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Abstract
An optimal pumping policy ensures the sustainability of groundwater resources when
groundwater is extracted. In this paper, several simulation models (genetic algorithms,
particle swarm optimization and firefly algorithm) are used to evaluate optimal pumping
policy in an hypothetical aquifer. In this study, the level of groundwater in an unconfined
hypothetical aquifer with a surface area of 1.5 km2 and three different hydraulic conductiv-
ities with a thickness of 100 m, as well as four pumping wells were investigated. The finite
element method was employed to estimate the groundwater level of the aquifer and the
mentioned algorithms were used to optimize the position of the pumping wells. The position
of the pumping wells with a specific discharge is optimized to minimize groundwater
drawdown in the aquifer. The results indicated that with increasing number of iterations,
there was little improvement in the results of the FA, and after five iterations, the algorithm
entrapped in local optima. By investigating the values of the objective function of two other
algorithms (PSO and GA), the results indicated that the GA has a better performance than
the PSO in optimizing groundwater pumping well locations. As a result, the GA reduces the
value of objective function by 31% compared to the PSO algorithm. With this value of
objective function, the maximum drawdown groundwater was about 2.5 m in the southwest
of aquifer. The results indicated that the optimum location of wells is on the western side of
the aquifer where the aquifer boundary has a constant head on this side.

Keywords Unconfined aquifer . Groundwater . Hydraulic conductivity . Optimization . Pumping
well

1 Introduction

Generally, the Middle East is characterized by two features of water scarcity and rapid
population growth. Therefore, water is the main factor for future development in this region.
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The issue of water scarcity for all countries, with arid and semi-arid climates, has been a
longstanding issue and access to water resources for agricultural and industrial purposes is
particularly important. Groundwater resources are used in different parts of the world in
various sectors such as agriculture, environment and industry and so on. In order to be
responsive to these demands and needs of water, a desirable method should be done. With
no pumping limit from an aquifer, groundwater can be permanently and irreversibly reduced
(Scanlon et al. 2010, Famiglietti et al. 2011 and Gautam and Prajapati, 2014).

Due to the decrease in groundwater level and their negative balance, optimization of
pumping will be of great help in the present situation. So the first step is recognition of
groundwater flow and the second step is recognition of optimization method.

One of the ways to understand groundwater flows is to use numerical methods, including
finite element and finite difference methods to solve the governing equations of groundwater
flow. For the first time in 1933, a simple comparative model of conductive sheet was used to
study the movement of the water front into the aquifer, as well as the effect of changing the
wells spacing in the aquifer (Prickett, 1979). These methods usually solve the governing
equations of groundwater flow in saturated zone by discretization of the problem. Due to the
existence of these discrete solutions, many interpolation methods have been developed to
calculate the flow velocity (Pokrajac and Lazic, 2002). An analytic element method is a
numerical method for groundwater flow modeling (Craig and Rabideau, 2006). Strack et al.
(1987) modeled the Dutch groundwater flow and concluded that the methodology of the
analytic element model properly simulates the hydrological complexities at large scales.
Steward and Allen (2013) used modeling of the Kansas high plain aquifer flow through an
analytic element method. The results indicated these methods are capable of modeling local
detail within a large-scale regional model of the high plains aquifer.

As mentioned, the second step is to know the optimization methods. Most of real-world
optimization problems are often large-scale problems, and because of the high number of
variables and constraints, simple optimization techniques such as linear and non-linear
methods are no longer effective. For this reason, many meta-heuristic algorithms have recently
been proposed, which though do not always ensure the global optimum solution, however give
quite good results in an acceptable computation time (Pour and Zeynali, 2015).

Meta-heuristic algorithms such as genetic algorithm, annealing simulation, ant colony
optimization, grasshopper optimization algorithm, etc. are among the researches to obtain near
optimal solutions to large-scale optimization problems in water resource management. Genetic
algorithm can be used to optimize groundwater surface water systems (Peralta et al. 2014),
optimizing coefficients of sediment rating curve (Zeynali and Shahidi, 2018), groundwater
monitoring (Babbar-Sebens and Minsker, 2012) and Coastal groundwater management prob-
lems (Ketabchi and Ataie-Ashtiani, 2015). The PSO is also a population-based random search
algorithm whose applications in water resource engineering are: reservoir optimization
(Saadatpour and Afshar 2013; Guo et al. 2013; Nagesh Kumar and Janga Reddy, 2007;
Zhang et al. 2014), designing distribution systems, water and sewage (Izquierdo et al. 2008)
and calibration of hydrological models (Gill et al., 2006; Zambrano-Bigiarini and Rojas 2013).

