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Abstract
Water supply reservoir management is based on long-term management policies which
depend on customer demands and seasonal hydrologic changes. However, increasing
frequency and intensity of precipitation events is necessitating the short-term manage-
ment of such reservoirs to reduce downstream flooding. Operational management of
reservoirs at hourly/daily timescales is challenging due to the uncertainty associated with
the inflow forecasts and the volumes in the reservoir. We present an ensemble-based
streamflow prediction and optimization framework consisting of a regional scale hydro-
logic model forced with ensemble precipitation inputs to obtain probabilistic inflows to
the reservoir. A multi-objective dynamic programming model was used to obtain opti-
mized release strategies accounting for the inflow uncertainties. The proposed framework
was evaluated at a water supply reservoir in the Hackensack River basin in New Jersey
during Hurricanes Irene and Sandy. Hurricane Irene resulted in the overtopping of the
dam despite releases made in anticipation of the event and resulted in severe downstream
flooding. Hurricane Sandy was characterized by low rainfall, however, raised significant
concerns of flooding given the nature of the event. The improvement in NSE for the
Hurricane Irene inflows from 0.5 to 0.76 and reduction of the spread of PBIAS with
decreasing lead times resulted in improvements in the forecast informed releases. This
study provides perspectives on the benefits of the proposed forecasting and optimization
framework in reducing the decision making burden on the operator by providing the
uncertainties associated with the inflows, releases and the water levels in the reservoir.
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1 Introduction

Reservoirs have been traditionally used for managing water resources for different objectives
such as hydropower generation, flood control, water supply and recreation. Operation of
reservoirs is affected by long-term stressors such as accelerated population growth (leading
to an increased water demand) [Singh et al. 2014; Wisser et al. 2013], sedimentation [García-
Ruiz et al. 2011; Graf et al. 2010] and aging infrastructure [Juracek 2015; Lane 2008].
Additionally, changing climatic conditions leading to an increased frequency of extreme
weather events (flood and drought) are stressing the need to manage water resources on
shorter timescales [Anderson et al. 2008; Hanak and Lund 2012; Ho et al. 2017; Lettenmaier
et al. 1999; Rajagopalan et al. 2009; Vicuna et al. 2010].

Short-term management of reservoirs becomes proactive when inflow forecasts are avail-
able and this information can be effectively used to assist reservoir operations [Zavala et al.
2009]. Inflow forecasting is mainly performed using conceptual hydrologic models and data-
driven models [Gragne et al. 2015]. Data driven approaches involve the use of artificial neural
networks (ANN) [Adamowski 2008; Coulibaly et al. 2000; Kumar et al. 2015], automated
regressive integrated moving average method (ARIMA) [Valipour 2012; Valipour et al. 2013],
neuro-fuzzy techniques [Mehta and Jain 2009; Mukerji et al. 2009], genetic programming
methods [Akbari-Alashti et al. 2015; Jothiprakash and Magar 2012] etc. However, data driven
approaches have limitations in terms of dealing with non-stationarity, are less robust for short
term forecasts and may sometimes diverge outside the range of the training set [Cannas et al.
2006; Gaume and Gosset 2003; Partal 2009].

In contrast to data driven approaches, conceptual hydrologic models fed with meteorolog-
ical inputs provide better representation of catchment response [Che and Mays 2015; Todini
2007]. However, they are plagued by uncertainties arising from parametrizations of physical
processes in meteorological models’ resolution and initial conditions [Bartholmes and Todini
2005; Cuo et al. 2011; Krzysztofowicz 2001] and uncertainties in structure (e.g. lumped and
distributed models), parameters and initial conditions of the hydrologic model [Gupta et al.
2005; Seo et al. 2006; Zalachori et al. 2012]. To account for the meteorological uncertainty,
short-term hydrological forecasts are carried out by forcing a hydrologic model with ensemble
of Numerical Weather Prediction (NWP) models [Buizza 2008; Cloke and Pappenberger 2009;
Fan et al. 2014]. Ensemble streamflow forecasting is used in flood early warning systems
[Bartholmes et al. 2009; Laugesen et al. 2011; Rabuffetti and Barbero 2005; Saleh et al. 2016;
Thiemig et al. 2015; Verkade and Werner 2011] and are found to be viable for managing
reservoir operations [Boucher et al. 2012; McCollor and Stull 2008; Ramos et al. 2007; Zhao
et al. 2011].

