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Abstract
The accurate forecast of water demand is challenging for water utilities, specifically when
considering the implications of climate change. As such, this is the first study that focuses
on finding associations between monthly climate factors and municipal water consump-
tion, using baseline data collected between 1980 and 2010. The aim of the study was to
investigate the reliability and capability of a combination of techniques, including
Singular Spectrum Analysis (SSA) and Artificial Neural Networks (ANNs), to accurately
predict long-term, monthly water demands. The principal findings of this research are as
follows: a) SSA is a powerful method when applied to remove the impact of socio-
economic variables and noise, and to determine a stochastic signal for long-term water
consumption time series; b) ANN performed better when optimised using the Lightning
Search Algorithm (LSA-ANN) compared with other approaches used in previous studies,
i.e. hybrid Particle Swarm Optimisation (PSO-ANN) and Gravitational Search Algorithm
(GSA-ANN); c) the proposed LSA-ANN methodology was able to produce a highly
accurate and robust model of water demand, achieving a correlation coefficient of 0.96
between observed and predicted water demand when using a validation dataset, and a
very small root mean square error of 0.025.

Keywords Artificial neural network . Climate change . Lightning search algorithm . Singular
Spectrum analysis andwater prediction

1 Introduction

Nowadays, many countries face numerous concurrent challenges in the management of, and
access to, potable water. The authors in United Nations Development Programme (2013),
Ferguson et al. (2013) and Hossain et al. (2018), among many others, have identified the
impact of global warming and related climate change, such as an increased frequency and
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severity of drought and flooding as one of the most significant impacts on our aquatic
environment. As a result, considerable pressure is being placed on water infrastructures. It
has also been reported that global warming generates considerable uncertainties on the long-
term planning projections of water demand in urban areas (Urich and Rauch (2014). These
uncertainties can lead to significant problems in other related areas such as supply, operation
and cost, which traditional planning methods cannot solve.

The aforementioned increasing concerns about the impact of climate change have led to the
need to plan and manage water in advanced, to guarantee meeting municipal water demand to
the satisfaction of the consumer (Zhang et al. 2019). This type of strategic planning, as
conveyed by Cutore et al. (2008), means planning now for an uncertain future. However,
since conventional models are no longer adequate to predict urban water consumption under
the pressure of climate change in the future, several researchers have been investigating and
improving various mathematical models to develop techniques to better estimate essential
parameters and better model forecast uncertainties (Marlow et al. 2013).

The accurate water demand prediction can play an important role in optimising the design,
operation and management of municipal water supply infrastructures (Pacchin et al. 2019).
This can also minimise the uncertainty that results from a rapid increase in water demand due
to the impact of climatic factors (Bougadis et al. 2005). Previous studies such as Gato et al.
(2007), Tian et al. (2016) and Brentan et al. (2017), have established that water consumption is
affected by weather variables throughout the year. In this area of research, Artificial Neural
Networks (ANNs) have been developed and compared with various traditional statistical
models, the results indicating that ANN techniques offer better forecasting models such as
those in Sebri (2013), Behboudian et al. (2014), Mouatadid and Adamowski (2016) and Guo
et al. (2018).

The need for increased reliability, capability and accuracy regarding data-driven techniques
has motivated the development of hybrid models, which would integrate two or more
techniques with the aim of outperforming the capability of single models. In these hybrid
approaches, typically one of the techniques would be deemed as the primary one, and the
others would work as pre-processing or post-processing methods (Araghinejad 2014). Recent-
ly, several hybrid techniques have been applied to predict water demand, for example Anele
et al. (2017), Altunkaynak and Nigussie (2018) and Seo et al. (2018).

Although previous studies have recognised the impact of weather factors, research has yet
to thoroughly and systematically investigate the effect of these factors in terms of using
adequate data pre-processing to remove the impact of socio-economic factors, which are
insensitive to climate change, and to apply a powerful and effective forecasting technique
on a systematic basis, instead of a commonly used trial and error approach. As such, studies to
date have not been able to detect to what extent climate factors have driven municipal water
demands, the debate continuing about the best strategies for the management of municipal
water demand, under the impact of climate change.

Previous research on the influence of climate change on municipal water demand using a
recommended baseline period has not been properly conducted. These studies have suffered
from inadequate sample size, the mixing of evidence for climate change impact with socio-
economic factors and several conceptual and methodological weaknesses.

