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Abstract
Most long-term sampling regimes are calendar based, collecting one or two samples per
month regardless of the stream conditions. Loads estimated with calendar-based sampling
are often used for expensive water quality mitigation measures. In this paper, we have
tested the differences between the calendar-based and extensive sampling methods for
two watersheds of different sizes, and three parameters—total nitrogen, total phosphorus,
and total suspended solids. Based on the results obtained and the costs associated with the
remediation, a simple decision-making framework is proposed for watershed managers to
decide on the applicability of a calendar-based sampling method. Direct loads (DL) were
computed using a method based on an intensive sampling of flow and other water quality
parameters. Weighted regression loads (WL) were estimated using the WRTDS model
designed for modified calendar-based sampling. The results suggest that for trend analysis
and planning on a larger scale, long-term loads obtained from a modified calendar-based
sampling regime may be used as a reasonable substitute for loads obtained from intensive
sampling. However, for purposes where accurate daily loads are needed (e.g., water
quality model calibration) WL may not be an effective substitute for DL. Finally, we
recommend that the costs of control measures should be assessed when deciding on a
sampling regime.
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1 Introduction

Knowing fluvial loads and concentrations of pollutants is essential to establishing the state of a
waterbody and its tributary watershed, and assessing trends in water quality. Load estimates of
several parameters, such as Total Nitrogen (TN), Total Phosphorous (TP), and Total
Suspended Sediments (TSS), are used to establish budgets for nonpoint and point pollution
sources and design remediation/mitigation strategies. The regulatory framework in the United
States used to establish total maximum daily loads (TMDLs) for impaired waterbodies was
created in response to the Clean Water Act and its modifications (FWPCA 2002). The
framework is heavily dependent on using accurate and reliable computation of fluvial loading
to control degradation and restore designated use(s). Computation of loads, particularly for
regulatory compliance, is still not standardized and may never be because it is based on data,
and resources allocated to collect data vary widely.

There are several sampling methods, with strengths and weaknesses, that may be employed
for estimating loads. Methods that rely on extensive sampling produce reliable load estimates
but are resource-intensive to undertake, whereas methods that do not need extensive sampling
often are not very accurate, particularly at shorter time scales. Decision-makers may try to
optimize the desired accuracy in load estimation with the costs involved in obtaining these
estimates for their region (optimization decision). The problem often comes when trying to
express the desired accuracy as a cost that may be compared with the costs of obtaining
accurate loads. One potential way to estimate the value/cost of the desired accuracy is to use
the cost of management measures for pollution abatement that may be driven by the optimi-
zation decision.

With the success that the United States has enjoyed in controlling the majority of point
sources, further reduction of fluvial loads for regulatory purposes requires nonpoint or diffuse
pollution abatement measures that are often expensive to control. Typically, the costs of diffuse
pollution controls are very high, and control measures themselves are often unreliable. If best
management practices (BMPs) with limited control ability and those that are practically
infeasible in producing results (e.g., pet waste management education, control of illicit
discharges, and reduction in urban growth) are excluded from consideration, the costs per
pound (over the lifecycle including capital and operational costs) of controlling non-point
pollution of TN, TP, and TSS are between $151–$14,449, $1851–$70,342, and $4–-$69,
respectively, for some areas of the Chesapeake Bay watershed region (CWP 2013). The wide
ranges are reflective of the type of BMP, efficiency in controlling the pollutant, and other local
conditions such as soil type and land value. Further, it may be noted there are theoretical
reasons to believe that the cost of reducing impairment will be of a convex shape, where the
costs per unit reduction decrease first with the economies of scale and then increase with the
diminishing marginal returns on resources invested in impairment reduction (Wainger 2012). It
may be reasonable to believe that in most scenarios, where the easier, cheaper methods have
already been implemented, the economies of scale have been exhausted and further reductions
will require significantly higher costs per unit reduction of impairment.

