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Abstract
The Estimation of suspended sediment concentration (SSC) is an important factor in river
engineering, which is used as an indicator of land-use change, water quality studies, and
all projects related to constructions in rivers. In this research, the M5 model tree and the
Moderate Resolution Imaging Spectroradiometer (MODIS) data were utilized to estimate
the SSC at Ahvaz station on the Karun River. In this study, 135 cloud-free images of the
MODIS sensor on the Terra satellite were taken for days corresponding to field SSC data,
during the years 2000 to 2015. Input parameters of the model tree in this study were flow
discharge, derived from hydrological data, and red (R), near-infrared (NIR) bands, and
NIR/R ratio extracted from MODIS imagery. The results of statistical analysis illustrate
that the M5 model outperforms the sediment rating curve (SRC) method, which is the
most common method of estimating suspended sediment load. The Nash-Sutcliffe effi-
ciency index for the M5 model tree of 0.58 was achieved, which was much better than
that of the SRC method (0.26). At high fluxes, the efficiency of the SRC method
significantly reduced, while the model tree provides acceptable results. The global
sensitivity analysis on the M5 model pointed out that 93% of output variance was
established by the main effects of input parameters, and less than 7% belong to the
interaction effects. 73% and 12% of output variance specified by the main effects of flow
discharge and NIR/R ratio, respectively.
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1 Introduction

Suspended sediment concentration (SSC) is an essential factor in the quality of the river and
estuarine water. It has been considered by river engineering, ecology, and environmental
researchers (Li and Li 2016), due to its significant role in the evolution of the geomorphology
of canals, flood plains, and biogeochemical cycles (Park and Latrubesse 2014). The high
concentration of suspended sediment affects the transmission of aquatic organisms and the
fertility of the phytoplankton, and the whole aquatic system (Min et al. 2012). To study the
environmental changes of sediment such as river morphological and water quality changes,
and negative impacts on aquatic ecosystems, it is necessary to carefully monitor the sediment
transport in rivers (Wang and Lu 2010). Most of the sediment transport formulas assume that
the sediment transport rate can be determined by individual flow parameters. In most cases, the
limited data collected in laboratory conditions confirmed the accuracy of these formulas. Due
to the lack of generalization of assumptions, the compatibility of such equations for other
situations is often uncertain. This limitation has led to a substantial difference in the results of
various sediment transport equations, often with each other and with the measured values
(Yang 1996).

Remote sensing technology consists of analyzing and describing the measurements obtain-
ed from the amount of electromagnetic radiation emitted from a target or reflected by a viewer
or a device without contacting the target from a suitable viewing point or recording (Mather
2009). The use of satellite imagery for evaluating water quality shows the ability of synoptic
and inexpensive estimations by satellites. As a result, satellite remote sensing can be a quick
alternative and an economic approach to assess the SSC in the oceans, seas, and rivers
(Moridnejad et al. 2015). To estimate the sediment concentration by the output emission from
the surface of the water and reflected the sensor, the relationship of the radiation transmission
between the water optical properties and the radiation estimated by the sensor needs to
consider theoretically. The transmission relation is modeled by the statistical relationships
between radiometric data and field measurements after eliminating atmospheric effects
(Kazemzadeh et al. 2013). Regression analysis is a common empirical approach that attempts
to develop the best correlation between field measurements and remote sensing data (Mollaee
2018). Various studies have shown that there is a significant relationship between the radiances
from satellite imagery and SSC. Jiang et al. (2009) used the correlation between the infrared
wavelengths of the MODIS images and the sediment concentration of Taihu Lake in China,
developing a logarithmic regression to estimate the SSC. Moridnejad et al. (2015) predicted
the SSC using artificial neural networks (ANN), MODIS images, and field hydrologic data on
the southern shorelines of the Caspian Sea. The results showed that using ANN and images of
the MODIS sensor to monitor sediment concentration in the Caspian Sea coast is acceptable.
Cai et al. (2015), Using TM Landsat OLI sensor data and on-site measurement, investigated
spatial variations in the SSC due to Hangzhou Bay Bridge in the eastern coastal China Sea.
They found that the sides of the bridge have a significant difference in the SSC rate. Moreover,
the results of this study indicate the suitability of satellite images in estimating suspended
sediment load. Robert et al. (2016) estimated the turbidity and SSC in the Bagre Dam reservoir
in Burkina-Faso by applying MODIS, MOD09Q1, and MYD09Q1 products. They found that
the near-infrared to red band ratio was the most appropriate combination for assessing the SSC
and turbidity for both spectroscopy and the MODIS sensor radiances.