Various optimisation approaches can be adopted to handle a range of issues for different
application domains. The goal of the optimisation algorithm is to determine the best parameter
values of the system under different conditions (Ahmed et al. 2016). Recently, the gravitational
search algorithm (GSA) proposed by Rashedi et al. (2009) has been applied to tackle various
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optimisation issues such as unconstrained global optimisation problems (García-Ródenas et al.
2019), hydrology (Karami et al. 2019) and in the geothermal power plant optimisation
(Özkaraca and Keçebaş 2019). Particle Swarm Optimisation (PSO) algorithm has been used
in different fields such as sediment yield forecasting (Meshram et al. 2019), operation rule
derivation of hydropower reservoir (Feng et al. 2019) and semi-supervised data clustering (Lai
et al. 2019).

Following the above review, the principal objectives of this paper are:

1) To remove the effect of socioeconomic factors which are insensitive to weather and have a
deterministic relationship with water consumption, and also to remove noise from water
consumption for a long-term, monthly time series.

2) To provide a new reliable and efficient hybrid technique (LSA-ANN) to forecast long-
term monthly municipal water demands and evaluate how it compares with hybrid (GSA-
ANN and PSO-ANN) models.

3) To assess the long-term influence of climate change using monthly municipal water
demand relative to the period 1980–2010.

To the best of our knowledge, this is the first study that tackles the aforementioned objectives
to assess long-term influence of climate change using monthly municipal water demand from
the baseline period 1980–2010.

2 The Study Area

One catchment area in Australia, Greater Melbourne, Victoria, was employed to evolve the
water demand model. Yarra Valley Water (YVW), is one of three retail water utilities that
deliver essential municipal water supplies and sewerage services to more than 1.8 million
people and 50,000 businesses, in the catchment area of Yarra River, Melbourne City. YVW
buy water wholesale from Melbourne Water, which is usually harvested from protected
catchments in the mountains. They deliver water to different sectors including commercial,
industrial and residential (indoor and outdoor uses) users. The service area managed by the
company is approximately 4000 km2, covering the northern area of Melbourne and the eastern
suburbs, from Wallan in the north to Warburton in the east (YVW 2017).

3 Model Data Set

This study will use monthly historical data containing information such as measured municipal
water consumption (Megalitre, ML), maximum temperature (°C), minimum temperature (°C),
mean temperature (°C), rainfall (mm) and solar radiation (MJ/m2) over the periods 1980–2010.
These data were collected from the Yarra Valley Water Company from areas they serve in
Melbourne city.

This range of climate factors have been used by several researchers (Kadiyala et al. 2015;
Osman et al. 2017; Fenta Mekonnen and Disse 2018) in different areas of study, to assess the
impact of climate change as they are considered robust predictors, able to simulate municipal
water demands, as shown in Zubaidi et al. (2018a). Socioeconomic variables such as popu-
lation, water price and household income are deterministic signals (Zhoua et al. 2000; Gato
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et al. 2005) and for this reason, were not included in the current analysis, as these signals are
out of the scope of this study.

Melbourne City has various meteorological stations that are spread throughout the city. The
Yarra Valley Company provided us with the average daily values of all the climate factors
covered by its service area. The aforementioned company had obtained these data from the
Australia Bureau of Meteorology, which had applied the arithmetic mean method to calculate
average values of climate factors. With this technique, all climate variable values from
different metrological stations are added together and then divided by the total number of
stations, to get the mean value of that variable as shown in Eq. (1). This is a simple and
standard technique to calculate average daily values. Each metrological station has equal
weight, regardless of its location (Bhavani 2013).

pm ¼ p1 þ p2 þ p3 þ…þ pnð Þ=nf g ð1Þ

4 Methodology

The municipal water demand model proposed here allows a long-term time series demand
prediction to be calculated regarding climate change. Figure 1 presents a diagrammatic
representation that contains the steps required to build the water prediction model.

4.1 Pre-Processing of Data

The data pre-processing approach followed in this study comprises three techniques: normal-
isation, cleaning and determination model input. They are detailed below.

4.1.1 Normalisation

In this study, the natural logarithm method was used to normalise the data to be more static and
to remove any collinearity from the independent variables (Behboudian et al. 2014).

4.1.2 Cleaning

Data cleaning includes the identification and removal of trends and non-stationary components
from a data set, as explained in Abrahart et al. (2004). A time series yt can be decomposed into
trend (T), oscillatory (O), stochastic (S) and noise (Ɛ) components (trend and oscillatory
considered deterministic signals) as shown in Eq. (2) (Araghinejad 2014).

yt ¼ Tt þ Ot þ St þ Ɛt ð2Þ

To identify outliers, the box and whisker method was used, and the outliers then treated. The
SSA technique was also used to detect the stochastic signals for long-term monthly municipal
water consumption and the climate variables time series (i.e. to remove the impact of
socioeconomic variables and noise from the municipal water consumption data).

