought preparedness with the
highest degree of reliability.

2 Methodology

2.1 Study Area

Zayandehrud multi-purpose dam on the Zayandehrud River in Central Iran is located 110 km
west of Isfahan. Water is supplied through natural runoff of Zayandehrud River and tunnels
that are used for the transfer of inter-basin water including the first, second and third tunnels of
Koohrang and Cheshme-Langan. It is noteworthy that the third Koohrang tunnel has been
launched, but is not yet in operation. According to the statistics, the average inflow to the
Zayandehrud Dam during 1971–72 to 2014–15 was about 44 m3/s. The basin upstream of
Zayandehrud Dam with an area of 4265 km2 is located between the northern latitudes of 32°
18′ to 33° 10′ and eastern longitude of 50° 03′ to 50° 40′. The dam was constructed for
hydroelectric power generation, seasonal flood control, supplying the agricultural, industrial,
drinking and environmental water demands of downstream lands and cities. Figure 1 shows
the study area in Iran.

2.2 Bayesian Networks (BNs)

Bayesian networks (BNs), also referred to belief networks and Bayesian belief networks was
designed by Pearl (1988). This is a graphical model representing probabilistic relationships
among different factors in a case study (Pearl, 1988). Probabilistic relationships in this method
are estimated according to the Bayes theorem (Roozbahani et al. 2018). If E and F are two
events so that P (E) ≠ 0 and P (F) ≠ 0, then we have:

P E∣Fð Þ ¼ P FjEð Þ P Eð Þ
P Fð Þ ð1Þ
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Similarly, for n exclusive events of E1, E2, ...,En, we have:

P EijFð Þ ¼ P FjEið ÞP Eið Þ
P FjE1ð ÞP E1ð Þ þ P FjE2ð ÞP E2ð Þ þ…P FjEnð ÞP Enð Þ ð2Þ

Where P(Ei) is the probability of event Ei; P(F) is the probability of event F; P(Ei|F) and
P(F|E)are conditional probability of Ei given F and vice versa.

A BN consists of two main quantitative and qualitative components. The qualitative
component is a directed linear graph in which each node represents a system variable
and edges represent a causal relationship between the variables of the network (Abebe
et al., 2018). The quantitative component is represented by a set of probabilistic
relationships or probabilistic distributions for each network node. In the absence of
any parent for the node (no arc toward the node), the node will have a marginal
probability table. If the node has a parent (one or more arcs toward the node), it will
have a conditional probability table (Hugin Expert A/S, 2017). Basically there are three
types of BN nodes: discrete, continuous and hybrid (discrete and continuous nodes).
For discrete nodes, the probabilistic table contains a probability distribution over the
states and for continuous nodes, the probabilistic table contains a Gaussian density
function (given through mean and variance parameters) for the variables it represents.
Once constructed, the network can be used to enter observational data in nodes with
known specific conditions to obtain probabilities in other nodes. If the BNs consist

Fig. 1 study area
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only discrete nodes, then it is called discrete BNs, and if it contains continuous nodes,
it is called continuous BNs.

The structure and probabilistic relationships of the BN are unknown in many cases.
Learning is done using available observational data referred to as BN learning. This involves
two steps of network structure learning and network parameters learning. Network structure
learning is to determine dependent and independent variables and to find possible relationships
between the variables that their causal relationships can be detected based on observational
data. But the learning of parameters means the calculation of conditional probabilities of each
node in the network. Among the advantages of the BNs model are risk analysis and uncertainty
with greater accuracy than other models, management of missing values from input data, the
ability to combine quantitative and qualitative data and providing approximate solutions using
simulation techniques of estimation methods in cases where an exact solution is not available
(Roozbahani et al. 2018). One of the main advantages of the BNs is development of the
network in the case of incomplete data (Anbari et al., 2017). This can be helpful in this study
due to the lack of time series of some parameters such as snow which cannot be extended.