1.1 Fluvial Loads Sampling and Computation Methods

The most accurate estimates for loads may be obtained using continuous measurements of
flow rates and in-stream concentrations of the water quality parameters of interest. Near-
continuous recording (every 15 min to hourly) of flow measurement may be done using a
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variety of techniques, and some parameters such as temperature, nitrate-nitrogen, and dis-
solved oxygen, may also be measured in a near-continuous fashion. However, the measure-
ment of many parameters requires laboratory analysis. This requirement practically rules out
long-term high-frequency water quality measurement. Nevertheless, with judiciously frequent
water quality measurements, excellent estimates of fluvial loads may be made (He et al. 2018;
Johnes 2007; Kronvang and Bruhn 1996; Kumar et al. 2013; Moyer et al. 2012; Park and
Engel 2015; Stenback et al. 2011). For example, the concentration for any parameter in a
stream typically does not change much during non-storm baseflow periods. Thus, very good to
excellent load estimates may be obtained for non-storm periods using weekly or bi-weekly
water quality sampling. During storm events, when the concentrations of the parameters of
interest (and, consequently, load) may be expected to vary rapidly, compositing methods of
load estimation that yield an event mean concentration (EMC) for the storm may be employed
to get accurate storm-event loads.

In resource-constrained scenarios, reasonably frequent composite storm or base flow
sampling are not feasible, and regression methods are often used for estimating constituent
concentrations. Regression-based methods estimate the constituent concentration by relating
flow and other readily measurable parameters to the concentration of the constituent of interest
(He et al. 2018; Kumar et al. 2013). Typically, regression-based methods require calendar-
based (e.g., monthly) sampling as the measured concentration data are only used for calibration
of a regression equation. The putative trade-off of this method is the reliability of the loads
estimated at a lower cost.

There is considerable evidence suggesting that in smaller watersheds calendar-based
sampling methods do not perform adequately, and even in larger watersheds significant
differences were found in long-term studies (Horowitz et al. 2015; Kumar et al. 2013;
Robertson and Roerish 1999; Stenback et al. 2011). To improve the efficiency of the
regression-based fluvial load using calendar-based sampling, different sampling methods, such
as hydrological-based sampling, storm chasing, sampling in the rising or falling limb of the
hydrograph, and adaptive cluster sampling have been used with varying degrees of success
(Arabkhedri et al. 2010; Horowitz et al. 2015; Robertson and Roerish 1999; Sadeghi et al.
2008; Sadeghi and Saeidi 2010).

The United States Geological Survey (USGS) has developed a modified weighted regres-
sion method–Weighted Regression on Time, Discharge, and Season (WRTDS)–to address
some of the issues with regression-based fluvial load estimation schemes (Hirsch et al. 2010).
The WRTDS method was shown to perform well in several scenarios (Beck and Hagy 2015;
Lee et al. 2016; Sprague et al. 2011; Zhang et al. 2016). The good performance of WRTDS
when used with modified calendar-based sampling and the prevalence of the method, partic-
ularly after being adopted by the USGS, were the motivations for using WRTDS for this study.

1.2 Decision Making Framework for Monitoring

A comprehensive framework for developing a monitoring program (Fig. 1) relies on linked
relations between several components including the natural system under observation, the
objective of the monitoring program, sampling scheme, field collection and analysis methods,
and the cost-effectiveness (Maher et al. 1994). The natural system under investigation and the
desired objective is used to derive an observed indicator. The cost-effectiveness and sampling
scheme can then be optimized. Broad monitoring design plans, such as the US TMDL
Effectiveness Monitoring Plan and the EU Water Framework Directive direction on
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monitoring plans (Allan et al. 2006) are often too broad and may not be directly applicable to
choosing between the various options available for processes in Fig. 1. In this study, we
develop and assess a limited simplified framework relating the cost-effectiveness and perfor-
mance of the modeling method to choose a sampling method for resource-constrained
monitoring operations.

