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Abstract
Multi-objective long-term generation scheduling (MLGS) considering ecological flow demands is
important for comprehensive utilization of water resources in cascade hydropower system (CHS). A
novel adaptive multi-objective particle swarm optimization based on decomposition and dominance
(D2AMOPSO) is developed in this paper to solve the MLGS problem. In D2AMOPSO, a constraint
handling method based on repair strategy and individualconstraints and group constraints (ICGC)
technique is embedded to address various constraints.An improved logisticmap is adopted to initialize
the population. During the evolutionary process, an improved Tchebycheff decomposition is intro-
duced to select personal best and global best for each particle, and the non-dominated solutions found
so far are stored in an external archive where crowding distance and elitist learning strategy are
performed to improve its diversity. Meanwhile, an adaptive flight parameter adjustment mechanism
based on Pareto entropy is adopted to balance the global exploration and local exploitation abilities of
the population. A normal cloud mutation operator is used to keep the population diversity and escape
local minima. In the case study of the Three Gorges Cascade hydropower system (TGC) under three
typical years, the results of the proposed method and other four competitors show that D2AMOPSO
can obtain better diversity and faster convergence solutions for the MLGS problem in less time.

Keywords Multi-objective long-term generation scheduling . Ecological flow. Cascade
hydropower system . Particle swarm optimization . Constraint handlingmethod

1 Introduction

As one of the most critical clean energy resources, hydropower has been developed on a large
scale to meet the power demands of the economy in China. Long-term generation scheduling
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(LGS) is important for improving the development efficiency of hydropower after building
many cascade hydropower systems (CHSs) (Lior 2010; Zhang et al. 2014). In the last two
decades, numerous studies have been conducted with an emphasis on maximum annual
hydropower generation, which is important in a CHS (Wang et al. 2015; Yoo 2009; Liao
et al. 2017). However, these conventional scheduling results tend to release less water to raise
the water levels and hydraulic heads of CHS during dry season (Niu et al. 2018), which may
damage the downstream river ecosystem. Hence, multi-objective long-term generation sched-
uling (MLGS) has been developed to schedule CHS with considering ecological flow demands
(Zhang et al. 2013), which is classified as a multi-objective optimization problem (MOP) due
to the addition of the ecological objective. MLGS aims to increase the annual hydropower
generation of a CHS while meeting its ecological flow demands of the downstream river
ecosystem as much as possible (Zhang et al. 2019). Meanwhile, when solving a MLGS
problem, many complex constraints must be taken into account. These complex constraints
and the conflicting objectives of annual hydropower generation and ecological flow demands
make MLGS problems difficult to solve (Al-Aqeeli et al. 2016; Feng et al. 2018; Li et al.
2015b). Therefore, this paper focuses on the MLGS problem of a CHS in which maximum
annual hydropower generation and minimum annual ecological underflow and overflow water
volume are considered simultaneously when satisfying a set of complex constraints.