2.3 Data Clustering

One of the important steps in discrete BN modelling in the predicting inflow range is to
provide appropriate numerical intervals for model parameters which play a significant role in
the final results of the model. To this end, clustering was used to divide monthly and annually
predictors and predictands data to proper classes. Most of the previous researches have
determined the classes manually and it cannot guarantee achieving the best results. Clustering
is an unsupervised process during which objects are classified into different groups so that
objects in a cluster are most similar to each other. The K-means method is one of the most
practical clustering methods proposed by Macqueen (1967). This method uses an algorithm to
classify objects so that the sum of squares of the distance between the data and the corre-
sponding cluster center is minimized. The K-means clustering algorithm can be summarized as
follows:

i: First, an arbitrary value is considered for the number of clusters (K). ii: K points are
selected in the space of the objects which are in fact the set of primary centers. Iii: Each object
is assigned to a group with the shortest distance to its center. iv: When all objects are assigned
to clusters, the location of the k centers is recalculated by calculating the average of each
cluster’s data. v: The steps (iii) and (iv) are repeated until the center of the cluster does not
change. vi: At the last step, the objects are divided into separate groups with least error.

This is one of the most popular clustering techniques, but its reliability is influenced by the
choice of initial centers for clustering, because the algorithm may stop in local optimums in
some cases (Javadi et al., 2017). To obtain a suitable number of clusters (K), clustering
validation methods such as Davies-Bouldin Index, Silhouette Width and the newer Gap
method (Albalate and Suendermann, 2009; Rendón et al., 2011) have been used in this paper.

2.4 The Structure of the Proposed Bayesian Model

Choosing suitable and effective initial input variables improves the performance of the results
in smart models. Therefore, it is important to identify the parameters affecting inflow to the
dam reservoir. In Bayesian Network modelling, correlation analyses is not necessary and the
relations between inputs and outputs are extracted by conditional probabilities. According to
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available statistics and information, the discharge to the basin by the first and second tunnels of
Koohrang (Q1, Q2) and Cheshme-Langan tunnel (Q3), natural discharge of Zayandehrud River
(Zayandehrud River natural discharge is estimated by subtracting the discharge of water
transfer tunnels from total dam inflow) (Qz), discharge of two important hydrometric stations
(due to suitable positioning and suitable long-term statistical period) of Qaleh-Shahrokh (Q4)
and Eskandari (Q5) which measure the inflow to the dam reservoir respectively from the south
and north, average Rainfall in the basin (R), average snow height in the basin (S) and total dam
inflow (Qd) with a reasonable time delay (monthly/yearly) are the effective predictors in the
model. In this research all possible predictors have been used and there is no other variable that
can be incorporated in the prediction model due to the lack of data in this region. But before
Bayesian Network applying, correlation coefficients between predictors and dam inflow were
estimated. As the coefficients were relatively low, therefore applying cause effect and prob-
abilistic models such as BNs is reasonable.

Table 1 shows the basic information of the parameters affecting the inflow into the dam (i.e.
years of data, mean annual values and % of missing data). These parameters were identified
based on the role of these parameters in the calculations. Mostly, the correlation values
between predictors and dam inflow was not considerable and this is one of the main reasons
that BN has been chosen for prediction.

Accordingly, four scenarios were designed after introducing effective variables in
predictions:

A). Scenario 1: Prediction of annual inflow magnitude
B). Scenario 2: Prediction of the annual inflow range
C). Scenario 3: Prediction of monthly inflow magnitude
D). Scenario 4: Prediction of monthly inflow range

Magnitude of inflow value is a real value (i.e. 2 m3/s) and inflow range is a class of inflow
which varies between minimum and maximum values (i.e. 2–3 m3/s). According to the
modelling scenarios, learning and validation of the proposed Bayesian model in Scenarios 1
and 3 were performed based on predictive numerical data to predict inflow to the dam. In
Scenarios 2 and 4, predictor and predicted variables were divided into appropriate intervals
with K-means clustering and validation indices mentioned in the methodology section to

Table 1 Basic information of parameters

Basic information Parameter mean annual value Years of data Missing
data (%)

from to

First tunnel of Koohrang discharge(Q1) 8.95 (m
3

s ) 1971–72 2014–15 0

Second tunnel of Koohrang discharge(Q2) 10.40 (m
3

s ) 1985–86 2014–15 31.82

Cheshme-Langan tunnel discharge (Q3) 4.36 (m
3

s ) 2005–06 2014–15 77.27

Qaleh-Shahrokh hydrometric station discharge(Q4) 39.37 (m
3

s ) 1971–72 2014–15 0

Eskandari hydrometric station discharge(Q5) 4.29 (m
3

s ) 1971–72 2014–15 0

Zayandehrud river natural discharge(QZ) 26.93 (m
3

s ) 1971–72 2014–15 0

Rainfall (R) 550.78 (mm) 1971–72 2014–15 0
Snow (S) 123.51 (mm) 1997–98 2014–15 61.36
Dam inflow (Qd) 43.94 (m