Studies have demonstrated the importance of ensemble streamflow forecast for short-term
reservoir operations. Zhao et al. [2011] analyzed the effect of forecast uncertainty on a
hypothetical, real-time reservoir operation by modelling the dynamic evolution of uncertainties
involved in various forecast products. Their results showed that it was more valuable to
consider the forecast uncertainty for reservoirs with smaller storage capacity as they were
sensitive to forecast errors. A hydro-economic assessment of hydrologic forecasting systems
carried out by [Boucher et al. 2012] quantified the benefits of ensemble forecasts for decision
making in hydroelectricity production during a flood event.

Different optimization techniques can be used to capture the sequential and non-linear
decision-making nature of reservoir operations. Dynamic Programming (DP) is conventionally
used as a method to optimize single-reservoir operations given the availability of deterministic
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inflows to the reservoir [Labadie 2004; Loucks et al. 2005; Yakowitz 1982]. To explicitly
include the uncertainty information to make optimal decision under uncertainty, stochastic DP
is preferred when dealing with ensemble forecasts [Eum et al. 2011; Galelli et al. 2014].
Studies have also used ensembles of inflow forecast and real-time model predictive control
approach to improve operations of a single reservoir Fernando Mainardi Fan et al. [2016];
Schwanenberg et al. [2015] and multi-reservoir systems [Ficchì et al. 2016] leading to more
robust decisions.

Despite the intensive research on the applications of optimization to reservoir systems, there
is a gap in real-world implementation, specifically in terms of incorporating uncertainties and
implementing real time operations during extreme weather events. The objective of this work
was to develop an automated forecasting and optimization framework that addresses the gap
by using a widely available semi-distributed hydrologic model to obtain short term ensemble-
based forecasts of inflows and derive alternate reservoir operation rules to potentially mitigate
flooding. A regional scale hydrologic model was forced with deterministic and probabilistic
precipitation forecasts from the European Centre for Medium range weather forecasts
(ECMWF) corresponding to two distinct precipitation events to obtain inflows to the reservoir.
A multi-objective dynamic programming approach was used to optimize the releases from the
reservoir. The Oradell reservoir in the Hackensack River basin in New Jersey was used as a
test bed in this study. The two events were selected based on their severity, the operation of the
reservoir during the events and the skill of the corresponding meteorological forecasts to assess
the feasibility of the proposed approach at different lead times. This study seeks to provide a
flexible, assistive tool to alleviate the complexity of operational decision-making of single
purpose reservoirs that have to operate beyond the scope of traditional operational policies
specifically during extreme weather events.

2 Materials and Methods

2.1 Study Area and Case Description

The study area covers the Hackensack River basin which is located mainly in the Hudson and
Bergen counties in northeastern New Jersey in the United States. This area includes some of
the most highly developed, urbanized areas as well as undeveloped marshlands known as the
Hackensack Meadowlands. The flows in the upper areas of the Hackensack River basin above
the Oradell dam are regulated by a four-reservoir system (Fig. 1).

The Oradell reservoir formed by the Oradell dam is the most downstream reservoir of the
system and receives inflows from Pascack Brook at Westwood and Hackensack River at
Rivervale. Flows along the Pascack Brook are altered by the Woodcliff Lake Reservoir and
diversions for municipal supply. Similarly, as a part of the multi-reservoir system, DeForest
Lake and Lake Tappan regulate the flow along the Hackensack River at Rivervale [Carswell
1976]. The Oradell reservoir is located approximately 1.6 km upstream from the town of New
Milford and 6.4 km upstream from the city of Hackensack in Oradell, Bergen County, New
Jersey (Fig. 1).