Solving the MLGS problem aims to provide a set of optimal solutions as diverse and
convergent as possible to represent its true Pareto front instead of one optimal solution
(Hakimi-Asiabar et al. 2010). Various optimization methods have been applied by a number
of researchers, and these methods can be roughly classified into two categories: single-
objective and multi-objective methods. In the first group, MLGS is transformed into a
single-objective optimization problem (SOP), which is easier to solve by single-objective
methods (Feng et al. 2017). This kind of transfer approach, including the constraint method
(Bai et al. 2015), weighting method (Kamodkar and Regulwar 2014) and ideal point method
(Zhou et al. 2015), is simple but not effective and efficient. This kind of approach may
diminish the solution space and not provide enough useful information on the Pareto
optimal front (PF) with one run. Therefore, an increasing number of studies have investi-
gated the performance of the methods in the second group, which are mainly multi-objective
evolutionary algorithms (MOEAs). Compared with single-objective optimization methods
that provide one optimal solution, MOEAs can optimize the competing objectives simulta-
neously and then provide a set of Pareto optimal solutions (PSs) with a single run. Many
MOEAs, such as non-dominated sorting genetic algorithm II (NSGA-II) (Zhou et al. 2018),
multi-objective particle swarm optimization (MOPSO) (Liao et al. 2017; Niu et al. 2018;
Feng et al. 2017), multi-objective differential evolution (MODE) (Zhang et al. 2013;
Schardong et al. 2012), multi-objective cultural algorithm (MOCA) (Zhang et al. 2012),
multi-objective shuffled frog leaping algorithm (MOSFLA) (Li et al. 2010), multi-objective
immune algorithm (MOIA) (Luo et al. 2015), multi-objective evolutionary algorithm based
on decomposition (MOEA/D) (Zhang et al. 2016) and multi-objective gravitational search
algorithm (MOGSA) (Li et al. 2015a), have been widely proposed to solveMLGS problems
with great success. However, work is still needed to overcome the decrease in population
diversity and the imbalance between global exploration and local exploitation during the
evolutionary process, which will result in prematurely converging to the local Pareto front
and require much time to converge to the global Pareto front (Feng et al. 2017; Zheng et al.
2016). In other words, it is essential to develop new efficient MOEAs to precisely solve
MLGS problems.
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Particle swarm optimization (PSO) was first proposed by Eberhart and Kennedy
(1995). As a bioinspired technique, PSO draws inspiration from the social behaviors of
bird flocking or fish schooling, and it has become one of the most efficient optimization
techniques. Therefore, MOPSO has been heavily researched and applied to many MOPs
and has shown very good results (Liao et al. 2017; Niu et al. 2018; Feng et al. 2017;
Reddy and Kumar 2007). When extending PSO to solve MOPs, dominance-based and
decomposition-based approaches are two widely used ways to determine the utility of
each particle. Dominance-based MOPSOs, such as MOPSO (Coello and Lechuga 2002)
and TV-MOPSO (Tripathi et al. 2007), perform well in convergence but need additional
techniques to overcome the loss of population diversity (Fonseca and Fleming 1993;
Laumanns et al. 2002), and decomposition-based MOPSOs, such as MOPSO/D (Peng
and Zhang 2008) and dMOPSO (Martínez and Coello 2011), have a lower computation
complexity but might fail to obtain uniformly distributed PSs (Li et al. 2015c). Mean-
while, hybrid approaches that combine dominance and decomposition have been reported
by Al Moubayed et al. (2014) and can use the advantages of each method to develop a
better MOPSO. At the same time, to design an efficient MOPSO for MOPs, various
novel techniques can be adopted to improve its performance. For instance, a time varying
flight parameter mechanism was proposed to update the inertia weight and acceleration
coefficients in Tripathi et al. (2007). The results show that the MOPSO with these
adaptive flight parameters can balance the diversity and convergence of non-dominated
solutions efficiently. Reddy and Kumar (2007) developed a hybrid algorithm by incor-
porating an efficient elitist-mutation operator into MOPSO (EM-MOPSO) to solve the
problem of premature convergence to the local (PF). Feng et al. (2017) presented a
MOPSO to solve cascaded hydropower system operation problem. In this MOPSO,
logistic map is used to increase the diversity of the initial population. In Han et al.
(2017), the population spacing information was proposed to obtain the distribution of
particles. An adaptive flight parameter mechanism using this information was imple-
mented to develop a MOPSO with suitable global exploration and local exploitation
abilities which have been demonstrated in the results. However, all those MOPSOs are
developed by incorporating one or several of the above-mentioned improvements in PSO
independently, which may restrict them to achieve a better possible performance. Few
studies have investigated the performance of a MOPSO which is developed by combin-
ing various improvements together. Whether such an algorithm can obtain better solu-
tions for the MLGS problem should be validated in practice.