Ayvaz and Karahan (2008) used a simulator / optimizer model to investigate the proper
locations for groundwater pumping and also the amount of pumping in a two-dimensional
hypothetical aquifer. In the simulator / optimizer model, a finite difference method was used to
estimate groundwater. In this study, optimization of the genetic algorithm was used to optimize
the pumping value from each well. The simulator / optimizer model performance was tested on
a hypothetical aquifer for both Steady-State and Transient-State flow. The results indicated that
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when the number of pumping wells is higher than the actual number of wells, the well-known
configuration is well adapted to the optimal configuration. Also, the results indicated that
optimal locations are detected whenever the search process begins. Finally, the performance of
the proposed model is compared with a GA solution in which appropriate situations and
pumping rates are considered as decision variables. The results show that the proposed model
reduces the error rate by up to 14%.

Cyriac and Rastogi (2016) investigated the optimization of pumping policy using a finite
element-particle optimization model in a confined heterogeneous anisotropic synthetic aquifer.
In this research the objective was to find the optimum number of wells and pumping
discharges of those such that their collective drawdown is minimized while meeting the
demand at a reasonable cost. Constraints on the location of the wells and the maximum
allowable pumping discharge are also imposed. After analyzing the aquifer behavior in the
presence of 8, 9 and 10 pumping wells, the optimal number of wells is selected. The results of
this research indicated the model employed is capable of solving the present problem.

Sadeghi-Tabas et al. (2017) used a multiple search algorithm for adaptive genetic algorithm
(amalgam) developed by Vrugt and Robinson (2007) to optimize the location of wells and
pumping rates. In this study, the pumping rate with three minimization objective, namely the
minimum lack of supply, the change in the index of deficiency and minimization of discharge
in designated areas, was chosen to determine an optimal solution for the discharge and
recharge of groundwater. Hydraulic conductivity and specific performance parameters of the
groundwater model have been optimized using an optimization algorithm by minimizing the
total deviation between the observed and simulated water column depth. These parameters
were then used in AMALGAM to optimize pumping variables. In general, the results revealed
that the modeling-optimization-simulation method could compute a set of optimal solutions
displayed on a Pareto front.

Patel and Rastogi (2019) investigated groundwater estimation using global strong form
collocation-based meshfree method in a field like synthetic confined aquifer domain. The
developed model is tested on a two dimensional confined aquifer synthetic flow problem and
the results are compared with the analytical and numerical solutions. In this research different
time steps and varied pumping schedules were also assessed for a performance check. The
results of this research indicated the model employed is capable of solving the present problem.

The purpose of this study is to combine finite element method and meta-heuristic algo-
rithms and apply it to optimization of location of pumping wells. In many areas, well drilling
licensing is issued in a limited number, so optimizing the location of harvesting from a
hypothetical aquifer with a specified number of wells to minimize the level of aquifer
drawdown is the main objective of this study. In fact, in this study, by combining finite
element method with optimization methods such as genetic algorithm (GA), particle swarm
optimization (PSO) and firefly Algorithm (FA), is will presented a simulation/optimization
model for optimizing water harvesting from a hypothetical aquifer.

2 Material and Methods

2.1 Specification of Hypothetical Aquifer

In this study, a hypothetical heterogeneous anisotropic aquifer with a total area of 1.5 km2 is
described in Fig. 1. It has a thickness of 100 m and is approximately 1.5 km long and 1 km
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wide. This hypothetical aquifer is divided into triangular elements, each side of that is 0.1 km
long, and therefore the number of its triangular elements is 252 and the number of nodes is
150. The aquifer is defined in three different zone in terms of hydraulic conditions, with the
number of 80 triangular elements (Zone 1) have a hydraulic conductivity of 11.5 m/day, 100
south triangular elements (Zone 2), have a hydraulic conductivity equal to 6.7 m/day and 72
eastern elements (Zone 3) have a hydraulic conductivity equal to 2.8 m/day. The hypothetical
aquifer is considered no-flow boundary in south and north and along the eastern boundary, the
known flow condition is specified (2 m3/day/m), and in the western part of the aquifer, there is
a river that has created static head boundary conditions.