The reservoir has a maximum storage volume of 12.4 X 106 m3 for an elevation of 7.52 m
NAVD88 [Baker III 1978] and the Oradell reservoir dam is classified as a high hazard dam i.e.
in the event of its failure there would be significant loss of lives and property. The lower
portions of the Hackensack river downstream of the dam are characterized by low density
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residential and commercial land use and are vulnerable to floods when the reservoir is at a high
stage [EPA 2015; FEMA 2014].

The reservoir is operated with a primary objective of supplying water to Hudson and
Bergen counties in New Jersey and is typically drawn down in summer when the customer
demands increase and refills in the winter and spring through runoff and snowmelt. Hurricane
Sandy which occurred between October 26-29, 2012 was selected due to the high magnitude
of expected rainfall associated with the storm and the resulting press release approving the
lowering of the North Jersey reservoirs [DEP 2012]. However, there were considerable
differences between forecasted and observed precipitation over land that resulted from the
uncertainties in the environmental steering flow and its interactions with the mid-latitude

Fig. 1 Study area showing the Hackensack River basin, the hydrographic network, stations of interest and the
Oradell reservoir
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trough [Munsell and Zhang 2014] resulting in no releases from the reservoir. The effect of this
discrepancy was examined in the context of reservoir operations.

Hurricane Irene (August 27-30, 2011) was selected because of the unique meteorological
characteristics associated with the event that inundated streams and caused the failure of
numerous dams in New Jersey [Watson et al. 2013]. The Oradell dam overtopped during
Hurricane Irene, despite the releases to increase the storage capacity.

2.2 Modelling and Optimization Framework Description

The framework diagram (Fig. 2) describes the steps used in modeling the streamflow and
optimizing the reservoir operations. The hydrologic model was implemented using HEC-
HMS, the parameters calibrated using the gridded precipitation data from the National Centers
for Environmental Prediction (NCEP) North American Regional Reanalysis (NARR)
[Mesinger et al. 2006] and validated using observations from the USGS gauging station
located at Hackensack river at New Milford, Hackensack River at Rivervale and Pascack
Brook at Westwood. A retrospective forecast of the inflows to the Oradell reservoir at different
lead times for the three events was then performed using 51 member ensemble forecast from
European Center of Medium Range Weather Forecasting (ECMWF) and one deterministic
high resolution forecast (ECMWF-HRES) [Buizza et al. 1999].

2.3 Meteorological Datasets

2.3.1 North American Regional Reanalysis (NARR)

NARR precipitation dataset, corresponding to the three events was used to calibrate the
hydrologic model. High-quality precipitation observations are assimilated into the atmospheric
analysis to create a long-term, dynamically consistent, high-resolution climate dataset. The
temporal resolution of NARR dataset is 3 hours and the spatial resolution is 32 km [Mesinger
et al. 2006]. NARR datasets have also been successfully used to calibrate the parameters of the

Fig. 2 Hydrologic modeling and reservoir optimization framework
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hydrologic models [Choi et al. 2009] in data scarce regions with limited number of precipi-
tation gauges [Solaiman and Simonovic 2010; Trubilowicz et al. 2016].

2.3.2 European Center for Medium Range Weather Forecasts (ECMWF)

The retrospective streamflow forecasts were obtained by forcing a hydrologic model with
precipitation inputs from 51 ECMWF ensemble members and one high-resolution model
ECMWF-HRES [Hagedorn 2008; Molteni et al. 1996]. An ensemble of 50 ECMWF members
was obtained by perturbing the initial conditions of the control forecast to simulate the effect of
initial condition uncertainty. ECMWF ensemble has a spatial resolution of 0.25° while the
ECMWF-HRES has a spatial resolution of 0.125° with a temporal resolution of 3-hours.
Previous studies have extensively addressed the skill and the advantages of ECMWF for
hydrologic studies including forecasting reservoir inflows for managing water resources
[Boucher et al. 2011; Ramos et al. 2007]. A total of 52 precipitation fields were obtained
from the Meteorological Archival and Retrieval System (MARS) for 26th, 27th and 28th August
2011 for Hurricane Irene and 26th, 27th and 28th October 2012 for Hurricane Sandy.