3

s ) 1971–72 2014–15 0
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predict the range of inflow changes. Also dam inflow is predicted for the next month and next
year for monthly and annual prediction models, respectively. Figure 2 shows the modelling
flowchart for 4 designed scenarios.

Considering different effects of predictor variables in the modelling structure, different
patterns of BN were identified for entering data to identify the best learning structure.
Accordingly, 44 patterns were designed for modelling as listed in Table 2.

Three groups were used to define these patterns. In the first group (25 first patterns),
inflow to the Zayandehrud Dam was predicted using the average rainfall in the basin,
average snow height, discharge of the first and second tunnels of Koohrang and Cheshme-
Langan, natural discharge of Zayandehrud River and inflow to the dam with a time delay
(monthly/annual).

To define the patterns in the second group (14 patterns), average rainfall in the basin,
discharge of the first and second tunnels of Koohrang and Cheshme-Langan, Discharge of
Qaleh- Shahrok station, south of the basin and Eskandari station, north of the basin as well as
inflow to the dam with a time delay (monthly / yearly) were used. In these two approaches,
data from the previous step (last year/month) were used to predict the inflow into the dam at
the current time step. Finally, in the third group (5 patterns), predictions were performed only
based on the time series of the inflow into the dam in the last one, two and three-time steps
(month or year). For monthly and annual prediction scenarios, time step of prediction (t) is
month and year, respectively.

Hugin Lite is one of the most powerful commercial software for simulating and analyzing
BNs. It provides a very good, intelligible and user-friendly interface with practical tools (Phan
et al., 2016). Due to the advantages and ease of use, Hugin Lite V. 8.5 was used in this study
for modelling the BN to predict annual and monthly inflow into the dam numerically and as
intervals (Hugin Expert A/S, 2017).

Fig. 2 Flowchart of the proposed model
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2.5 Model Evaluation Indicators

The use of statistical indicators for evaluation of results depends on the type of prediction
outcomes. After the learning of the network, coefficient of determination (r2), Nash-Sutcliffe
coefficient (NS), Mean Absolute Percentage Error (MAPE) and Root Mean Square Error
(RMSE) were used to investigate the accuracy of predictions of the inflow magnitude

Table 2 Patterns defined in the Bayesian network to enter the variables

Pattern* Q1
(t-1)

Q2
(t-1)

Q3
(t-1)

Q4
(t-1)

Q5
(t-1)

QZ
(t-1)

R (t-1) S (t-1) QD
(t-1)

QD
(t-2)

QD
(t-3)

1 ✓ ✓ ✓ ✓ ✓
2 ✓ ✓ ✓ ✓
3 ✓ ✓ ✓ ✓
4 ✓ ✓ ✓ ✓
5 ✓ ✓ ✓ ✓
6 ✓ ✓ ✓ ✓ ✓ ✓
7 ✓ ✓ ✓ ✓ ✓
8 ✓ ✓ ✓ ✓ ✓
9 ✓ ✓ ✓ ✓ ✓ ✓
10 ✓ ✓ ✓ ✓ ✓
11 ✓ ✓ ✓ ✓
12 ✓ ✓ ✓ ✓ ✓
13 ✓ ✓ ✓ ✓ ✓ ✓
14 ✓ ✓ ✓ ✓ ✓
15 ✓ ✓ ✓ ✓
16 ✓ ✓ ✓ ✓
17 ✓ ✓ ✓ ✓
18 ✓ ✓ ✓
19 ✓ ✓ ✓
20 ✓ ✓ ✓ ✓
21 ✓ ✓ ✓ ✓ ✓
22 ✓ ✓ ✓
23 ✓ ✓
24 ✓
25 ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
26 ✓ ✓ ✓ ✓ ✓ ✓ ✓
27 ✓ ✓ ✓ ✓ ✓
28 ✓ ✓ ✓ ✓ ✓ ✓
29 ✓ ✓ ✓ ✓ ✓
30 ✓ ✓ ✓ ✓ ✓
31 ✓ ✓ ✓ ✓ ✓ ✓
32 ✓ ✓ ✓ ✓
33 ✓ ✓ ✓ ✓ ✓ ✓
34 ✓ ✓ ✓ ✓ ✓
35 ✓ ✓ ✓ ✓ ✓
36 ✓ ✓ ✓
37 ✓ ✓ ✓ ✓ ✓ ✓
38 ✓ ✓ ✓ ✓ ✓
39 ✓ ✓ ✓ ✓ ✓
40 ✓
41 ✓
42 ✓
43 ✓ ✓
44 ✓ ✓ ✓