Motivated by the above analysis, this paper develops a novel adaptive MOPSO based on
decomposition and dominance (D2AMOPSO) using multiple methods: chaotic initialization,
normal cloud mutation (Wu et al. 2008), dominance-based external archive update,
decomposition-based personal best and global best selection and adaptive flight parameter
adjustment mechanism. In D2AMOPSO, the personal best and global best are selected based
on an improved Tchebycheff approach where the geometric properties of sub-problem objec-
tive functions (Ma et al. 2018) and the impacts of different measurement units and value ranges
of objective functions are considered. By using the concept of Pareto dominance, the non-
dominated solutions are collected in an external archive where crowding distance (Sierra and
Coello 2005) and elitist learning strategy (ELS) (Zhan et al. 2009) are performed to emphasize
its diversity. The inertia weight and acceleration coefficients are adaptively controlled by an
adjustment mechanism based on the Pareto entropy (Hu and Yen 2015). Moreover, a normal
cloud mutation operator is adopted to keep the population diversity and escape local minima
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for D2AMOPSO. Finally, with the initial population obtained by chaotic initialization, the
proposed D2AMOPSO algorithm is applied to address the MLGS problems of the Three
Gorges Cascade hydropower system (TGC) in three typical years, where the repair strategy
and individual constraints and group constraints (ICGC) technique (Li et al. 2015a) are used to
handle their constraints.

The rest of this paper is organized as follows: In Section 2, the formulation of a MLGS
problem is presented. In Section 3, an overview of PSO is given. In Section 4, the implemen-
tation of the proposed method for MLGS is described in detail. In Section 5, a case study is
developed. In Section 6, the conclusion is given, followed by the acknowledgment.

2 Problem Formulation

2.1 Nomenclature

f1, f2 Annual hydropower generation and ecological underflow and overflow water volume objectives
of a CHS during the whole scheduling period.

t Index of the scheduling period.
Δt Length of scheduling period t.
T Total number of scheduling periods.
n Index of the reservoir.
N Total number of reservoirs.
Kn Power output coefficient of reservoir n.
Hn, t Hydraulic head of reservoir n at period t.
Zdown
n;t Average tail water level of reservoir n at period t.

Pn, t Power output of reservoir n at period t.
Pmin
n;t , P

max
n;t Lower and upper output bounds of reservoir n at period t.

Vn, t, Vn, t + 1 Initial and final storage volumes of reservoirn at period t.
QI

n;t , Q
O
n;t Inflow and outflow of reservoir n at period t.

QP
n;t , Q

S
n;t Power discharge rate and spillage rate of reservoir n at period t.

QO;min
n;t ,

QO;max
n;t

Minimum and maximum water outflow rates of reservoir n at period t.

Qeco
n;t
, Q

eco
n;t

Lower and upper ecological flow demands of reservoir n at period t.

Zn, t, Zn, t + 1 Initial and final water levels of reservoir n at period t.
Zmax
n;t , Z

min
n;t Upper and lower initial water level limits of reservoir n at period t.

Zn, 1, Zn, T + 1 Initial and terminal water levels of reservoir n.
Zbegin
n ,Zend

n Initial and terminal water level limits of reservoir n.
vn(⋅) Storage-capacity curve of reservoir n.
zn(⋅) Function between the tail water level and outflow of reservoir n.
qn(⋅) Function between the water level and maximum outflow of reservoir n.

2.2 Objective Functions

In this paper, the maximum annual hydropower generation objective aims to utilize the
availability of water resources while the minimum annual ecological underflow and overflow
water volume is used as the ecological objective function to protect the downstream river
ecosystem health when operating a CHS (Zhang et al. 2013). These objective functions can be
written as follows:
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f 1 ¼ max ∑
T

t¼1
∑
N

n¼1
KnQP

n;tHn;tΔt ¼ max ∑
T

t¼1
∑
N

n¼1
Pn;tΔt ð1Þ

f 2 ¼ min ∑
T

t¼1
∑
N

n¼1
max 0;QO

n;t−Q
eco

n;t

� �
þmax

�
0;Q

eco

n;t
−QO

n;t

�h i
Δt ð2Þ

2.3 Constraints

The following are various equality and inequality constraints that should be satisfied while
solving the MLGS problem.