In this study, MODIS and hydrological field data along with the M5 model tree used to
estimate SSC of Karun River. The M5 model is one of the reliable data-driven models, which
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present comprehensible formulas that describe the structure of the phenomenon more clearly
(Etemad-Shahidi and Bonakdar 2009). This model was previously used successfully in
different approaches, including flood modeling (Solomatine and Xue 2004), longitudinal
dispersion coefficient prediction (Etemad-Shahidi and Taghipour 2012), modeling daily dis-
solved oxygen concentration (Heddam and Kisi 2018), and transverse mixing coefficient
prediction (Zahiri and Nezaratian 2020). Based on the behavior of sediment concentration
and sediment transport, the M5 model was applied in this research to divide the problem space
and provide a regression equation for each subdomain. The novelty of this study lies in
building a tree model based on the MODIS and the hydrological data and presenting regression
equations for SSC prediction. Moreover, a global sensitivity analysis was applied to determine
the main and interaction effects of input variables on sediment concentration. Finally, the
prediction maps were used to show the behavior of sediment concentration under the influence
of input variables for measured and estimated concentrations.

2 Data and Methodology

2.1 Study Area

Karun River, with an annual yield of about 22 billion cubic meters and an average instanta-
neous discharge of 736 m3/s, was considered a study area. The area of this river basin is 66352
km2, its average height is 1537 m, and its average slope is 0.3%. The width of this river in the
mountainous parts is between 25 and 40 m, and in the plain of Ahwaz upstream is 250–400 m.
The Karun River was formed after the confluence of the Dez, Shoteyt, and Gargar Rivers in
the area called Band-e Qir above Molasani city. The hydrometric station of Ahvaz is located in
the coordinates (48 ° 41 41 ) longitude and (31° 20 16 ) northern latitudes on the Karun River,
depicted in Fig. 1.

2.2 Data Processing

High sensitivity radiometric data are available at nominal spatial resolutions of 250 m (bands
1–2), 500 m (bands 3–7), and 1000 m (bands 8–36). The spectral range of MODIS band 1(red)
is 620–670 nm and band 2 (near-infrared) has a range of 841– 876 nm (Miller and McKee
2004). In this study, 135 cloud-free images of the MODIS sensor on the Terra satellite were
taken for days corresponding to field SSC data, during the years 2000 to 2015. The
georeferenced and radiometrically corrected MODIS/Terra images for all 36 spectral bands
were obtained from the http://earthexplorer.usgs.gov/ website. The top-of-atmosphere (TOA)
radiance is derived in several narrow spectral bands spanning the visible and near-infrared
sections of the spectrum by a sensor installed on a satellite. The radiance departing from the
water, derived from the TOA, includes information on the water constituents. (Pinkerton et al.
2003). Based on the river width and the spatial precision of the MODIS, the pixel with the
lowest TOA radiance was selected because water radiance is considerably lower than land
radiance due to the powerful absorption of water. The TOA radiance was obtained straight
from the MODIS images (Wang and Lu 2010). The example of the estimated TOA radiance of
Ahvaz hydrometric-station showed in Fig. 2.
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The spectral bands of red (R), near-infrared (NIR), andNIR=Rband ratio were calculated to
estimate the SSC. Band ratios are usually used to illustrate differences that are not indicated by
singular spectral bands (Rangzan and Fattahi-Moghadam 2013). Satellite images were first
reviewed using ENVI 5.1 image analysis software, and afterward, all pixels within the study
area with cloud conditions and sun glint effects were eliminated from the dataset. Surface
reflectance products, using the absolute atmospheric correction model, predict the surface
spectral reflectance for each band and correct the effects of atmospheric gases, aerosols, and
thin cirrus clouds. These images also have radiometric and geometric corrections, and there-
fore do not require preprocessing. Images were subset to a geographic region bounded by the
latitude and longitude to limit the area of interest. Then cloud-free pixel values corresponding
to the location of the sampling station were extracted to be evaluated with the field data. River
width, spatial resolution, and station geographic coordinates were considered to choose
suitable pixels. Moreover, the suspended sediment concentration data reviewed using SPSS
software and outlier data were excluded from the samples. The Shapiro–Wilk statistical test
was employed to consider the normality of the data. After removing cloud images and other
radiometric errors and outlier data from SSC and flow discharge, 110 images were left for
Ahwaz station.