2.4 Hydrologic Model Description and Datasets

Inflows to the Oradell reservoir was modeled using the latest Hydrologic Engineering Center’s
Hydrologic Modelling System (HEC-HMS), version 4.2 [USACE 2016]. HEC-HMS is
developed by the US Army Corps of Engineers and has been used extensively in modeling
streamflow [Halwatura and Najim 2013; Saleh et al. 2016; Yang and Yang 2014; Zhang et al.
2013] and simulating inflows to reservoirs [Che and Mays 2015; Shoghli et al. 2016; Uysal
et al. 2016]. The model structure was defined using empirically derived parameters to describe
the infiltration losses, the runoff, baseflow and routing [Feldman 2000; Kull and Feldman
1998]. The initial and constant loss method was selected to account for the infiltration losses
[Halwatura and Najim 2013; Huizinga 2014]. The interception i.e. the absorption of precip-
itation by surface cover and depression storage were represented using the initial loss
parameter. The constant rate represented the constant precipitation loss occurring during the
event [HEC 2000a]. The Clark Unit hydrograph method was used to calculate the runoff
transformation and the groundwater contributions to streamflow were included in the model
using the initial flow and recession constants [Maidment 1992].

The Geographical information system (GIS) data was imported to HEC-HMS using the
HEC-GeoHMS 10.2 extension [Fleming and Doan 2013; Johnson et al. 2001]. The topogra-
phy was obtained from the USGS Nation Elevation Dataset (NED) [Gesch et al. 2002]. The
Hackensack River basin was delineated into sub-basins based on the flow direction and
accumulation derived from the DEM using HEC-GeoHMS. The GIS data was used to derive
parameters such as the storage co-efficient and the percent imperviousness of the sub-basins.
The baseflow recession constants for each sub-basin were used to represent the falling limb of
the hydrograph.

The storage in the reservoir was simulated using two different routing methods contained
within HEC-HMS. The Specified Release routing method was used to calibrate and validate
the model. This method models the storage in the reservoir when the outflow discharge is
known for each time interval of the simulation. Thus, the storage can be tracked at each time
interval using the known inflows, outflows and conservation of mass. The calibration proce-
dure is further discussed in section 3.1.
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The Outflow Curve Routing method was used to obtain the inflows to the reservoir and to
represent the reservoir using storage-discharge-elevation relationship. Using the observed
initial elevation, HEC-HMS uses the level-pool routing model to calculate the outflow from
an impoundment that has a horizontal water surface. The model recursively solves the one-
dimensional approximation of the continuity equation by discretizing time and breaking the
total analysis into equal intervals [HEC 2000b].

Iavg−Oavg ¼ ΔS
Δt

ð1Þ

Where Iavg is the average inflow during time interval, Oavg is the average outflow during the
time interval Δt and ΔS is the storage change.

2.5 Multi-objective Dynamic Programming

The ‘dp_multi’ function within the R package ‘reservoir’ was used to return the optimal
sequence of releases [Turner and Galelli 2016]. Table 1 depicts the cost functions
associated with these objectives, the parameters of the cost function and the problem
constraints.

D is the target release, Rt, Et and St are the controlled release, spill and storage at time step t
respectively. τ is the penalty cost exponent and greater the penalty exponent the greater the
hedging i.e the cutback on releases to maintain amenity for future water supply [Celeste and
Billib 2009; Turner and Galelli 2016]. The volumetric capacity V was set to 0.98 which
translates to 98% of the reservoir capacity. The inputs to the dynamic programming model
were the inflow time series, the initial storage in the reservoir which was based on the initial
water level and the depth-storage-area relationship and the target releases (Table 2). The
storage and releases were discretized to 1000 and 10 uniform states respectively. The storage
was discretized to a higher value to assist the interpolation of the reservoir volume to the water
levels. The release was discretized arbitrarily assuming releases every 10 hours over the 120-
hour forecast horizon.

The optimal sequence of releases for the input flow time series were obtained by
minimizing the sum of penalty costs to maintain a target water supply, minimize spill
and maintain a target water level using the backwards recursive procedure to solve
Eq. (2).

f t Stð Þ ¼ min Ct St;Qt;Rtð Þ þ f tþ1 Stþ1ð Þ� � ð2Þ

Where St is the storage at the reservoir, Qt is the current period inflow, Rt is the release decision
to minimize the current period cost Ct plus the future cost expectation ft + 1(St + 1).