SSA is a robust method used to decompose the raw time series, which may exhibit
nonlinear properties, and to uncover the stochastic component after the removal of noise,
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trend and oscillatory components, as illustrated by Khan and Poskitt (2017). The stochastic
component helps to identify the impact of climate volatility on water consumption, to enhance
the accuracy of the forecasting and to decrease the scale of error between measured and
predicted water demand (Zubaidi et al. 2018a). The SSA method consists of two steps:
analysis of the original time series into various principal components (PCs) containing trend,
oscillatory and irregular components, followed by noise removal to allow the reconstruction of
a new time series that has less noise (Zubaidi et al. 2018a). This approach does not require the
imposition of any statistical assumptions such as normality or linearity. It has been successfully
applied in different sectors including industry (Al-Bugharbee and Trendafilova 2016), mid-

Fig. 1 Flowchart showing the steps required to forecast future municipal water demand
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term water demand prediction (Zubaidi et al. 2018) and hydrology (Ouyang, and Lu, W. 2017).
Further details about SSA can be found in Golyandina and Zhigljavsky (2013).

4.1.3 Determination Model Input

The choice of the explanatory variables that influence water consumption as model input data,
is an important step in the development of not only an ANN forecasting model, but any good
model (Maier and Dandy 2000). In this study, cross-correlation and variance inflation factor
(VIF) techniques were applied to select the model input and examine for multicollinearity
among them, as previously carried out by Zubaidi et al. (2018a).

To decide on the appropriate sample size needed to develop a good model, Tabachnick and
Fidell (2013) propose using a sample size that is dependent on the number of predictors, as
shown in Eq. (3). In this study, the sample size is 372.

N ≥104þ m ð3Þ

where N = sample size and m = number of independent variables.

4.2 Artificial Neural Network Techniques for Forecasting Municipal Water Demand

This section will briefly present the techniques used in this study, including ANN, LSA as an
optimisation algorithm, and the hybrid LSA-ANN technique.

4.2.1 Artificial Neural Networks (ANN)

Previous studies have demonstrated the power of ANN to produce good non-linear models for
urban water demand (Toth et al. 2018). However, unlike other applications of hydrology, ANN
has not been extensively used in municipal water demand modelling (Zubaidi et al. 2018b),
even when it has proven to be able to deal with a large number of input and output patterns,
and is capable of handling different complex nonlinear environmental problems, making it
appropriate for long-term prediction modelling (Mutlu et al. 2008).

For this study, a multilayer perceptron (MLP) network was used (a feed-forward,
backpropagation network), along with the Levenberg-Marquardt learning algorithm (LM).
The tansigmoidal activation function was adopted in both hidden layers to cover all negative
input values, while the output layer operated under a linear activation function to cover the
positive values of water demand. The model was implemented using the MATLAB Neural
Network Toolbox (Mathworks 2017). The data was randomly separated into three sets include
training, testing and validation sets, using 70%, 15% and 15% instances for each set,
respectively, as previously done in Zubaidi et al. (2018b) and Zubaidi et al. (2018a).

4.2.2 Overview of the Lightning Search Algorithm for ANN Optimisation

Optimisation in this context refers to the process of determining the best solution for issues
relying on input variables after locating the fitness function as a constraint. Often, the
formulation of this function is dependent on a certain application and can be expressed as
minimal error / cost, or optimal design / management. LSA is a new, nature-inspired
metaheuristic optimisation algorithm, based on the natural phenomenon of lightning to tackle
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constraint optimisation issues. The hypothesis of this algorithm is inspired by the probabilistic
nature and tortuous characteristics of lightning discharged during a thunderstorm. The gener-
alisation of the LSA algorithm is via the mechanism of step leader propagation. This algorithm
allows for the involvement of fast particles, identified as projectiles, in the configuration of the
binary tree structure of a step leader. Three kinds of projectiles are developed to represent
transition projectiles: the 1st step leader population N; the space projectiles that attempt to be
the leader, and the lead projectile representing the optimum positioned projectile found amid N
number of step leaders (Mutlag et al. 2016; Shareef et al. 2015).

LSA is similar to other metaheuristic algorithms in that it needs a population to start the
search (Ahmed et al. 2016). Further details about LSA algorithm, including a review of its
basic concepts, can be found in Shareef et al. (2015).