(1) Reservoir water balance equation:

Vn;tþ1 ¼ Vn;t þ QI
n;t−Q

O
n;t

� �
Δt t ¼ 1; 2;…; T ; n ¼ 1; 2;…;N ð3Þ

(2) Reservoir storage conversion:

Vn;t ¼ vn Zn;t
� �

t ¼ 1; 2;…; T þ 1; n ¼ 1; 2;…;N ð4Þ
(3) Reservoir water head:

Zdown
n;t ¼ zn QO

n;t

� �
t ¼ 1; 2;…; T ; n ¼ 1; 2;…;N ð5Þ

Hn;t ¼ v−1n Vn;t þ Vn;tþ1

� �
=2

� �
−Zdown

n;t t ¼ 1; 2;…; T ; n ¼ 1; 2;…;N ð6Þ

(5) Reservoir water level constraints:

Zmin
n;t ≤Zn;t ≤Zmax

n;t t ¼ 1; 2;…; T þ 1; n ¼ 1; 2;…;N ð7Þ

Zn;1 ¼ Zbegin
n n ¼ 1; 2;…;N ð8Þ

Zn;Tþ1 ¼ Zend
n n ¼ 1; 2;…;N ð9Þ

(6) Reservoir power output constraints:

Pn;t ¼ KnQP
n;tHn;t t ¼ 1; 2;…; T ; n ¼ 1; 2;…;N ð10Þ

Pmin
n;t ≤Pn;t ≤Pmax

n;t t ¼ 1; 2;…; T ; n ¼ 1; 2;…;N ð11Þ
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(7) Reservoir outflow constraints:

QO
n;t ¼ QP

n;t þ QS
n;t t ¼ 1; 2;…; T ; n ¼ 1; 2;…;N ð12Þ

QO;min
n;t ≤QO

n;t ≤Q
O;max
n;t t ¼ 1; 2;…; T ; n ¼ 1; 2;…;N ð13Þ

QO;max
n;t ¼ qn v−1n Vn;t þ Vn;tþ1

� �
=2

� �� 	
t ¼ 1; 2;…; T ; n ¼ 1; 2;…;N ð14Þ

3 Particle Swarm Optimization

PSO is a stochastic population-based optimization algorithm where each solution within the
decision space represents a particle position in the search web (Eberhart and Kennedy 1995).
Two vectors are associated with each particle, namely, position and velocity. Updating each
particle’s position and velocity with the information of its personal best and global best is the
significant characteristic of PSO, which makes PSO have a better global search. In PSO, each
particle of the swarm updates its position vector and velocity vector according to the following
formulas:

vkþ1
i;d ¼ wkvki;d þ ck1r1 pbestki;d−x

k
i;d

� �
þ ck2r2 gbestki;d−x

k
i;d

� �
ð15Þ

xkþ1
i;d ¼ xki;d þ vkþ1

i;d ð16Þ
where d = 1, 2, …, D and D is the dimension of the decision space; i = 1, 2, …, NS, and NS is
the size of the swarm; xkþ1

i ¼ xkþ1
i;1 ; xkþ1

i;2 ;…; xkþ1
i;D

h i
and xki ¼ xki;1; x

k
i;2;…; xki;D

h i
are the

position vectors of particle i at iterations k + 1 and k, respectively; vkþ1
i ¼

vkþ1
i;1 ; vkþ1

i;2 ;…; vkþ1
i;D

h i
and vki ¼ vki;1; v

k
i;2;…; vki;D

h i
are the velocity vectors of particle i at

iterations k + 1 and k, respectively;pbestki ¼ pbestki;1; pbest
k
i;2;…; pbestki;D

h i
and gbestki ¼

gbestki;1; gbest
k
i;2;…; gbestki;D

h i
are the personal best and global best, respectively, of particle

i at iteration k; r1 and r2 are two random numbers in range [0, 1]; wk is the inertia weight at
iteration k; and ck1 and ck2 are two acceleration coefficients at iteration k.