Considering the specificity of the aquifer, before solving the optimization problem and the
use of meta-heuristic algorithms, the groundwater level should first be estimated in the
hypothetical aquifer, which is done by using the finite element method. How the
aquifer reacts to the defined conditions is presented in Fig. 2. This form of ground-
water level is considered without taking any wells. In the next step, the meta-heuristic
algorithms should find the optimal position of the four wells with different pumping
discharges in order to minimize the groundwater drawdown compared to the initial level shown
in Fig. 2. It should be noted that the algorithms used do not allowwells in the boundary nodes to
be considered.

2.2 Finite Element

The finite element method has high flexibility in issues where the boundaries are irregular or in
problems that are heterogeneous and anisotropic in the aquifer flow. Also, finite element
methods can solve problems, such as transferring contaminants or moving frontiers. Finally,
the choice of problem solving method depends on factors such as the complexity of the
problem and the user-friendliness of each of the methods.

2.2.1 Governing Flow Equation

The governing equation describing the flow in a two-dimensional heterogeneous anisotropic
confined aquifer is given by (Bear 1979):

Fig. 1 Schematic view of the hypothetical aquifer studied

Akbarpour A. et al.24



∂
∂x

Tx
∂h
∂x

� �
þ ∂

∂y
Ty

∂h
∂y

� �
¼ S

∂h
∂t

þ Qwδ x−xið Þ y−yið Þ−q ð1Þ

Following initial condition is applicable

h x; y; 0ð Þ ¼ h0 x; yð Þx; y∈Ω ð2Þ
And the boundary conditions are given as:

Dirichlet boundary condition (fixed Head Boundary)

h x; y; tð Þ ¼ h1 x; y; tð Þx; y∈∂Ω1 ð3Þ
Known flow boundary

T
∂h
∂n

¼ q x; y; tð Þx; y∈∂Ω2 ð4Þ

where h(x, y, t) = Piezometric Head, T(x, y) = Transmissivity along the principal Cartesian
axes (m2/day), S = Storage coefficient, x, y = Horizontal space variables (m), Qw = Source or
sink function (−Qw= source, +Qw = sink) (m3/day), t = Time in days, Ω = Flow region, ∂Ω =
Boundary region (∂S1 ∪ ∂Ω2 = ∂Ω), ∂

∂n ¼Normal derivative, h0(x, y) = Initial head in the flow

domain (m), h1(x, y, t) = Known head value of the boundary head (m), q(x, y, t) = Known
inflow rate (m3/day/m) and δ is the Dirac delta function = 1 if x = xi, y = yi, = 0 if x ≠ xi, y ≠ yi.

2.2.2 Finite Element Formulation of Groundwater Flow

Finite element method (FEM) is a numerical technique to find the solution to first-
and second-order partial differential governing equations. It develops a system of
simultaneous equations through an integral formulation which when solved gives the
value of the unknown field state variables at discrete locations in the domain. The
system of equations generated by Galerkin FEM formulation can be represented as
(Gray et al. 1977; Pinder and Gray, 2013):

Fig. 2 3D View of Groundwater Level in the studied area
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For time-variant condition:
For two successive time intervals t and t +Δt where Δt is the time step

G½ � htþΔt
I

� �þ 1

Δt
P½ � htþΔt

I

� �
− htI
� �� � ¼ Ff g ð5Þ

[G] = Conductance matrix, [P] = Storativity matrix, {F} = Flux vector.
The initial groundwater head in the aquifer is known and the head at each subsequent time

step is found by solving the above equations.

2.3 Boundary Conditions

2.3.1 Border with Current Flow

Suppose that L is a boundary node and is located at a boundary that has vertical and definite
flow through its cross section (Fig. 3). The boundary integral is not only zero in the
two pieces of the line iL and Lm, because the boundary of the nodes i and m, and
the values of NL are zero.