*Pattern 1 to 25: Group #1; Pattern 26 to 39; Group #2 Patterns 40 to 44;Group #3
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(Ghordoyee Milan et al., 2018; Sherafatpour et al., 2019). The Reliability Percent index (RP)
to measure the prediction accuracy of the flow range. In this case, the probability of being
located in each interval was calculated and the one with the highest probability was selected
and compared with the observational data. PR index is calculated by dividing the number of
correct predicted years (or months) to the total number of years (or months).

3 Results and Discussion

3.1 Learning Period and Model Validation

The time series of inflow to the Zayandehrud dam is available from 1971 to 2014 which
includes 44 years of data for annual modelling and 536 months of data for monthly modelling.
Therefore, this period was chosen as the modelling period and the time series of other
parameters (except for the snow parameter that cannot be extended) were reconstructed as
needed. 80% of data were used for calibration or learning of the BN and the remaining 20%
were used for validation to verify the accuracy of the trained network. Figure 3 shows the long-
term average of the time series of inflow to the Zayandehrud Dam.

As shown, 20% of the end of the time series is in the hydrological dry period. For validating
the model, comprehensive inclusion of a dry period cannot express the accuracy of the model,
especially in the future wet periods. Using a moving average of discharge, 20% ending in
2010–2011 (2002–2003 to 2010–2011) distributed in wet and dry periods was selected as
period of validation. In other words, to train and test the annual Bayesian model, 36 years were
allocated to calibration, 8 years for validation. Calibration period must contain the proportional
wet and dry hydrological periods to increase the reliability of the forecast results in the future.
Similarly, in the monthly Bayesian model, 432 months were allocated for calibration and
104 months were used to evaluate the accuracy of the trained Bayesian Network.

3.2 Determining the Optimal Number of Clusters for Modelling and Data Clustering

To find suitable numerical intervals in this study, the number of proper clusters for all monthly
and yearly predictor and predicted parameters were first calculated with cluster validation

Fig. 3 The time series of inflow to the Zayandehrud Dam
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indices. According to Davies-Bouldin, and Silhouette width indices in the annual approach,
the optimal cluster number calculated by both indices is the same. However, due to the
significant difference between these two validation indices for monthly data and uncertainty
about which of the indicators will yield better results, Gap index was used to confirm the
results and select the appropriate number of clusters. Finally, the number of clusters with at
least two indices was considered as the optimal cluster number. The results on the validation of
annual and monthly clusters are given in Tables 3 and 4. The numerical intervals (ranges)
obtained for each of the parameters in both annual and monthly approaches are shown in
Table 5.

3.3 Bayesian Network Learning

BN learning consists of 2 steps of structure learning and parameter learning. Structure of the
network refers to the causal relationship between variables. Algorithm of Necessary Path
Condition (NPC) is the most well-known for this purpose. Due to the known network structure
in terms of causal relationships between the parameters in 44 learning patterns, the model
parameters were learned only. Learning the parameters is the fact to find conditional proba-
bilities of nodes using the Expectation-Maximization (EM) algorithm.