2 Study Area

This study utilized data collected for two stations, ST30 and PR01, marked in Fig. 2, which
also shows their drainage areas. Data for both stations were obtained from the Occoquan
Watershed Monitoring Laboratory (OWML). ST30 on Broad Run in northern Virginia drains
an area of about 2.29 × 102 km2, and PR01 on the Potomac River drains an area of about 2.9 ×
104 km2. The much smaller ST30 watershed is relatively uniform in elevation and slopes,
whereas the PR01 watershed area spans four states and includes parts of the Appalachian
Mountains and has a much higher variation in elevation and slopes.

3 Methods

3.1 Load Computation

The two methods of load computation utilized in this study are:

1) Direct Method, which used the OWML dataset of weekly/bi-weekly water quality data for
the three parameters of interest during non-storm flows and EMC for storm events, along
with near-continuous (15 min to hourly) flow measurements. The direct method repre-
sents the best model for estimating load with extensive sampling schemes.

2) WRTDS Method, which is based on a weighted-regression technique described by Hirsch
et al. (2010). In this study, for the WRTDS method, we used the same OWML weekly/bi-
weekly water quality data during non-storm flows but used discrete samples that were also

Objec�ves

Sampling 
Scheme

Cost 
Effec�veness

Sample Collec�on and 
Analysis

Natural System 
Inves�gated Indicators

Fig. 1 A simple framework for designing a sampling program adapted from Maher et al. (1994)
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taken during storm events, along with the daily average flow. The WRTDS method is the
representative method used for estimating loads with modified calendar-based sampling
schemes.

3.1.1 Direct Method

The direct method of fluvial load computation is an extension of the first principle of load
calculation. In this method, a water quality concentration reading is assigned for every
recorded flow reading. For non-storm flows, regular periodic discrete samples measurements
(weekly, bi-weekly) are used to interpolate concentrations at every data point where the flow is
recorded (usually hourly during non-storm flows). For storm events, the flow-composite EMC
value is assigned to all the recorded storm time flows; see Kumar et al. (2013) for more details
on the composite sampling method employed. Loads for the desired period are then computed
by aggregation. In this paper, we have considered this load (Direct Load or DL) to be the
reference and all the bias is computed with relation to this reference.

ST30

PR01

0 20 4010 Km

District of Columbia

West Virginia

Virginia

Pennsylvania

Maryland

Fig. 2 Location of the two stations used in this study. The watershed for PR01 (on Potomac River) station spans
four states and the District of Columbia. The Little Falls Dam is a short distance upstream from the PR01 station.
ST30 station (on Broad Run) is the smaller watershed abutting the Potomac River watershed but not a part of it
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3.1.2 WRTDS Method

The WRTDS uses a five-parameter equation (Eq. 1) to estimate concentration based on flow
and time. This approach is different from most other regression methods as the parameters of

Equation 1

 
β ̂0 toβ 4̂

!
, instead of being fixed, are estimated for every combination of Q

(daily average flow) and t (time) where concentration has to be computed. Thus, a unique set of
coefficients is estimated for every combination ofQ and t in the period of record. The advantage of
this approach is the ability to be unbiased and still estimate a wider class of regression surfaces than
other parametric functions used for most other regression methods. The data set used to compute

β 0̂ to β ̂4 is weighted based on the distance from Q and t at the estimation point. Weight (w) is
computed for three different distances: a) time, b) season, and c) discharge using the “tri-cubeweight
function” (Equation 5). Net weight is taken as the product of these three weights. A 7-year half-
window width is used for trend distance, 0.5 (decimal time) half-window width is used for seasonal
distance, and 2.0 (ln[Q]) half windowwidth for weight computation. These half-windowwidths (h)
are similar to what was used and found to be optimum by USGS for non-tidal load computation in
the ChesapeakeBaywatershed (Hirsch et al. 2010;Moyer et al. 2012). All load computations for the
WRTDS methods were performed by using the R Software Exploration and Graphics for RivEr
Time-series (EGRET) package developed by USGS [https://github.com/USGS-R/EGRET/wiki,
Access Date: 02/14/2019]. A much more detailed explanation about the WRTDS method may be
obtained from the software webpage [https://github.com/USGS-R/EGRET/wiki, Access Date: 02
/14/2019] and USGS publication (Hirsch and De Cicco 2015).