The interpolator function NL varies linearly between the nodes L and i, as well as
L and m between two values from zero to one. Therefore, the integrals are calculated
in such a way that the input L of the vector {f} is equal to the following expression:

f L ¼ q1
K

iL
2
þ q2

K
Lm
2

ð6Þ

Where iL represents the distance between the nodes i, L, and Lm, showing the
distance between the nodes L and m. The amount of flow through the sides of the
sides of the side is distributed uniformly across the sides (Wang and Anderson, 1995).

In short, it can be stated that the boundary conditions are merged with the column vector
{f}. For all internal nodes or nodes located on non-flow boundaries, fL = 0 . For nodes located
on a boundary with a given flow, the value of fLis determined by Eq. (5).

Fig. 3 Finite element in certain
boundary flow conditions
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2.3.2 The Boundary with the Hydraulic Load Is Known

Fixed boundary conditions reduce the number of unknowns. The value of fL for the boundary
node L is negligible and can be assumed to be zero. Because the value of fL is zero for all
internal nodes. In the problem where its boundary conditions are known, it can be accepted
{f} = 0.

2.4 Genetics Algorithm

Genetic Algorithm is inspired from natural life of creatures. This algorithm is based on
iteration and its principles have been adapted from genetics science. In the genetic algorithm,
there is a major population, some of which are selected as parents, and the population that is
produced is named as children after Crossover. Also, the number of population can also
mutate. Eventually, from these three populations, the population is as large as the second
generation, and the subsequent replication begins.

In this algorithm, a variety of methods can be used in how to code, parent selection, mutate,
crossover and type of chromosomes, which will be briefly explained below.

Some types of coding methods include direct coding, indirect coding, binary coding and
mutation coding (Zeynali and Shahidi, 2018). In this study, direct coding for each chromosome
as a string of numbers is used. Thus, considering four wells, a chromosomal string will have
four genes, each gene is equal to the number of one node.

There are several ways to select parents for action, roulette wheel selection is the most
commonly used selection method. This method is used not only in this algorithm but also in
many other algorithms. The probability of selecting each chromosome is calculated on the
basis of its objective function. There is another phase in the genetic algorithm in which the
chromosomal string cut and the pieces are swapped together. This phase is called crossover.

Mutation is another phase in the genetic algorithm that amplifies the search in a decision
space. The methods for performing mutation operations are: reversing the bit, changing the
sequence, inversion, and changing the value of a gene. (Zeynali and Shahidi, 2018). In issues
like the present one, we can use changing the sequence and the value of a gene, because in a
chromosome, the change the sequence of genes means the number of nodes, therefore, location
of one well can be swapped with another well in the aquifer. The inversion of a chromosome
can cause the first and fourth pumping wells and the second and third pumping wells to be
swapped together. In changing the value of a gene, the node number one can also change, and
thus the location of a pumping well changes. However, reverse of the gene in this study cannot
be used because, assuming that the target gene has a value of 20, with its inversion, that gene
value is 0.05, which is not an acceptable value for a gene.

On the other hand, if the discharge pump is equal to all the wells, changing the sequence of
genes and the inversion of chromosomes will no longer be effective, since in general there is
no change in the conditions of the problem. It is also necessary to mention that when the value
of a single gene (number one node) is changed, the new value should be an integer value,
meaning that the value of 20 is valid for a node (node number), while the value is 20.5 as the
number. The node is not node or the value of 30 is the number 1 of the boundary node and
therefore cannot be selected as a value for a gene. However, in this study, the methods of
changing the sequence and inversion the chromosome with different probability
percent were used.