4.2.3 Hybrid Lightning Search Algorithm-Based Artificial Neural Network

ANN can be employed to predict municipal water demands using climate variables as the
model input (Zubaidi et al. 2018a). To do so, it is important to consider the number of neurons in
the hidden layers and the learning rate coefficient as these are essential factors of an ANN
architecture. These factors are responsible for mapping the relationship between the input and
output variables used to develop the ANNmodel and to minimise error (Gharghan et al. 2016).
However, the choice of neurons and learning rate are dependent on trial and error processes that
may not offer an optimal solution. LSA addresses this issue, thus enhancing the performance of
ANN, by estimating the best values for learning rate coefficients and the number of neurons in
each hidden layer of the ANN model. It uses a root mean squared error (RMSE) based fitness
function to improve the performance of the LSA-ANN by minimising the error function.

4.3 Performance Measurement Criteria

After calibrating all the model structures using the calibration/training data set, performance
was assessed using several standard statistical criteria which identify the errors related to the
model simulations (Adamowski 2008). These criteria offer a means of measuring estimate
accuracy, this implying that estimate errors play an important role in the selection of an
appropriate model and in providing insight for alterations to current models to reduce
deviations in future simulations (Donkor et al. 2014). The following statistical criteria will
be used in the current model’s calibration: mean absolute error (MAE), mean squared error
(MSE), root mean squared error (RMSE) and correlation coefficient (R). These criteria are
defined in Eq.s (4) through to (7).

MAE ¼ ∑N
m¼1 yo−yp

�� ��
N

ð4Þ

MSE ¼
∑N

m¼1 yo−yp
� �2

N
ð5Þ

RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑N

m¼1 yo−yp
� �2

N

vuut
ð6Þ
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R ¼
∑
N

m¼1
yo−yo

� �
yp−yp

� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑ yo−yo
� �2

∑ yp−yp
� �2

r
2
6664

3
7775 ð7Þ

where yo represents observed water consumption; yp, simulated water demand; N, sample size;
yp, mean of simulated demand, and yo, the mean of observed consumption.

The stationarity of the stochastic time series for all variables has been examined by the
Augmented Dickey-Fuller (ADF) test and the Kwiatkowski–Phillips–Schmidt–Shin (KPSS)
test. A residual analysis will also be used to check the goodness of fit of the ANN model.

5 Results and Discussion

5.1 Model Inputs

This section corresponds to step A in Fig. 1. Five monthly climate factors have been
used to assess the impact of climate change on monthly water consumption. These
factors are maximum temperature (Tmax), minimum temperature (Tmin), mean temper-
ature (Tmean), solar radiation (Radi) and rainfall (Rain). Following data pre-processing,
which included normalisation by natural logarithm and cleaning data outliers, a pre-
treatment signal analysis (SSA) was used to uncover the stochastic component. Compo-
nents of the original time series were examined to detect the stochastic signal. It
represents the third signal in water consumption and all the climate factors time series,
except the solar radiation time series, which was the second signal. The stationarity of
the stochastic signals has been examined using ADF and KPSS tests. Figure 2 presents
the original time series and the first four components of water consumption and all the
climate factors Fig. 3.

To detect noise components, Ghodsi et al. (2009) pointed out that a significant drop in
eigenvalue spectra values could be assumed as the beginning of pure noise. Figure 4a shows
the graph of the eigenvalue spectra for the water consumption time series, where it can be seen
that the first signal, which represents a trend, was prevailing and covered all the details.
Therefore, the first signal was removed, and the graph redrawn in section b. In this section, a
significant drop occurred in the third signal, this representing the beginning of the noise floor.

A variance inflation factor (VIF) was used to examine the multicollinearity between the
model input variables. Three independent factors, Tmax, Radi and Rain, were selected as the
model input. The sample size required for the model was estimated by using Eq. (3), which
revealed that 107 (104 + 3) were needed. In this study, the number of cases is N = 372, which is
more than three times the minimum required.

A Pearson product-moment correlation coefficient was used to determine the relationship
between the stochastic components of water consumption and the chosen climate variables.
Figure 4 shows the correlation between the independent and dependent variables. A strong
correlation was found between the stochastic signals of long-term water consumption and
maximum temperature R = 0.94. This result reveals that the data pre-processing techniques are
powerful.