2.3 Hydrological Data

Flow discharge and SSC of Ahwaz hydrometric station, provided by Khuzestan Water and
Power Authority, were used as hydrological data in this study. These data include 110 samples
of flow discharge and sediment concentration within the wet and dry seasons on Ahvaz station
during the years 2000 to 2015, corresponding to MODIS images. Among all the SSC data, 106

Fig. 1 Ahwaz hydrometric station on Karun River (Google Earth)
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samples varied between 20 mg/l to 500 mg/l, and just four samples have the SSC values more
than 500 mg/l. The maximum values of the SSC and flow discharges were 933 mg/l and 2167
m3/s, respectively, which generally occur during flood events in Karun River. The statistics of
the parameters applied in this study are shown in Table 1.

There are some uncertainties in the amount of sediment concentration, flow discharge, and
bands of the MODIS sensor. Poor measuring methods and hardware errors are some sources of
uncertainty in sediment concentration and flow discharge measurements.

Table 1 Statistics of parameters used in this study

Parameter Range (Min Max) Average Standard deviation

QW (m3/s) 98.1–2167 402.03 341.76
R 0.08–0.27 0.17 0.03
NIR 0.03–0.32 0.17 0.06
NIR=R 0.38–1.71 0.97 0.24
SSC (mg/l) 20–933.33 122.86 150.01

Fig. 2 Pixel selection and radiance extraction at Ahvaz hydrometric station using MODIS Terra 250 m imagery
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2.4 M5 Model Tree

The M5 algorithm divided the problem space into subdomains and proposed a multivariate
linear model for each subdomain (Quinlan 1992). The decision tree structure is like a tree,
composed of roots, branches, nodes, and leaves. The roots are as the first nodes, set above, and
a series of branches and nodes close in leaves. In the M5 model, each parent node splits into
two branches. The branches consist of a number range that branches out of the parent node and
reaches the child node (Emamifar et al. 2014). Three phases applied by the M5 model are the
building, pruning, and smoothing. Standard deviation reduction (SDR) index applied by the
M5 to split the problem space.

SDR ¼ sdðTÞ
X Ti

T

����
����sd Tið Þ ð1Þ

in which T is a series of data points, before dividing, Ti is a vector of data that yield from
dividing the space and falls within subspace based on the selected dividing factor, and sd is a
standard deviation. The branching process in each node is repeated to reach the end node
(leaf), where the standard deviation reaches zero (Etemad-Shahidi and Taghipour 2012). In
Fig. 3, splitting the input space by the M5 algorithm and extracting the knowledge from the
construction are demonstrated.

In this study, the test-and-train procedure was performed to develop the tree algorithm
based on the hydrological and MODIS data. According to the test-and-train technique, 88 data
sets were applied for training, and the rest of the data records were used for verifying the M5
algorithm. In this research, the sediment rating curve (Campbell and Bauder 1940) was used to
determine the efficiency of the model tree in estimating sediment concentration. The coeffi-
cients of determination (R2), discrepancy ratio (DR), root mean squared error (RMSE), and
Nash-Sutcliffe Efficiency (NSE), were used to determine the efficiency of the M5 algorithm,
and compare it with the results of sediment rating curve (SRC) method. These parameters are
defined as:

R2 ¼
P

SSCme � SSCme
� �

SSCes � SSCest
� �� �2

P
SSCme � SSCme
� �2 P

SSCes � SSCest
� �2 ð2Þ

Fig. 3 Splitting of the input domain by the model tree in this study, and prediction for new instance by M5
algorithm (Jung et al. 2010)
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DR ¼ log
SSCes

SSCme
ð3Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N

XN
i¼1

DRið Þ2
vuut ð4Þ

NSE ¼ 1�
P

SSCme � SSCesð Þ2P
SSCme � SSCme
� �2 ð5Þ

in which N is the number of observations, SSCme is the measured SSC, and SSCes is the
estimated SSC. For DR equal to zero, the results from the field measurements and model
estimation match perfectly. An overestimation occurred for DR higher than zero; otherwise,
underestimation happened. Percentage of DR amounts with a range of -0.3 and 0.3 considered
as the accuracy index in this study (Seo and Cheong 1998). NSE indicates the relative
magnitude of the residual variance compared to the variance of the observed data. The
performance of the model is good if NSE > 0.7, and the efficiency is an acceptable if 0.4 <
NSE ≤ 0.7; otherwise, the efficiency of the model is an unacceptable (Wu et al. 2017).