ln cð Þ ¼ β ̂0 þ β ̂1ln Qð Þ þ β ̂2 tð Þ þ β 3̂sin 2πtð Þ þ β 4̂cos 2πtð Þ þ ε ð1Þ
where

c is concentration mg
l

Q is observed daily flow, m
3

s

t is the decimal time, years
β ̂0 to β ̂4 are regression coefficient estimates
ε is the unexplained variation

w ¼ 1−
d
h

� �3
 !

if dj j≤h
0 if dj j > h

8><
>: ð2Þ

where

w is the weight
d is the distance from estimation point to data point
h is the half-window width

Calibration and Performance of WRTDS To assess the performance of the WRTDS model
the coefficient of determination (r2) based on observed and predicted concentrations was
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computed. The computation was on daily concentrations, not loads. An r2 value of greater than
0.6 is considered satisfactory for water quality modeling (Donigian 2002). Note that several
other detailed methods of assessing performance based on residual analysis and others are
available in the EGRET package. Only r2 was used in this study and it was hard to assess the
performance using other, often graphical, methods, in a simplified decision-making scenario.

3.1.3 Load Comparisons

Load flux at two stations was computed by two methods, WRTDS (WL) and Direct Load
Method (DL), for three parameters (TN, TP, and TSS) at three averaging timescales (annual,
monthly, and daily). A total of thirty-six (36) fluvial load time series were computed (2
stations, 2 methods, 3 parameters, and 3 averaging times) for the period from 1989 to 2003.
This fifteen-year period was chosen because during this period OWML was collecting discrete
samples during storm events (necessary for calibrating WRTDS) at ST30. In 2004, discrete
storm sampling was discontinued.

Matched-pair comparisons were made to establish the difference in daily, monthly, and
annual load fluxes computed by the two approaches. Because normality of the differences
between pairs of flux could not be established (even after log transformation), non-parametric
matched-pair signed-rank test (using R wilcox.test) was performed, comparing log-transformed
DL with WL.

Matched-pair signed-rank test, where the difference between the two datasets is tested for
the null hypothesis of zero, was used to identify the statistically significant (α =0.05)
difference. An unbiased magnitude-of-difference (δ) between loads was calculated with the
“Hodges-Lehmann Estimator” as suggested by Helsel and Hirsch (2002) to estimate the
difference for the fifteen-year period. The Hodges-Lehmann Estimator (Equation 3) represents
the difference between two populations and is computed as the median of all possible pairwise
differences. For daily time series, the difference data (for matched-pair sign rank test) were
found to be serially correlated. The Autoregressive (AR1) model was found to be suitable for
the daily difference data using the autocorrelation function and partial autocorrelation function
plots (not shown). Testing was thus performed on ‘pre-whitened’ data as discussed in von
Storch (1995) for AR(1) removal. Pre-whitening was performed using the formula in Equation
4 and the residual time series was used for testing.

δ ¼ median X i−X j
� �

; i ¼ 1;…; n; j ¼ 1;…; n; j≠i
� � ð3Þ

where

δ is the Hodges-Lehmann Estimator;
Xs are the differences;

X
0
t ¼ X t−r1X t−1 ð4Þ

where

Xt is the daily difference at time t;
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X
0
t is the residual pre-whitened data used for testing;

r1 is the lag1 sample serial correlation.

To estimate flow independent concentration trends, the Kendall-Theil robust slope was
computed on residuals obtained after using a LOWESS function to explain variations in the
average concentration with the observed average flows for the period. These trends were
computed for all cases. All statistical tests were performed using well-established R
(wilcox.test) and Python (theilslopes in scipy.stats) libraries. Further data partitioning based
on flow (Low, Medium, and High) was done to analyze the difference in loads computed by
DL andWL for different categorical flows. For the data partitioning, low flows were defined as
periods (daily, monthly or annual) where the average flows (averaged over the time period of
interest: annual, monthly, or daily) were from 0 to 25 percentile of observed flows, medium
flows were from 26 to 74 percentile, and high flows were from 75 to 100 percentile.