Table 1 Cost function, weights, exponents and constraints of the multi-objective dynamic programming model

Maintain water supply Minimize Spill Maintain amenity

Cost function D−Rt
D

� �τ
Et

Quantile Q;0:95ð Þ
� �τ

St−V*capacity
V*capacity

� �τ

Weights 0.4 0.3 0.3
Exponents (τ) 2 2 2
Constraints 0 ≤ D ≤ 2*D 0 ≤ St≤ 0.98*capacity
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3 Results

3.1 HEC-HMS Model Implementation and Calibration

Pascack Brook at Westwood and Hackensack River at Rivervale were modeled as two sub-
basins and the excess inflows to the reservoir was modeled as a separate ungauged sub-basin.
Observed elevations at the Oradell reservoir, the streamflow observations at the outlets of the
two sub-basins and the observed outflow at the Hackensack River at New Milford were
obtained from the USGS gauge stations.

Observed inflow to the reservoir was back calculated using the reverse level pool routing
technique with a central difference scheme to reduce oscillations arising from the uncertainties
in observed reservoir water levels, gate positions and observed discharge downstream of the
reservoir [D’Oria et al. 2012; Zoppou 1999].

The model HEC-HMS model was run on 2 X 2 km standard hydrologic grid resolution at
hourly time steps [Maidment and Djokic 2000] with the NARR precipitation data. The
specified release routing method in HEC-HMS was used to calculate the storage in the
reservoir using the total observed discharge at the Hackensack River at New Milford. The
hydrologic parameters at the three sub-basins were modified based on visual comparison with
streamflow observations at the two gauged sub-basins and the observed reservoir elevations to
produce a best-fit model. The simulations showed reasonable fit between model and observed
discharge at the two-selected gauged sub-basins and the water level at the reservoir.

3.2 Forecast Uncertainty

The Outflow Curve routing method was used to calculate the outflows from the reservoir using
the storage-elevation relationship. The inflow forecasts were analyzed visually and using Nash
Sutcliffe Efficiency (NSE) and Percent bias (PBIAS) to assess predictive power of hydrologic
models and the uncertainty at different lead times, arising from the meteorological forecasts.
This analysis was performed to assess the spread of peak magnitude and the forecast
consistency as the peak of event approaches.

Figure 3 depicts the forecast assessment for Hurricane Irene to understand the propagation
of meteorological uncertainties through the hydrologic model to uncertainties in inflows. The
skill of the forecasts was assessed at lead times of 72, 48 and 24h by comparing the ensemble-
based inflow forecasts with the backcalculated inflows. The reforecast issued 72h prior to the
event, was characterized by a high spread in the ensemble members, specifically, the magni-
tude and time of the peak of inflow forecasts. There was a delay in peak of the simulated

Table 2 Types of reservoir parameters, model inputs/parameters and the data sources

Reservoir parameters Model input/parameter

Parameter Type Input/parameter Type

Reservoir capacity definite, from Baker III
(1978)

Inflow time series determinate, from hydrologic
model

Surface area at max
depth

definite, from Baker III
(1978)

Storage & release
discretization

user defined, package default

Initial storage definite, NWIS Target releases user defined, operator
experience
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hydrographs by approximately 8-12 hours for both the ensemble and the deterministic high-
resolution forecasts (Fig. 3a). The spread in the forecasted ensemble members was also evident
from Fig. 3d, e where the interquartile range of the NSE was from 0 to 0.6 with a median of 0.4
and the interquartile range of the PBIAS was from 0 to -45% with a median PBIAS of 12%.