4 Implementation of the D2AMOPSO Algorithm for MLGS

4.1 Constraint Handling Method

There are two kinds of constraints that should be taken into account in a MLGS problem:
equality and inequality constraints. Equality constraints are forced to be satisfied when
calculating the objective function values of solutions. Because water levels are used as
decision variables in this paper, the following repair strategy can be used to effectively handle
the reservoir water level constraints when some decision variables are outside the lower and
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upper water level limits.

xki;d ¼
xmax
d if xmax

d < xki;d
xki;d if xmin

d < xki;d ≤x
max
d

xmin
d if xki;d ≤x

min
d

8><
>: i ¼ 1; 2;…;NS ; d ¼ 1; 2;…;D ð17Þ

where xki;d is the dth variable of solution i; x
min
d and xmax

d are the lower and upper bounds of the

dth variable.
For the reservoir power output and outflow constraints, the ICGC technique (Li et al.

2015a) is adopted. In this paper, the ICGC technique is coupled with dynamic maximum
outflow capacity where the maximum outflow capacity is not a predetermined value but
changes with water level during each scheduling period. This method is more practical and
effective in diminishing the search space and alleviating the influence of infeasible search
space on the quality of solutions. Assume that reservoir n runs on minimum and maximum
outflow capacities respectively for each scheduling period from the first interval to the t ‐ 1th
interval; then, by using a positive sequence, calculate the positive maximum and minimum

storage limits according to Eq. (18) with Vpos;max
n;1 =Vpos;min

n;1 =vn Zbegin
n

� �
. Meanwhile, by using a

negative sequence with the same assumption for each scheduling period from the tth interval to
the last interval, the negative maximum and minimum storage limits are determined by Eq.

(18) with Vneg;max
n;Tþ1 =Vneg;min

n;Tþ1 =vn Zend
n

� �
.

Vpos;max
n;t ¼ Vpos;max

n;1 þ ∑
t−1

i¼1
QI

n;i−Q
O;min
n;i

� �
Δt

n o
Vpos;min
n;t ¼ Vpos;min

n;1 þ ∑
t−1

i¼1
QI

n;i−Q
O;max
n;i

� �
Δt

n o
Vneg;max
n;t ¼ Vneg;max

n;Tþ1 − ∑
T

i¼t
QI

n;i−Q
O;min
n;i

� �
Δt

n o
Vneg;min
n;t ¼ Vneg;min

n;Tþ1 − ∑
T

i¼t
QI

n;i−Q
O;max
n;i

� �
Δt

n o

8>>>>>>>>>><
>>>>>>>>>>:

t ¼ 2; 3;…; T ð18Þ

Next, the feasible space can be obtained by combining these positive and negative boundaries
with the reservoir water level constraints according to the following formula.

Zmax
n;t ¼ min v−1n Vpos;max

n;t

� �
; v−1n Vneg;max

n;t

� �
; Zmax

n;t

n o
Zmin
n;t ¼ max v−1n Vpos;min

n;t

� �
; v−1n Vneg;min

n;t

� �
; Zmin

n;t

n o
8<
: ð19Þ

Note that the repair strategy and ICGC technique will work together for each solution with the
amended reservoir water level limits by Eq. (19). For each scheduling period, if the reservoir
outflow violates its upper or lower bounds, then it is repaired to the nearest boundary. Finally,
the reservoir water balance equation and reservoir storage conversion are used to obtain the
repaired final water level. Similarly, the reservoir power output constraints can also be
addressed by the above procedure.