4 Results

To calibrate the WRTDS model and compute WL, an average of 43 and 52 samples per year
for ST30 and PR01, respectively, were used. In addition to the discrete samples used to
calibrate WRTDS, additional flow composite sampling was performed for the computation of
DL during the study period. Based on the r2 all the models (except TP and TSS at ST30)
indicated acceptable results (>0.6) on a daily timescale. Models for TP and TSS with r2 of 0.55
and 0.50 were still used as WRTDS estimated loads and represented the best method to
compute loads from a modified calendar-based sampling regime where only daily flows are
available. It may be noted that WRTDS is not recommended for small flashy watersheds where
the flows may vary substantially within a day (Hirsch and De Cicco 2015).

Figures 3 and 4 show the differences between the two stations for three timescales. For both
ST30 and PR01, the interquartile range (represented by the width of the box plot) of the
difference between the two load computation methods is lower for the annual timescale
followed by monthly, and then daily. The spread for the difference quantified as the interquar-
tile range for TN is smaller than that of TP and TSS for both stations. The majority of the
difference [Δ = ln(DL)- ln(WL)] is negative for daily time scales at both stations, suggesting
that WL load > DL load. For monthly and annual, the median difference is closer to zero.

Table 1 shows the significance of the differences and the multiplicative retransformed
magnitude-of-difference (δ). Differences were computed on a natural log scale and hence are
multiplicative, not additive. A statistically significant δ is observed for all parameters on a
daily time scale, except for TN at PR01. At the monthly timescale, δ for TP and TSS at PR01
are significant. At the annual timescale, δ for TN at PR01 and TSS at ST30 were found to be
significantly different from zero.

Table 2 shows the slopes for the flow-independent concentration trendline. None of the
slopes for the trendline for annual data by either method was found to be significantly different
from zero. Significant trends were observed from monthly and daily flow-independent data,
except for TN at PR01 on a monthly timescale. Significance and the direction of the trendline,
represented by the sign of the slope, computed by data from both methods were similar for all
time scales and parameters. The magnitude of slopes calculated varied widely for TSS but was
largely similar (within the 95% confidence bound) for TN and TP.
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Analysis of the difference in the methods after flow partitioning (high, medium, and low)
suggests that these differences seem to vary with the flow partition, although no pattern is
evident. As was observed in Figs. 3 and 4, the difference in prediction of TN is less than TP

Fig. 3 Load flux and the log differences observed at ST30. The vertical boxplots show the log-transformed flux
in Kg/day, and the horizontal boxplots show the difference (Δ) computed as ln(DL)-ln(WL)
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and TSS for all computed scenarios. With DL as the reference, WL seems to under-predict
loads for all three parameters on an annual timescale at ST30 during low flows; the WL
prediction at other times are more closely aligned with DL. At PR01, on annual timescales for

Fig. 4 Load flux and the log difference observed at PR01. The vertical boxplots show log-transformed flux
computed in Kg/day, and the horizontal boxplots show the difference (Δ) computed as ln(DL)-ln(WL)
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TP and TSS, there is wide under-prediction and over-prediction by WL at Low and High
flows, respectively. TN at PR01 on annual timescale seems to be invariant to the flow
partitions.

5 Discussion

In natural systems, it is reasonable to expect that larger/sudden variations in concentration and
flows will occur during storm events. The sampling method used for DL captures all storm
event loads and is likely to yield more representative or true loads. Thus, all load bias
discussion here is referenced to DL.