2.5 Global Sensitivity Analysis

In this study, the Monte-Carlo simulation method was applied to estimate the first order and
total-effect indices, according to Saltelli et al. (2008). In the Monte-Carlo method, the main
effect of factor Xi on output is indicated by the first-order sensitivity index, which ranged
between zero and one. Entire participation of variable Xi to the output variation considered as
the total effect indices that includes the first order and all higher-order effects through
interactions (Saltelli et al. 2008). In this study, sensitivity indices were estimated for four
variables, containing: QW , R, NIR and NIR=R. Hence, two (N , 4) matrices (A, B) of random
components were produced, whichN is defined as a base sample and determined to be 10000.
Another matrix was established by the matrix B with the ith column of the matrix A for each
input variable. The first order and total-effect indices were predicted by Eqs. (6) and (7),
respectively.

Si ¼ V E Y X ijð Þ½ �
VðY Þ ¼ yA � yCi

� f 20
yA � yA � f 20

¼ 1=Nð ÞPN
j¼1y

ðjÞ
A � yðjÞCi

� f 20

1=Nð ÞPN
j¼1 yðjÞA

� 	2
� f 20

ð6Þ

STi ¼ 1� V E Y X�ijð Þ½ �
VðY Þ ¼ 1� yB � yCi

� f 20
yA � yA � f 20

¼ 1� 1=Nð ÞPN
j¼1y

ðjÞ
B � yðjÞCi

� f 20

1=Nð ÞPN
j¼1 yðjÞA

� 	2
� f 20

ð7Þ

whereV E Y jX ið Þ½ � is a conditional variance, defined as the first-order effect ofX ion output (Y).
V E Y jX�ið Þ½ � is a conditional variance regarded to all the variables except one,X�i, V Yð Þ is an
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unconditional variance and f 20 ¼ 1
N

PN
j¼1 y

jð Þ
A

� 	2
. Si is the first-order sensitivity index ofX i on

Y and STi is the total-effect indices of X i. The yA, yB, and yCi
are vectors of model output.

3 Results and Discussion

3.1 M5 and SRC Results

After preprocessing satellite images, two types of spectral indexes, including single-bands
reflectance and the band ratio, were extracted from red and infrared wavelengths. The
reflectance of red and near-infrared bands and bands ratio of MODIS images and the flow
discharge introduced as input variables and the SSC of the river was considered as an output
parameter to the M5 model tree. According to previous studies in the literature, the SSC
formulas have exponential forms, and since the M5 model only provides linear regression
equations and due to the abnormality of the data distribution based on the Shapiro–Wilk
statistical test, the analysis was performed on the natural log of the data. The regression
equations, provided by the M5 model, were illustrated in Eqs. (8) to (10) after being
transformed from the logarithmic scale. According to the structure of the M5 tree, flow
discharge and NIR=Rratio were used to divide the problem space of the M5 algorithm, having
the main effects in estimating the SSC. For lower discharges (QW ≤ 392 m3/s), QW, R, and
NIR=Rratio were used in regression equations (Eqs. (8) and (9)). The power of QW for the two
mentioned equations is 0.08, which is much less than Eq. (10), and was obtained for higher
discharges (QW > 392 m3/s). The effect of the near-infrared band on the SSC was increased for
high discharges, in agreement with the results of Gordon and Morel (1983), who state that
spectral sensitivity range moves toward the longer wavelength with increasing the SSC. The
M5 equations showed that the effect of MODIS spectral bands has more impact on the SSC
values related to lower discharges compared to higher ones.