The inflow forecast issued 48h prior to the event, exhibited a lower peak spread compared
to the spread from the forecast issued on 26th August 2011 (Fig. 3a, b). The delay in the peak
timing was reduced with the deterministic forecast and the median agreeing well with the back
calculated inflow. The decreased interquartile range (0.6 to 0.8) and increase in the NSE was
also indicative of the improvement in the skill and decrease in the forecast spread (Fig. 3d).
The PBIAS increased with the median PBIAS of -5% with an interquartile range of -25% to
20% (Fig. 3e). The deterministic forecast showed good agreement with the backcalculated
inflows with a NSE of 0.85 and PBIAS of 0% (Fig. 3d, e).

For the forecast issued on 28th August 2011, 24h prior to the event, the spread of the
ensemble members was significantly reduced in terms of the peak magnitude and timing
(Fig. 3c). The deterministic forecast underestimated the peak and compared well with
median of the ensemble forecast. There was reduction in the forecast spread (Fig. 3d),
with the NSE having an interquartile range of 0.7 to 0.8 and median of 0.75. There was
also a decrease in the interquartile range of the PBIAS (-20% to -27%) indicating
decrease in the forecast spread.

3.3 Release Optimization Using Dynamic Programming Under Different Scenarios

To optimize the release decisions over a 120-h forecast horizon, inflows to the reservoirs
were used as inputs to the multi-objective dynamic programming model. The forecasts
were updated every 24 hours to assess the effects of forecast uncertainty at different lead
times on the release decisions.

Fig. 3 Ensemble inflow forecasts compared to inflow calculated using the reverse pool routing methodology
(backcalculated inflows) at lead times of 72,48 and 24 h from the observed peak. The models’ performance is
represented by the Nash-Sutcliffe efficiency and the PBIAS at different lead times. The metrics show the median,
interquartile range of the ensemble forecast and the high-resolution forecast

Ensemble Based Forecasting and Optimization Framework to Optimize... 997



3.3.1 Hurricane Irene

Inflow forecasts with a 120-h lead time issued on 26th August 2011 at 00:00 UTC, 27th August
2011 at 00:00 UTC and 28th August 2011 at 00:00 UTC (Fig. 3a, b, c) were used as inputs to
the optimization model to obtain water levels (Fig. 4a1, a2, a3) resulting from optimized
releases (Fig. 4b1, b2, b3). The dotted red line in Fig. 4a1, a2 and a3 indicates the maximum
elevation of the reservoir with the water levels exceeding this value indicating the spill. The
water level in the reservoir was initialized using the observed water level. The target release
was set to 115 m3/s which corresponded to four open sluice gates. This value was selected
based on the guidelines which stated that the reservoir could be drained in less than one day for
the design capacity of 197 m3/s which corresponded to seven open gates [Baker III 1978].

Results showed that 72 hours prior to the arrival of the peak, release decisions were more
conservative (Fig. 4b1) with the optimized release strategy for the backcalculated inflow
showing no spill (Fig. 4a1). The inflow forecasts when used in the deterministic dynamic
programming model provided an ensemble of releases and the corresponding water levels in
the reservoir. Results indicated that initially all the ensemble members showed releases less
than 50 m3/s (Fig. 4b1). The median of the probabilistic forecasts underestimated the peak
inflows to the reservoir (Fig. 3a) and the water levels obtained by using the release decisions
indicated no spill (Fig. 4a1, b1). A less conservative release strategy would have resulted in a
lower number of members indicating spill. This would entail increasing the weight of the
minimize spill objective and decreasing the weight of the maintain water level objective.

In the forecast issued 48 hours prior to the event, the release strategywas less conservativewhen
compared to the forecast issued 72 hours before the event (Fig. 4b2). This was due to the necessity
of draining a larger volume from the reservoir in a shorter period. The optimized release strategy
applied to the backcalculated inflow showed no spillage. The reduced spread in the inflow forecast
(Fig. 3b) was also reflected in the releases and the water levels in the reservoir (Fig. 4a2, b2). The
water levels obtained using the probabilistic forecasts as inflows to the dynamic programming
model showed more members exceeding the major levels in the reservoir (Fig. 4b2).