Table 1 The statistical significance of the difference between the two methods of flux computation and the
magnitude of difference. Note that the sample size for annual, monthly, and daily comparison are 15, 180 (15 ×
12), and 5477, respectively

PR01 ST30

TN TP TSS TN TP TSS

p-values for matched-pair Sign-Rank test
Annual 0.004* 0.229 0.188 0.421 0.188 0.048*
Monthly 0.159 < 0.001* 0.002* 0.563 0.492 0.832
Daily 0.190 < 0.001* < 0.001* < 0.001* < 0.001* < 0.001*

Multiplicative magnitude of difference δ (DL =WL × δ)
Annual 0.9* 0.9 0.9 1 1.1 1.4*
Monthly 1 0.9* 0.9* 1 1 1
Daily 1 0.8* 0.7* 0.9* 0.8* 0.7*

Percent difference (100 × [WL-DL]/DL) **
Annual 11* 11 11 0 -9 −29*
Monthly 0 11* 11* 0 0 0
Daily 0 25* 43* 11* 25* 43*

Bold * values are statistically significant difference at α= 0.05

**% difference computed as 100 × (WL-DL)/DL= 100× (1- δ)/ δ

Table 2 Slopes (changes in mg/L per year) of the trend line along with the 95% confidence bound. Note that a
negative slope shows a decline of the parameter and a positive slope an increase. The magnitude of the slope
represents the average change over the study period for the parameter of interest

PR01 ST30

DL WL DL WL

Annual TN −0.02 (−0.04,0.01) −0.03 (−0.04,0.01) 0.00 (−0.02,0.02) 0.01 (−0.00,0.01)
TP −0.001 (−0.005,0.004) −0.001 (−0.006,0.007) 0.000 (−0.003,0.003) 0.002 (−0.000,0.003)
TSS −0.6 (−3.1,1.7) −1.0 (−4.3,3.4) 0.5 (−1.4,2.9) 1.7 (−0.7,4.0)

Monthly TN −0.01 (−0.03,0.00) −0.01 (−0.02,0.00) 0.02*(0.01,0.03) 0.02*(0.01,0.02)
TP 0.002*(0.000,0.004) 0.002*(0.001,0.004) 0.002*(0.001,0.003) 0.002*(0.001,0.003)
TSS 0.7*(0.0,1.5) 0.9*(0.3,1.7) 0.6*(0.2,1.1) 0.5*(0.3,0.8)

Daily TN −0.01*(−0.02,−0.01) -0.01*(−0.01,-0.01) 0.03*(0.02,0.03) 0.02*(0.02,0.02)
TP 0.002*(0.002,0.002) 0.002*(0.001,0.002) 0.001*(0.001,0.002) 0.002*(0.002,0.002)
TSS 0.4*(0.3,0.4) 0.5*(0.4,0.6) 0.1*(0.1,0.1) 0.2*(0.2,0.2)

Bold * values are statistically significant difference at α= 0.05
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The performance of the modified-calendar based sampling regime represented by WL for
PR01 seems to be good (r2 > 0.6). The low r2 for TP and TSS at ST30 does question the
applicability of a modified calendar-based sampling load computation for ST30. ST30 with
shorter flow events (less than a day) associated with storms may be classified as a small
watershed. For small watersheds, a model based on daily flows may not capture all variations.
It is important to recognize that loads are a product of flow and concentration and much higher
flow values (measured more reliably) may mask this poor performance of the modified
calendar-based sampling. Increasing the load averaging timescale from daily to monthly or
annually may also improve performance.

The values of δ close to 1 for both ST30 and PR01 on annual and monthly periods
(Table 1), except for TSS at ST30 on annual time averaging scale, suggest a lack of any
systematic bias in the load computation with WL when compared to DL as the reference. For
TSS at ST30 on an annual timescale, WL overestimates loads by about 29% over the study
period. On daily timescales, however, evidence of systematic bias exists: 5 out of 6 observa-
tions being statistically significant, and 4 out of 6 showing more than a 10% difference. Some
uncertainty is expected in sample collection and wet chemistry testing of various constituents.
For a small watersheds Harmel et al. (2006) have quantified the “typical-minimum” net
uncertainty for TN, TP, and TSS load measurement to be in the order of 11%, 8%, and 7%,
respectively, and this can serve as a good reference for evaluating the bias in the loads
estimated by WL (typical maximums are defined as 70%, 110%, 53%, and typical averages
as 29, 30%, 18%). Using typical-minimum, a conservative assumption, most of the long-term
loads on annual and monthly timescales are within the limits of expected errors in DL
(Table 2). Daily loads are generally more variable and outside the typical minimum values.