3.4 Model Validation and Results

Upon completing the BN learning, the patterns were validated under different scenarios.
A) Scenario 1: Table 6 shows the results on validation of the first scenario (prediction of

annual inflow magnitude). In this scenario, all predictor and predicted parameters were used
numerically to predict the magnitude values of annual inflow. The best results in terms of
statistical indicators were obtained from the patterns 15 and 44. Of these two patterns, the
pattern 15 was the best in terms of the mean absolute percentage error while the pattern 44 was
the best in terms of other statistical indices. After analyzing the results, the pattern 15-b was
defined as a specific pattern. In this pattern, the predictors are similar to those in the pattern 15
including the first Koohrang tunnel, Cheshme-Langan tunnel, Zayandehrud natural discharge
and rainfall, but with applying lag time of two years for predictors to evaluate its effect on the
accuracy of inflow prediction. Accordingly, the results of the evaluation indices of this model
(Table 7) show a relatively good improvement in r2, NS and RMSE compared to pattern 15.
Thus, this pattern can be described as the top model in this scenario.

Table 3 The optimal number of clusters of annual data

Parameter Silhouette index Davies-Bouldin index Gap index Optimum Clusters Number

Q1 2 3 2 2
Q2 3 3 3 3
Q3 3 3 3 3
Q4 3 3 3 3
Q5 3 3 3 3
QZ 3 3 3 3
R 2 3 2 2
S 2 2 2 2
Qd 3 3 3 3
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B) Scenario 2: The BN was modeled in Scenario 2 with an annual approach to predict the
range of inflow changes. In this scenario, the range of inflow variation was predicted by
clustering predictor and predicted variables. The results in Table 8 indicate that the patterns 22
and 23 provide a higher reliability percent of 75% than other network structure patterns (the
ratio of the number of correct prediction intervals to the total number of predicted intervals).

To analyze the difference between the performances of the two top patterns in this scenario,
validation results in each year were evaluated in terms of reliability. Since the results obtained

Table 4 The optimal number of clusters of monthly data

Parameter Silhouette index Davies-Bouldin index Gap index Optimum Clusters Number

Q1 3 3 3 3
Q2 3 4 4 4
Q3 3 5 3 3
Q4 3 3 4 3
Q5 4 3 3 3
QZ 4 5 3 4
R 3 4 3 3
S 5 3 3 3
Qd 4 4 3 4

Table 5 The intervals for predictor and predicted variables

Model Parameters Symbol Cluster
Number

Annual Range
Bound

Monthly Range
Bound

First Tunnel of Koohrang Discharge (m
3

s Þ Q1 1 Q11 < 8.72 Q11’ < 7.7
2 8.72 ≤Q12 7.7 ≤Q12’ < 16.3
3 – 16.3 ≤Q1

Second Tunnel of Koohrang Discharge

(m
3

s Þ
Q2 1 Q21 < 4.7 Q21’ < 7.2

2 4.7 ≤Q22 < 12.09 7.2 ≤Q22’ < 21.5
3 12.09 ≤Q23 < 17 21.5 ≤Q23’ < 42
4 – 42 ≤Q24’

Cheshme-Langan Tunnel Discharge (m
3

s Þ Q3 1 Q31 < 2.19 Q31’ < 4.5
2 2.19 ≤Q32 < 6 4.5 ≤Q32’ < 16.53
3 6 ≤Q33 16.53 ≤Q33’

Qaleh-Shahrokh Hydrometry Station
Discharge Discharge (m

3

s Þ
Q4 1 Q41 < 20 Q41’ < 31.5

2 20 ≤Q42 < 27.4 31.5 ≤Q42’ < 90.5
3 27.4 ≤Q43 90.5 ≤Q43’

Eskandari Hydrometry Station

Discharge Discharge (m
3

s Þ
Q5 1 Q51 < 3.79 Q51’ < 5.36

2 3.79 ≤Q52 < 6.66 5.36 ≤Q52’ < 16.95
3 6.66 ≤Q53 16.95 ≤Q53’

Zayandehrud Natural Flow Discharge

(m
3

s Þ
Qz 1 QZ1 < 27.09 QZ1’ < 33.2

2 27.09 ≤QZ2 < 45 33.2 ≤QZ2’ < 81
3 45 ≤QZ3 81 ≤QZ3’

Rainfall (mm) R 1 R1 < 602 R1’ < 39
2 602 ≤R2 39 ≤R2’ < 102.9
3 – 102.9 ≤R3’

Snowfall (mm) S 1 S1 < 175 S1’ ≤ 45
2 175 ≤ S2 45 ≤ S2’ < 90
3 – 90 ≤ S3’