4.2 Initial Population Generation

Compared with a randomized search, the coarse-grained global search by chaotic ergodicity
has the best potential to improve the quality and diversity of the initial population (Han et al.
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2017). An improved logistic map (He et al. 2013) is used to produce the chaotic sequence,
which can be formulated by the following formula:

uiþ1 ¼ 1−r⋅ uið Þ2; 0 < r≤2; ui∈ −1; 1ð Þ; i ¼ 1; 2;… ð20Þ

where r is a control parameter. As in He et al. (2013), r is equal to 2 in this paper. After
producing the chaotic sequences, the following formula is used to map chaotic variables to
variable space of optimization.

x1i;d ¼ xmin
d þ xmax

d −xmin
d

� �
⋅ ui;d þ 1
� �

=2; d ¼ 1; 2;…;D ð21Þ

Thus, a set of solutions with the following solution structure can be obtained:

X k ¼
Zk
1;1 Zk

1;2 ⋯ Zk
1;D

Zk
2;1 Zk

2;2 ⋯ Zk
2;D

⋮ ⋮ ⋯ ⋮
Zk
NS ;1

Zk
NS ;2

⋯ Zk
NS ;D

2
664

3
775 ð22Þ

4.3 Improved Tchebycheff Approach

An improved Tchebycheff approach with an l2-norm constraint on direction vectors is used to
decompose the MLGS problem. In this method, the sub-problems have more uniform update
region, the sub-problem objective functions have more favorable geometric property (which is
in terms of Euclidean distance) and the impacts of different measurement units and variation
ranges is eliminated by standardization (Ma et al. 2018). The improved Tchebycheff approach
is as follows:

minimize g2−ITch F xki
� �jλi; z*

� � ¼ max
1≤ j≤NO

1

λi; j
⋅

f j x
k
i

� �
−z*j

zworstj −zbestj þ ε

( )
subject to xki ∈Ω

(
i

¼ 1; 2;…;NS

ð23Þ
where λi= λi;1;λi;2;…;λi;NO

� �
with ‖λi‖2=1 and λi;1;λi;2;…;λi;NO>0 is a direction vector; NO

is the number of objectives; ε=0.00001 is a small positive number; and zbestj and zworstj are the

best and worst values of the jth objective function, respectively. In the MLGS problem, zbestj

and zworstj are the maximum and minimum values, respectively, when the jth objective function

is the maximum annual hydropower generation, whereas zbestj and zworstj are the minimum and

maximum values, respectively, when the jth objective function is the minimum annual

ecological underflow and overflow water volume. z∗= z*1; z
*
2;…; z*NO

� �
is the reference point

with z*j=z
best
j for each j = 1, 2, …, NO.

Meanwhile, the following equation is adopted to generate a uniform distribution of NS

direction vectors which satisfy the l2-norm constraint for the MLGS problem.
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λi ¼ cos θið Þ; sin θið Þ½ �
θi ¼ π

2
⋅
i−1
NS−1

8<
: i ¼ 1; 2;…;NS ð24Þ

4.4 Improved PSO Operator

4.4.1 Global Best and Personal Best Update

The personal best of a particle represents its previous best position. In the initialization,
because there is no previous movement, the personal best of each particle is initialized as its

initial position, i.e., pbest1i =x
1
i for i = 1, 2,…, NS. At each cycle, if the position of the offspring

particle is better than its previous personal best, then the personal best is replaced with the
position of the offspring particle; otherwise, the personal best remains unchanged.