Flow-independent trends produced by the two methods are similar in direction and
statistical significance. The magnitude of the trend slopes are similar (not exactly the same,
but within the confidence bounds) except for TSS at ST30. The observation of low overall δ
and similar trends indicate that for long-term planning, where variation in one period is not
very important, modified calendar-based sampling may be a good substitute for both the large
PR01 and the small ST30 watersheds. The statistical formulation used for computing WL also
allows for direct computation of a flow-normalized trend (different from flow-independent
trends discussed here) that may make the method more attractive for long-term trend analysis.

The WL method may not represent reality in cases where variations in each time period
may be important, such as calibrating water quality models at a daily time-step for source
allocation of loads. Regression methods and WRTDS have been used in the Chesapeake Bay
watershed to calibrate parts of the Bay Model (Easton et al. 2017). For a watershed model
calibrated with WL at a daily time step, it is reasonable to expect that the model will try to
account for the wide daily discrepancy (from DL) which will result in inadequate system
representation with the parameters adjusted to match the WL. The performance of WRTDS for
smaller ST30 watershed (low r2 for 2 out of 3 parameters) strongly suggests that WRTDS
should be avoided for smaller watersheds. Hirsch and De Cicco (2015) have suggested that
WRTDS with a daily time step may not be appropriate for small flashy watersheds, defined as
“where discharge at the stream gage commonly changes by an order of magnitude or more
within a given day.”

As discussed in the introduction, strategic sampling during wet or dry weather has been
suggested to improve the performance of regression methods. Our results based on flow
partition suggest that it is not easy to determine when to sample more (flows where load
computation errors are frequent). In the two watersheds studied, the difference between WL

Kumar S. et al.4314



and DL varied with the parameter, flow, and station in a manner such that no discernable
correlation could be observed. It is important to note that the number of samples per year to
drive the WRTDS, on average 43 for ST30 and 52 for PR01, in this study is high for a typical
resource-constrained watershed monitoring program. Even for the extensively monitored nine
large rivers in the Chesapeake Bay watershed, less than an average of 20 samples per year are
collected, with huge variation among parameters. WRTDS protocol recommends at least 20
samples (12 calendars and 8 stormflow). The number of samples collected per year from 1985
to 2010 for some rivers are as low as 6 for suspended sediments and as high as 41 for TN and
TP at the Potomac River (Moyer et al. 2012). No attempt has been made in this study to assess
the impact of the reduction in samples. With a reduction in samples, the results of this study
may not hold and likely will be worse for regression-based methods. Shorter-term parallel
sampling, sampling intensively with EMC for all storms and grab samples for some storms that
will allow computation of both WL and DL, as suggested by Kumar et al. (2013), may be used
to identify and correct the systematic biases in regression-based methods.

The choice of sampling method is often based on available resources. From an economic
perspective, the costs associated with the construction and upkeep of nonpoint BMPs may be
used as a surrogate for the benefits obtained from the investment in sampling. In a watershed
where low-cost nonpoint BMP options such as street sweeping are used, extensive sampling
needed to estimate DL may not be necessary. As the costs of control measures per pound of
pollutant controlled rise, investment in extensive sampling becomes more feasible either to
control cost if the regression methods are overpredicting or to confirm the loads and ensure
attainment of load targets. Even the slight statistically significant over-prediction by the
WRTDS method for TN at PR01 on an annual timescale (δ = 0.9) may predict 2400 Kg/day
to be remediated. In a typical TMDL allocation scenario, this load would be distributed among
point and non-point sources. Given that the median urban stormwater TN remediation cost is
about 3160 $/Kg (James River Watershed), even a fraction of the 2400 Kg/day that may be
assigned to the urban region will result in an extremely high excess cost, in the order of
millions of dollars per day.