Dam Inflow (m
3

s Þ Qd 1 Qd1 < 40.4 Qd1’ < 47.7
2 40.4 ≤Qd2 < 59.1 47.7 ≤Qd2’ < 102.3
3 59.1 < Qd3 102.3 ≤Qd3’ < 195
4 – 195 ≤Qd4’
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each year are based on the probability of being located in each cluster, four categories were
considered for the results. Three categories were considered in terms of correct prediction
probability based on which the probability percentage less than 50% was considered as a low-
reliability prediction, 50–100 as a high-reliability prediction and 100% was considered as a
decisive prediction. The fourth category was also introduced as the percentage of incorrect
prediction probability. The results obtained from the analysis of the patterns 22 and 23 are
presented in Fig. 4. The prediction results for the first and third clusters were similar in both
patterns, but the pattern 22 in cluster 2 provides high reliable predictions. Analysis of the
parameters of these two patterns indicates the significant role of rainfall in selecting the pattern
22. The predictors in this pattern include rainfall, natural discharge of Zayandehrud and runoff
into the dam with a one year delay. Figure 5 shows the modelling results in the calibration and
validation periods. As seen, 61.1% and 75% of calibration and validation data are correctly
predicted, respectively.

C) Scenario 3: In this scenario, prediction of monthly inflow magnitude to the dam was
carried out. The statistical indices for different cases are presented in Table 9. As seen, the
highest accuracy in this scenario is observed in the pattern 15 with the predictor parameters of
discharge of the first Koohrang tunnel and Cheshmeh-Langan, Zayandehrud natural discharge

Table 6 Results of different prediction patterns in the first scenario (magnitude prediction of annual inflow)

Pattern MAPE(%) NS RMSE (m
3

s Þ r2 Pattern MAPE(%) NS RMSE (m
3

s Þ r2

1 31 −0.14 15.17 0.07 23 33 0.25 15.04 0.13
2 29 −0.04 14.48 0.11 24 32 0.11 13.39 0.35
3 27 0.02 14.09 0.14 25 59 0.11 26.32 0
4 27 0.18 12.82 0.2 26 57 −2.33 25.92 0.01
5 32 −0.16 15.31 0.02 27 33 0.31 16.36 0.05
6 31 0.28 14.84 0.1 28 36 −0.38 16.7 0.01
7 31 −0.14 15.19 0.07 29 36 −0.38 16.7 0.01
8 27 0.45 13.82 0.17 30 61 −0.2 26.74 0
9 29 −0.08 14.74 0.07 31 59 −0.44 26.71 0.01
10 35 −0.41 16.84 0.01 32 42 0.2 18.71 0
11 26 0.2 12.66 0.21 33 46 −1.23 21.22 0
12 25 0.2 12.74 0.21 34 35 −0.39 16.74 0.02
13 29 −0.06 14.59 0.08 35 56 −2.25 25.6 0.02
14 31 −0.12 15.04 0.08 36 48 −0.32 21.65 0.02
15 21 0.26 12.21 0.32 37 33 −0.23 15.76 0.06
16 54 0.6 28.87 0.08 38 27 0.19 12.78 0.2
17 31 −0.09 14.82 0.09 39 37 −0.51 17.44 0.02
18 22 0.22 12.54 0.25 40 28 0.21 12.65 0.25
19 28 0.4 14.48 0.14 41 34 −0.03 14.54 0
20 21 0.13 13.25 0.2 42 35 −0.02 14.32 0.01
21 26 0.05 13.83 0.13 43 29 0.18 12.88 0.21
22 35 0.06 15.59 0.05 44 28 0.36 11.88 0.36

Table 7 Validation of Scenario 1 under a specific pattern

Pattern MAPE(%) NS RMSE

(m
3

s )

r2

15-b 21 0.47 10.36 0.62
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and rainfall. This pattern leads to a mean absolute percentage error rate of 49%, Nash-Sutcliffe

of 0.7, RMSE of 21.82 m3

s with a coefficient of determination of 0.71.

As the best result in scenario 1 has obtained from the specifically defined pattern, similarly,
in this scenario, a specific pattern was considered (pattern 15-b). In this pattern, the predictors
are similar to those in the pattern 15 with this difference that the time step of predictor
parameters has a two-month delay. Accordingly, the result of the statistical indices of this
model (Table 10) doesn’t show an improvement in accuracy of BN compared to pattern 15.