The flow chart of genetic algorithm for this optimization problem shown in Fig. 4a.
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2.5 Particle Swarm Algorithm

Particle swarm algorithms also known as the birds algorithm, as well as other meta-heuristic
algorithms, create a random population of individuals and each person in the population has a
set of variables that should be determined by their optimal value. When a particle with velocity
vector V(t) has reached a new location from its previous location in decision space, it can be
moved to the Personal Best, or Global Best or go straight to its path; in this case, none of the
choices alone is appropriate. Therefore, the new velocity vector V(t + 1) is calculated according
to the Eq. (7), (Eberhart and Kennedy, 1995):

V tþ1ð Þ ¼ w:V tð Þ þ C1:r1: P tð Þ−X tð Þ
� �þ C2:r2: G tð Þ−X tð Þ

� � ð7Þ
Where C1and C2are fixed numbers; r1C1 and r2random vectors are between zero and one; P(t)is
the best position where the X particle has ever been, and G(t)is the best position where all the
particles have been found so far. The new position is also calculated according to the Eq. (8):
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Fig. 4 Flow chart of algorithms

Table 1 The value of parameters
used in GA Maximum Iteration 50

Population size 20
Number of parents 16
probability of mutation 0.5
Type of coding direct coding
Parent selection type By roulette wheel
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X tþ1ð Þ ¼ X tð Þ þ V tþ1ð Þ ð8Þ

In this case X(t)is the previous position and X(t + 1)is the current position of the particle.
The flow chart of particle swarm optimization for this optimization problem shown in Fig. 4b).

2.6 Firefly Algorithm

In the firefly algorithm the new position of the firefly, xi′, whose previous position was xi, and
is being absorbed into the light intensity with more light intensity at position xj, is calculated as
the Eq. (9) (Yang, 2010):

xi
0 ¼ xi þ β0e

−γrm x j−xi
� �þ αεi ð9Þ

In this regard, εiis a random vector with uniform distribution or Gaussian distribution, γ is the
absorption coefficient of light, and α is a coefficient known as the mutation coefficient, and it
can be changed in each iteration to converge to the algorithm (Yang, 2010). The flow chart of
firefly algorithm for this optimization problem shown in Fig. 4c.

It should be noted that in this research, determination of the location of a well is
considered to determine the groundwater level after the pumping well in a node.
Then, this level of groundwater is compared with the initial groundwater level and
their difference in each node is determined. For determinate the capture zone of
pumping wells, we calculated difference in all nodes. Then in the each nodes that
it’s this different was higher than 0.5 m, that node be in capture zone of pumping
well.

2.7 The Objective Function

In this research, after determination location of wells at the surface of the aquifer, the
groundwater level in all nodes is calculated. Before that we had an initial level of
groundwater and now we can calculated difference between these two levels. In fact,
the objective function in this study is to minimize the difference in groundwater level
calculated with the initial level in the aquifer, which can be calculated objective
function from Eq. (10):

Min Z ¼ ∑
N Node

i¼1
H−Ĥ

� 	








 ð10Þ

In this case, Z is the value of the objective function, N Node is equal to the number of nodes, H

is equal to the groundwater level of the ground before applying the pumping wells, and Ĥ is
also equal to the secondary level of groundwater after applying the pumping wells.

Table 2 The value of parameters
used in FA Number of firefly m β0 γ α

100 1 2 1 2
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3 Results and Discussion

The genetic algorithm has many parameters that can affect the performance of this algorithm.
Some of these parameters are the number of the population, the number of parents, the type of
crossover, the probability of mutation, the structure of chromosomes, and so on. In this
research, a uniform crossover was used, and the method of coding chromosomes was direct
coding (each gene = a node number). The values of the parameters of the genetic algorithm are
given in Table 1.

In the PSO algorithm, the sum of the parameters C1 and C2, must be less than or equal to
four. Examination of different values for parameters C1 and C2 from one to 2.5 with a steps of
0.5 showed that the value of 1.5 for these two parameters gives the best value of the objective
function which is equal to 42.9423. This result has been like Cyriac and Rastogi (2016). The
W parameter, the weighted inertia, has changed in each iteration, but its value has always been
between 0.4 and 0.7 and the population size is 10.

In the firefly algorithm, the value of β0 according to the Yang is usually equal to one.
The parameters of the firefly algorithm such as m, γ, α, and β0are obtained by trial and error

and the most appropriate values of these parameters which together produce the best value for
the objective function are shown in Table 2. This single run alone cannot determine the
efficiency of an algorithm to solve an optimization problem; therefore, each of the algorithms
with the best value of parameters obtained for it is run five times, and their average is also
calculated. Because the decision is based on the average of iterations, it is more accurate than
making decisions based on a single implementation.