From these results, we can see that water demand (dependent variable) can be expressed as
a function of Tmax, Radi and Rain (independent variables).
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5.2 Application of the Hybrid LSA-ANN Algorithm

This section corresponds to step B in Fig. 1. A MATLAB toolbox was used to run the LSA-
ANN, GSA-ANN and PSO-ANN algorithms. In order to estimate the best number of hidden
neurons and the optimum learning rate coefficient of all three techniques, five population sizes,
10, 20, 30, 40 and 50, were used. Note that these population sizes relate to the size of the
swarm which is different to the sample size mentioned before. As can be seen in Fig. 5, a
population size of 50 provides the best solution for all three algorithms. Closer inspection of
the fitness function values for all algorithms shows that the RMSE for the LSA-ANN
algorithm (after 40 iterations) is 0.0236, whereas GSA-ANN does not improve beyond an
RMSE of 0.0241. The PSO-ANN algorithm only reaches its best RMSE of 0.0245 after 62
iterations. As such, the LSA-ANN algorithm outperforms GSA-ANN and PSO-ANN, as it
achieves a smaller error (better performance) in a smaller number of iterations, making it a less

Fig. 2 Original signal and the 1st four components obtained by SSA
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complex model. Table 1 lists the design parameters of the ANN model based on the LSA-
ANN algorithm.

5.3 Application of Artificial Neural Networks

This section corresponds to step C in Fig. 1. After identifying the parameters for the ANN, the
model was run several times to find the best neural network architecture to forecast municipal
water demand. A range of statistical tests was applied to evaluate the performance of the
model. Firstly, the results of the correlation analysis and residual distribution between observed
and simulated municipal water, are presented in Fig. 6, the correlation coefficient for the
validation stage, 0.96.

Fig. 4 Correlations between water consumption and climate factors

a b

Fig. 3 Eigenvalues of water consumption time series
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Additionally, Table 2 provides three measures of the differences between the predicted and
observed time series, to evaluate the model performance. It can be seen that the differences
between the observed and predicted water demands are negligible (MSE = 6.3911 e−04).

All these results reveal and confirm that:

(1) Tmax, Rain and Radi are reliable predictors to use to simulate long-term municipal water
demand, which were successfully used previously to simulate mid-term water demand.

(2) Data pre-processing techniques have a significant role to play, specifically the SSA
method, to uncover the stochastic signal and remove the impact of socio-economic
factors and noise for long term time series. That means these data pre-processing
techniques are effective to apply for the long term as well as for mid-term as shown in
previous work.

Fig. 5 Fitness function for various populations using the computational intelligence algorithms

Table 1 ANN-designed parameters

Parameter Value Type

Number of inputs 3 As discussed in section 5.1
Number of outputs 1 Our target, which is water demand
Number of hidden layers 2 As used in (Zubaidi et al. 2018)a
Number of neurons in hidden layer N1 3 Estimated by LSA
Number of neurons in hidden layer N2 4 Estimated by LSA
Learning rate coefficient 0.1988 Estimated by LSA
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(3) The LSA-ANN algorithm is a reliable model which can be successfully used to forecast
long-term municipal water demand, performing more accurately than the GSA-ANN and
PSO-ANN algorithms (used in previous studies for short and mid-term), evaluated in this
study.

(4) The most important result to emerge from the results is the confirmation of the associ-
ation between climate change and water demand over the long term.

This study has been one of the first attempts to thoroughly examine the influence of climate
change on municipal water demand. The key strengths of this study are the use of data over an
extended baseline period, 1980–2010, and the use of climate factors, extending knowledge of
how climate change drives municipal water demand. Further research is however needed to
determine the long-term effects of global warming on water demands.

6 Conclusion

Estimating water demand is an essential component in the planning and management of water
resources as this can help to identify suitable alternatives to guarantee a balance between water
demand and supply in the future. This study explored the influence of climate change on
monthly, long-term, municipal water demand, using baseline period data from 1980 to 2010,
applying a coupled SSA and LSA-ANN technique. One of the more significant findings to

Fig. 6 LSA-ANN algorithm performance for the validation data

Table 2 Three statistical criteria for the validation data

Data MAE MSE RMSE

Validation 0.0201 6.3911 e−04 0.0253

MAE: mean absolute error, MSE: mean square error, RMSE: root mean square error
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emerge from this study is the confirmation that maximum temperature, radiation and rain, are
reliable predictors when forecasting long-term municipal water demand, as previously seen for
mid-term. The SSA has revealed itself to be a powerful technique to uncover the stochastic
components of long-term water consumption, after removing the effect of noise and socio-
economic factor components that confirm the technique to work successfully in different
lengths as shown before. The LSA-ANN algorithm has proven successful, and indeed more
accurate than the GSA-ANN and PSO-ANN algorithms previously applied to different terms
time series. The paired SSA and LSA-ANN model had the ability to predict water demand
with an R of 0.96. The current findings clearly support the relevance of climate change on
water consumption, which are significant to both practitioners and policy-makers. More
research, however, is required to develop a deeper understanding of the relationship between
climate change and municipal water demand over the long-term and at different locations.
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