In the final forecast issued 24 hours before the event, the release strategy as depicted in Fig.
4b3 was the least conservative with high initial releases indicating the urgency to release more

Fig. 4 Water levels in the reservoir 72, 48 and 24h before the observed peak based on the release decisions
obtained using the deterministic dynamic programming approach
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water as the event approaches. The water level (Fig. 4a3) corresponding to the backcalculated
inflow (Fig. 4b3) exceeded the threshold value indicating spillage. It was observed that the
spread in the ensemble inflows to the reservoir was reduced as the forecasts were updated. The
spread of the ensemble members is a useful measure of the forecast uncertainty and higher
spread hinders effective decision-making. However, forecast sharpness does not indicate
reliability as evident from the forecast issued on 28th August 2011 (Fig. 4a3).

3.3.2 Hurricane Sandy

The optimized releases for Hurricane Sandy inflow forecasts were issued on 26th October
2012, 27th October 2012 and 28th October (Fig. 5a1, a2, a3).

The results showed that the conservative release decisions (Fig. 5c1) obtained for the inflow
forecasts issued on 26th October 2012 (Fig. 5a1) resulted in a range of possible water levels in
the reservoir (Fig. 5b1). A few members of the ensemble-based forecasts showed overtopping
72 hours prior to the peak of the forecasted event (Fig. 5b1).

The inflow forecast issued on 27th October 2012 was characterized by a wider spread in the
time and magnitude of the peak inflow (Fig. 5a2). The release decisions (Fig. 5b2) and the
corresponding water levels (Fig. 5c2) showed a high spread. The conservative release deci-
sions resulted in more members exceeding the major flood threshold indicating a higher
chance of overtopping if the updated forecasts are used.

The inflow forecast issued on 28th October 2012 showed more members depicting higher
inflows compared to the previous forecasts (Fig. 5a1, a2, a3). The less conservative release
decisions (Fig. 5c3) and the increase in the magnitude of the forecasted inflows resulted in
majority of the water levels exceeding the moderate threshold of the reservoir with a few

[a1]

[b1]

[b2] [b3]

[a2] [a3]

[c1]
[c2] [c3]

Fig. 5 Ensemble and deterministic inflow forecasts, water level in the reservoir and the corresponding release
decisions at lead times of approximately 72, 48 and 24h from the forecasted peak flow
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members exceeding the major threshold (Fig. 5b3). The deterministic inflow forecast was
characterized by low magnitude and was similar to the forecast issued the previous day.

4 Summary and Discussion

The first part of this work consisted of implementing a hydrologic modeling framework on the
Hackensack River basin. The hydrologic model was calibrated and validated for the extreme
rainfall event Hurricane Irene using NARR precipitation data and the observed streamflow
from the USGS gauges. The second part investigated the use of ECMWF ensemble and
deterministic precipitation inputs to retrospectively forecast the inflows to reservoir during
Hurricane Irene and Hurricane Sandy, with a 120h forecast horizon. The uncertainty arising
from the parametrization of the hydrologic model was not addressed in this study as the focus
was on the importance of uncertain precipitation inputs on the inflow forecasts for extreme
rainfall events.

The evolution of release decisions based on the forecasted inflows and the optimization
methods were then assessed for the different lead times for the two events. For Hurricane Irene,
the release decisions progressed from more conservative to less conservative releases with the
change in the forecast lead time. The ensembles provided a way to visualize the uncertain release
decisions and uncertainties in the corresponding water levels associated with those decisions.
However, the proposed method should be used as an assistive tool and all sources of errors must
be acknowledged before making operational decisions [Bourdin et al. 2012]. Using ensembles
from multiple meteorological models can be used to improve the predictive capability of the
modeling system [Saleh et al. 2018]. The importance of the uncertainties arising from the
hydrologic modeling framework and their impact on the release decisions was highlighted in
the Hurricane Sandy simulation. The conservative release strategies resulted in a broader range of
release decisions that showed the reservoir overtopping as the forecasts were updated.

In terms of the optimization framework the dynamic programming approach can be updated
with optimization techniques such as the stochastic dynamic programming and model predic-
tive control [Anvari et al. 2014; Côté and Leconte 2016]. Future work would involve including
the multiple reservoirs to better represent the water system and assess the potential of the
system for flood control during extreme rainfall events.
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