If Qw � 392
m3

s
and

NIR
R


 �
� 1:16; then SSC ¼ 84:82 R0:37 NIR

R


 ��0:45

Qw
0:08 ð8Þ

If Qw � 392
m3

s
and

NIR
R


 �
> 1:16; then SSC ¼ 78:41 R0:43 NIR

R


 ��0:53

Qw
0:08 ð9Þ

If Qw > 392
m3

s
; then SSC ¼ 8:87 R1:84NIR�1:33 NIR

R


 ��0:52

Qw
0:54 ð10Þ

In the above equations, the SSC is in mg/l, Qw is the flow discharge in m3/s, R is the red band,
and NIR is the near-infrared band of the MODIS. The obtained equations were then used on
the test data to determine the performance of the M5 model on the SSC estimation.

The SRC method is one of the most common procedures for estimating the suspended
sediment load, which is the establishment of a relationship between the sediment and flow
discharge data. The general form of the SRC equation is as follows:

Qs ¼ aQw
b ð11Þ
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where Qs is the suspended sediment discharge in ton/day,a and b are the constant factors of the
equation. The values of a and b are determined by the linear regression between the sediment
and the flow discharge logarithms. The training and testing of the SRC method were
performed with the same data used for the M5 model. The sediment load was first estimated
by Eq. (12) based on the SRC method, and then by using the Eq. (13), converted to the SSC to
compare the results of two the M5 and the SRC methods.

Qs ¼ 0:19Qw
1:67 ð12Þ

SSC ¼ c
Qs

Qw
ð13Þ

where c ¼ 11:574, represents the unit conversion factor.
The M5 model divides the input space into three sub-domains due to flow discharge and

bands ratio, and provides a regression equation for each sub-domain, while the SRC model
provides only one equation for the input space. Figure 4 demonstrates variations in the flow
discharge and observed and predicted SSC with the M5 and the SRC methods. Compared
to the SRC method, the SSC estimation by the M5 model tree has higher efficiency,
especially for the high values of the SSC. In addition, the SRC method lower estimates
the SSC in more cases compared to the M5 model, especially for high concentration, which
could be a weakness in river engineering and water resources management. Despite the
acceptable efficiency of the M5 model in estimating the SSC, based on Fig. 4, this model
underestimated the high SSC values with relatively low flow rates. The suspended sedi-
ment usually has a straight correlation with the flow discharge. According to the training
procedure with limited available data, a straight correlation between the flow discharge and
the sediment concentration was established by the tree model. This correlation caused the
tree model to have an acceptable efficiency in most cases with a direct relationship between
the flow rate and the sediment concentration. However, for high concentrations that have
occurred in relatively low flow rates, the M5 model tree underestimated the SSC. With a

Fig. 4 Comparison between measured and predicted SSC by the M5 and the SRC methods
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large amount of training data, the efficiency of the tree model can be improved to some
extent in these cases, because the model will be able to provide a separate formula for such
data.

3.2 Statistical Analysis

The results of the statistical analysis of the SSC estimation using the M5 model tree and the
SRC method are presented in Table 2. According to the statistical analysis, the R2 coefficient
for the M5 model is closer to one compared to the SRC method. Moreover, the RMSE in the
M5 model is 37% and 20% less than the SRC method for the training and test stages,
respectively. The variance of the measured SSC, the M5, and the SRC method is estimated
to be 2.27E + 04, 1.18E + 04, and 4.19E + 03, respectively. Compared to the SRC method, the
variance of the M5 model is closer to the variance of the measured SSC. The variance index,
along with the RMSE, shows the superiority of the M5 model over the SRC method in SSC
estimation. The NSE of the M5 model was estimated about 0.58, indicates the appropriate
accuracy of the M5 model. However, the NSE of the SRC method has a value of about 0.26
that illustrates the low efficiency of this method.

Further statistical analysis, such as the discrepancy ratio (DR), accuracy index, standard

deviation (σDR), maximum DR (DRmax) and DR skewness (SKDR) were also used to determine
the performance of the two methods (Table 3).