In Table 3, the results of five times run of GA, FA and PSO algorithms are presented. This
table indicates that, GA give the best answers. Also, the firefly algorithm has never been able
to find a solution that will reduce the value of the objective function to less than 50%, and
therefore, generally, this algorithm is not able to solve this problem.

Table 4 shows the statistical characteristics of GA, FA and PSO. This indicates that, among
these three algorithms, GAwith the average value of the objective function (35.97) has the best
performance, and then PSO with 47.87 and, FA with 51.27, they rank next.

Table 4 Statistical characteristics of the performance of GA, FA and PSO

Algorithm Maximum of the
Objective Function

Minimum of the
Objective Function

Average of the
Objective Function

GA 41.7679 31.8118 35.9743
PSO 56.1686 41.6572 47.8714
FA 67.6358 51.2789 57.2783

Table 3 The results of five runs of algorithms

Run number 1 2 3 4 5

Iteration 50 50 50 50 50
Objective Function GA 31.8118 32.5722 34.6678 41.7679 39.0520

PSO 42.9423 56.1686 49.6481 48.9410 41.6572
FA 51.5546 63.5518 67.6358 52.3708 51.2787
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However, according to the results, the genetic algorithm has had the best performance. In
the genetic algorithm, this performance can be attributed to the use of mutation and crossover
operators for exploration and exploitation phases.

Generally, the FA is the weakest algorithm in this optimization problem. Because in the
five-time running this algorithm, the value of the objective function is not lower than 50 at all.
On the other hand, in this algorithm every fireflies should be compare to all other fireflies. So
Comparison Pairwise of fireflies means nested loop and this mechanism increases algorithm
run time. Changes in the objective function versus iteration shown in Fig. 5. As seen in this
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Fig. 6 The hypothetical aquifer view and optimal location of wells

Fig. 5 Performance of GA, PSO and FA algorithms
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figure, in GA, the value of the objective function fixed in 20th iteration. Also, FA didn’t have a
good performance because of entrapment in local optima. Also PSO needs more time to reach
a suitable solution.

In the following, several other outputs of the GA are presented. In Fig. 6a, shown the
location of four pumping wells. Capture zone of tow pumping wells that located on the south
side of the aquifer aren’t overlap together.

In Fig. 6b, groundwater head contour after pumping is shown. In this figure, the western,
northern and southern sides have a constant head equal to100 m, because in the western side,
due to the existence of the river, the head is constant in this boundary, and also on the northern
and southern borders is no-flow boundary, but on the east we have steady-state flow boundary.

The results of the interpolation of groundwater head for GA are also shown in Fig. 6c. In
addition, the 3-D view of groundwater head when pumping wells applied in aquifer is shown
in Fig. 6d. this figure show, the maximum of drawdown in the aquifer is about 2.5 m.

4 Conclusion

In this study, the performance of hybrid-finite element and meta-heuristic algorithms in
minimizing groundwater drawdown was investigated. In this research defined a hypothetical
aquifer with total area equal to 1.5 km2, there was in this aquifer 252 triangular elements and
150 nodes. Also, this aquifer had no-flow boundary in north and south and steady-state flow in
east and static head in west. After specifying the characteristics of the aquifer, without
considering any wells, groundwater level was estimated by finite element method. Subse-
quently, four pumping wells with different pumping rate were considered, therefore the meta-
heuristic algorithms should optimize the location of these pumping wells to find the best value
for objective function or near optimum. In this research, three meta-heuristic algorithms were
used: GA, FA and PSO. The results indicated that all the algorithms have the ability to
combine with finite element method. The results also indicated that the genetic algorithm
has a high performance in solving this problem and the mean value of the objective function
was 35.97. The results also show that the algorithms tend to choose the location of pumping
wells located near the eastern side (constant hydraulic head). On the other hand, pumping wells
with a higher pumping rate are more likely to be drilled in parts of the aquifer where there is
hydraulic conductivity is low. This tendency of algorithms is because of minimizing aquifer
drawdown.

This study could determine the location of injection wells that have the greatest effect on
aquifer. And other limitations can be added to the problem and checked again. If accurate
information is available from the actual aquifer. We can investigated and compared.
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