D) Scenario 4: This scenario determines the reliability percent of the monthly inflow range
prediction by defined patterns. Table 11 lists the validation results of this scenario. As seen, the
patterns 10, 11, 19, 23 and 24 show the highest reliability percent. The constant parameter in
the network structure of these 5 patterns is natural runoff of Zayandehrud. This indicates the
importance of this parameter in prediction with more accuracy.

Like scenario 2, the results of the top patterns in this scenario were analyzed with regard to
the reliability index (Fig. 6). The data in the fourth clustering group are not available in the
validation period and thus will not affect the selection of the top model.

Comparing the results of the top patterns in Fig. 6, one can see that the first cluster in all 5
cases is predicted with a probability of 50 ≤ P ≤ 100 or p = 100. So this cluster will have the
least effect on choosing the best pattern, because the forecast is accurate with a good

Table 8 Results of different prediction patterns in the second scenario (prediction of annual inflow intervals)

Pattern RP(%) Pattern RP(%) Pattern RP(%)

1 50% 16 50% 31 25%
2 63% 17 63% 32 25%
3 38% 18 63% 33 38%
4 50% 19 63% 34 25%
5 50% 20 63% 35 38%
6 50% 21 63% 36 0%
7 38% 22 75% 37 25%
8 50% 23 75% 38 25%
9 38% 24 38% 39 25%
10 50% 25 38% 40 63%
11 38% 26 13% 41 38%
12 38% 27 38% 42 38%
13 38% 28 13% 43 25%
14 50% 29 25% 44 38%
15 50% 30 25%
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Fig. 4 The performance of the Bayesian model in two top patterns of the scenario 2
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confidence rate in all relevant months. However, the least reliable predictions are seen for the
third cluster. So this cluster has the most impact on the selection of best pattern. It seems
necessary to select a pattern giving acceptable results from cluster 3. Given that the patterns 11
and 24 were not able to accurately predict the cluster 3 even within a month in the first step,
they are removed from the list of top models. In other words, the confidence level of correct
prediction in these two patterns is 0%. In the next step, the pattern 10 is removed from three
remaining patterns because of the lowest confidence in the prediction of the third cluster.

In the third step, the remaining two patterns, namely 19 and 23, are compared. The
confidence level of the correct prediction of the third cluster is equal in these patterns. So
the decisive factor in this step is the confidence level obtained from the second cluster. As
seen, the percentage of the probability of the correct prediction is higher in the pattern 23.
Consequently, the pattern 23 with the predictor parameters of natural discharge of
Zayanderroud with a one-month delay and inflow to the dam with a one-month delay can

Fig. 5 Results of inflow range prediction for the best pattern in scenario 2

Table 9 Results of different prediction patterns in the third scenario (magnitude prediction of monthly inflow)

Pattern MAPE(%) NS RMSE(m
3

s Þ r2 Pattern MAPE(%) NS RMSE(m
3

s Þ r2

1 53 0.69 22.36 0.7 23 63 0.63 24.24 0.69
2 65 0.48 28.91 0.49 24 57 0.7 21.78 0.71
3 76 0.64 24.15 0.68 25 57 0.7 21.79 0.71
4 53 0.69 22.22 0.7 26 69 0.61 24.89 0.67
5 55 0.68 22.79 0.68 27 78 0.66 23.35 0.68
6 53 0.69 22.36 0.7 28 53 0.68 22.56 0.69
7 53 0.69 22.34 0.7 29 57 0.7 21.82 0.71
8 76 0.64 24.13 0.68 30 73 0.63 24.39 0.66
9 52 0.69 22.2 0.71 31 49 0.69 22.39 0.69
10 53 0.69 22.35 0.7 32 51 0.7 21.83 0.71
11 53 0.66 23.27 0.68 33 53 0.7 21.79 0.71
12 53 0.69 22.42 0.69 34 56 0.68 22.82 0.68
13 52 0.69 22.18 0.7 35 50 0.67 22.89 0.67
14 53 0.69 22.36 0.7 36 53 0.69 22.37 0.69
15 49 0.7 21.82 0.71 37 54 0.69 22.28 0.7
16 76 0.64 24.13 0.68 38 53 0.68 22.54 0.69
17 54 0.69 22.4 0.69 39 69 0.57 26.17 0.58
18 49 0.65 23.79 0.68 40 126 0.13 37.28 0.14
19 76 0.64 23.97 0.68 41 147 0.01 39.94 0
20 48 0.66 23.34 0.7 42 65 0.66 23.46 0.67
21 52 0.7 21.95 0.71 43 63 0.67 23.06 0.69
22 49 0.68 22.49 0.69 44 50 0.69 22.37 0.69
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be introduced as the top pattern for predicting the monthly inflow to the dam. Figure 7 shows
the prediction results of the calibration and validation periods for this pattern.