According to Table 3, the M5 model is more accurate (78%) compared to the SRC method
with an accuracy index of 69%. As mentioned above, DR values greater than zero represent a
percentage of the computational values that estimate the SSC more than the measured values.
The SRC method underestimated the SSC in about 39% of samples, and 13% of all samples
was estimated with DR (the estimated SSC is less than half the measured values). In the M5
model, only 7% of all samples have a DR, which is due to the importance of the SSC, and
considering the safety factor for the river engineering projects, the M5 model tree offers more
acceptable results than the SRC method. DR distribution of the M5 model varies between
�0:70 and 0:75, which indicates that the M5 model is almost non-skewed (SKDR ¼ �0:03)
towards positive and negative values. DR of the SRC method varies between � 0:6 and 0:9,
which indicates that the SRC method is skewed to negative numbers (SKDR ¼ �0:37). DR
standard deviation indicates the scattering of DR values around the mean value of DR. The
closer this value to zero, the less data scattering. The M5 model has a lower σDR and DRmax

compared to the SRC method based on Table 3.

Table 2 Statistical indices of the M5 and the SRC methods for estimating the SSC

Model Train Test All data

NSE R2 RMSE NSE R2 RMSE NSE R2 RMSE

SRC 0.23 0.45 0.40 0.35 0.42 0.20 0.26 0.44 0.30
M5 0.57 0.58 0.25 0.58 0.79 0.02 0.58 0.64 0.14
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3.3 Prediction Map

Contourmaps of themeasured SSC values and the results of theM5model and the SRCmethod are
presented in Fig. 5. Flow discharge andNIR=Rwere used on the two-dimensional coordinate system
on the contour maps of the SSC. To decrease the number of variables, NIR=R, was applied as a
representative of R and NIR bands. The contour lines indicate the similarities and differences
between the results of the M5 and the SRC with measured data. According to Fig. 5, the SSC is
affected by the flow discharge and band ratio for the discharges below 1000 m3/s. For the flow
discharges higher than 1000m3/s, the effect of the band ratio decreased, and the SSC is just affected
by the flow discharge. Although the performance of theM5model being poor for the interval range
700–1000 m3/s, the model efficiency for other intervals is acceptable. The SRC method only used
flow discharge as input parameter, so the SSC values in this method remain invariant by changing
the bands’ ratio for constant discharge values.

3.4 Global Sensitivity Analysis

The global sensitivity analysis results, as the first-order and the total-effect indices, are stated in
Table 4. The sum of the first-order sensitivity indices was calculated at 0.93, indicating the
high main effects on the SSC estimation by the M5 model tree, where only 7% of the output
variance is influenced by the interaction effects. The flow discharge has the highest first order
and total-effect indices, and 73% of output variance is influenced by the main effect of this

Table 3 Comparing the performance of the M5 model and the SRC method

Model
DR � 0:3 0 DR > 0:3

Accuracy σDR
DRmax

SKDR

SRC 13 26 43 18 69 0.30 0.716 � 0.37
M5 7 28 50 15 78 0.24 0.656 � 0.03

Fig. 5 Contour maps of The SSC of the observed data, the M5 model, and the SRC method
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variable. NIR/R ratio after the flow discharge has the highest values of the first order and total-
effect indices. The main effect of the NIR/R ratio estimated to be 12% of the output variance.

4 Conclusions

In this study, theMODIS and the hydrological data, in combinationwith theM5model tree in 15 years
period, were applied to evaluate the SSC of Karun River in Ahvaz station. The flow discharge, red and
near-infrared bands, and the band ratiowere applied to construct theM5model tree. The flow discharge
and the band ratio have the highest effect on the tree structure of the M5 model. Three regression
equations were developed by the tree model to estimate the SSC. In these equations, in addition to the
flow discharge, theMODIS bands were also used as input parameters, consistent with previous studies
(Robert et al. 2016; Jiang et al. 2009; Moridnejad et al. 2015), which indicated that there is a strong
correlation between thewater reflectance and the SSC. For flood conditions, the effect of flow discharge
was increased compared to lowdischarges, based on theM5equations.Comparing the results of the tree
model and the SRC method showed that the traditional method, in most cases, estimates the SSC less
than themeasured values, which is one of themainweaknesses of thismethod.NSEwas estimated 0.58
and 0.26 for theM5, and the SRCmethods, respectively, showed the superiority of theM5model. The
results of global sensitivity on theM5model illustrated that 20% of output variance was influenced by
the main effects of the MODIS parameters, where theNIR=R ratio had a noticeable effect on the SSC
estimation compared to R and NIR bands. Prediction maps were used to investigate the SSC variation,
due to the changes in flow discharge, and band ratio. The counter maps showed that, for flow discharge
lower than 1000 m3/s, the SSC significantly affects the band ratio behavior.
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