Without analysis such as the one presented in the study, there is no good way to understand
the biases in loads predicted by modified calendar-based sampling, and the cost of remediation
if WL overpredict is very high. It may be argued that from a policymaker’s perspective there is
no scenario where modified calendar-based sampling should be used without intensive
sampling comparison. In cases where WL loads are underpredicted, the situation may lead
to non-attainment of designated use: not a desirable and often expensive option. Nevertheless,
a simple framework for decision making (Fig. 5) on whether or not to use modified calendar-
based sampling may rely on the performance of the regression equation, type of control
measures available, and the estimated bias in the use of the regression equation. If the
performance of the regression equation is ‘acceptable’ and ‘inexpensive’ control measures
are available, the application of WL may be justified. The ‘acceptable’ measure can be based
on literature (e.g., r2 > 0.6). ‘Inexpensive’ control measures are more subjective and may
depend on the location being analyzed. If either of these conditions is not met, a rigorous
sampling regime of ‘parallel sampling’ may be undertaken, where sampling will allow for the
computation of both DL and WL. Kumar et al. (2013) have estimated that 12–72 months
parallel sampling may be required for computing an accurate estimate of the load based on the
parameter and size of the watershed. Finally, based on bias estimation and comparison with
typical errors expected in load computation, a decision on whether to use modified calendar-
based sampling may be made. This framework can be applied for any new or existing
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monitoring program. Especially where non-point control measures may be required in the
short-term. The strength of this framework is the simplicity and ability to assess the bias
objectively. However, the framework may often recommend parallel sampling that may require
monitoring for years before a long-term method may be employed.

6 Conclusion

In this study, for the watersheds analyzed, a statistical lack of similarity between the loads
computed by modified calendar-based sampling and the loads computed via extensive sam-
pling could be shown at the annual and monthly timescales for 4 comparisons: PR01 (TN
annual, TP and TSS monthly), and ST30 (TSS annual). There is not enough evidence to reject
similarity for eight other scenarios: PR01 (TN monthly, TP and TSS annual), and ST30 (TN
and TP monthly and annual, and TSS monthly). Thus, if the goal of a monitoring program is
estimating long-term annual mean loadings that may be used for TMDL (or similar) allocation
scenario either DL or WL may work for some parameters. For the daily loads, 5 out of 6
comparisons show a difference, with TN at PR01 being the exception. Thus, for a goal of
estimating short-term daily loading that may be used for calibrating water quality model and
captures storm loads WL is unlikely to provide reliable estimates. Overall, these results
indicate that there may be an agreement between loads computed by WL and DL for exactly
50% of all cases (9 out of 18).

The flow-independent trends showed a better correlation compared to fluvial loads, with
similar magnitudes for all statistically significant slopes and the same direction of the trend at
the two stations for all three averaging times. Thus if the goal for the monitoring program is to
estimate long-term trends useful for assessing progress towards achieving long-term targets
either WL or DL may be used.

Develop “parallel sampling” 
regime and assess calendar-

based sampling method 
performance on loads

Are only 
“expensive-to-

control” 
measures 
available?

Are the r2 values 
acceptable for the 

model? 
Acceptable  r2 > 0.6   

Is there a 
substan�al bias
at the �me scale 

of interest?

Models that use 
calendar-based sampling 

data may apply

Avoid calendar-based 
sampling to compute loads

Yes

No
Yes

Yes

No

No

Fig. 5 A simple decision-making framework to assess the applicability of the models that use modified calendar-
based sampling data
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Given that the remediations often needed to control the non-point loads are very expensive,
we have argued that parallel sampling, which allows for load computation by both DL and
WL, should be conducted for some period. Using a modified calendar-based sampling method
directly without that information may not be advisable. Some degree of parallel sampling will
allow watershed managers to perform comparisons like the one presented in this paper and
assess periodic and long-term bias. In the absence of any prior information, an exhaustive
sampling method to enable the framework discussed should be employed.
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