Considering the results, 341 out of 432 months (79%) for calibration period and 80 out of
96 months (83%) for validation period, have been correctly predicted. By implementation of 4
scenarios under 44 patterns, one can conclude that the BN model has been able to predict the
interval of inflow to the dam with a reasonable accuracy. Predictor parameters of Zayandehrud
natural discharge and rainfall are the most important parameters in these four scenarios.
Figure 8 shows the preferred pattern in each scenario in the software environment.

4 Conclusion

Due to the importance of predicting inflow in reservoirs operational planning and manage-
ment, the performance of the Bayesian Networks in predicting range and magnitude of
monthly and annual inflows, was investigated. Generally, handling of incomplete data sets,
facilitating the combination of domain knowledge and available data and probabilistic learning
about causal networks are the main benefits of BN modelling. The proposed algorithm for
each scenario includes four stages of data preparation, BN learning, BN validation and model
prediction. To verify the proposed model, Zayandehrud Dam, one of the most important multi-
purpose dams in Central Iran, was selected as a study area. Modelling was performed in each
scenario under 44 different patterns of the network structure to find the best combination of
predictors. According to the results, inflow prediction ranges obtained by the model, is more
realistic and trustworthy in terms of uncertainty consideration. Analysis of the results showed
that the Bayesian model has been able to predict the annual inflow range. The reliability
percent of inflow range predictions was 75% and 83% for annual and monthly scenarios,

Table 10 Validation of Scenario 3 under a specific pattern

Pattern MAPE(%) NS RMSE (m
3

s ) r2r2

15-b 83 0.45 29.52 0.46

Table 11 Results of different prediction patterns in the fourth scenario (prediction of monthly inflow ranges)

Pattern RP (%) Pattern RP (%) Pattern RP (%)

1 76% 16 77% 31 72%
2 76% 17 80% 32 74%
3 77% 18 80% 33 75%
4 78% 19 81% 34 78%
5 74% 20 76% 35 73%
6 74% 21 74% 36 80%
7 76% 22 79% 37 70%
8 78% 23 83% 38 72%
9 73% 24 83% 39 71%
10 81% 25 72% 40 77%
11 81% 26 72% 41 74%
12 79% 27 72% 42 67%
13 78% 28 73% 43 80%
14 75% 29 74% 44 80%
15 76% 30 71%
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respectively. Comparing the results of this study with other limited research conducted in the
study area such as Nasri (2010) and Gholamzadeh et al. (2011) shows that the proposed BN
model has higher accuracy in predicting the dam inflow. This model can be used as a part of
decision support systems (DSS) for reservoirs operation considering the importance of inflow
in updating and developing a suitable rule curves. In fact in both of BNs structures (Discrete or
continuous variables), by application of probabilistic relations between input and output
variables, uncertainty can be modeled and considered. When an operational system in a dam
wants to use this approach, the developed model can easily provide the acceptable and certain
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Fig. 6 The performance of the Bayesian model in two top patterns of the scenario 4

Fig. 7 Results of inflow range prediction for the best pattern in scenario 4
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inflow predictions for a month or year ahead for operators and it can lead to better management
and planning for different water users in downstream.

Since this research is one of the first attempts in applying BNs in dam inflow predic-
tion, it is recommended to compare it with other popular machine learning models in this
field. In addition, employing the proposed model in other dams with different predictors
and clustering methods is suggested. It is also worth noting that in this research due to the
availability of long term data (44 years), effect of climate and consumption conditions
have been incorporated in BN analysis automatically in terms of calibration and validation
phases, but it is suggested to apply the climate change and different human disturbance
scenarios in the future researches.
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