Similar to many other variants of MOPSO, the way in which the global best of each particle
is selected from an external archive that saves the PSs found so far by all particles is used in the
D2AMOPSO algorithm. According to the improved Tchebycheff approach, the solution that
minimizes each sub-problem is selected as its global best. Denote the external archive as A. In
the initialization, all the non-dominated particles are collected into A. During evolution, the
newly generated particle will be added to A if no particle in A can dominate it. Meanwhile, the
dominated particles will be removed from A. Notably, the external archive repair mechanism
based on crowding distance is used to determine which particles should be removed when the
size of A is more than its prefixed maximal size. In addition, the ELS is developed as a
perturbation method here to help A search the potentially better space. Its pseudocode can be
found in Zhan et al. (2009).

4.4.2 Adaptive Flight Parameter Mechanism

Adaptive wk, ck1 and ck2 adjustment is a flexible mechanism to balance exploration and
exploitation in PSO. According to Hu and Yen (2015), the time-varying Pareto entropy
detected in Parallel Cell Coordinate System (PCCS) is used to reflect the evolutionary status,

and the following steps are used to adjust wk, ck1 and ck2.
Step 1: For each l = 1, 2,…, L, the objective vector of the lth PS akl in A is mapped into the

PCCS according to Eq. (25).

I l;m ¼ L
f m akl

� �
− f min

m

f max
m − f min

m

" #
ð25Þ

where L is the current number of solutions in A. [⋅] is a ceiling function. f min
m = min

1≤ l ≤L
f m akl

� �
and f max

m =max
1≤ l ≤L

f m akl
� �

. Il,m is an integer index number transformed from the mth objective of

akl . Specifically, if f m akl
� �

= f min
m , then Il, m is set to one.

Step 2: Entropy and ΔEntropy of A in the PCCS are calculated according to Eq. (26) at
generation k.
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ΔEntropy kð Þ ¼ Entropy kð Þ−Entropy k−1ð Þ
Entropy kð Þ ¼ − ∑

L

l¼1
∑
m¼1

NO Celll;m kð Þ
L⋅NO

log
Celll;m kð Þ
L⋅NO

8<
: ð26Þ

where Celll, m(k) is the number of solutions for which the mth objective is mapped to the cell
located at the lth row and mth column in PCCS.

Step 3: The maximal probable variation in entropy is calculated according to Eq. (27).

δ ¼ −2NO
1

L⋅NO
log

1

L⋅NO
ð27Þ

Step 4: The flight parameters wk, ck1 and ck2 are calculated according to Eqs. (28), (29) and (30),
respectively.

wk ¼
wk−1 if ΔEntropy kð Þ ¼ 0
wk−1 þ 2Stepw 1þ ΔEntropy kð Þj jð Þ if 0 < ΔEntropy kð Þj j < δ
wk−1−Stepw ΔEntropy kð Þj j if ΔEntropy kð Þj j≥δ

8<
: ð28Þ

ck1 ¼
ck−11 if ΔEntropy kð Þ ¼ 0
ck−11 þ 2Stepc1 1þ ΔEntropy kð Þj jð Þ if 0 < ΔEntropy kð Þj j < δ
ck−11 −Stepc1 ΔEntropy kð Þj j if ΔEntropy kð Þj j≥δ

8<
: ð29Þ

ck2 ¼
ck−12 if ΔEntropy kð Þ ¼ 0
ck−12 −2Stepc2 1þ ΔEntropy kð Þj jð Þ if 0 < ΔEntropy kð Þj j < δ
ck−12 þ Stepc2 ΔEntropy kð Þj j if ΔEntropy kð Þj j≥δ

8<
: ð30Þ

where Stepw=(wmax −wmin)/(K − 1), Stepc1= cmax
1 −cmin

1

� �
= K−1ð Þ, and

Stepc2= cmax
2 −cmin

2

� �
= K−1ð Þ. K is the maximum iteration. According to Ratnaweera et al. (2004),

wmax andwmin are set to 0.9 and 0.4, respectively, whereas cmax1 =cmax2 and cmin1 =cmin2 are set to 2.5 and
0.5, respectively. The initial values of wk, ck1 and c

k
2 are set to 0.9, 1.5 and 1.5, respectively.

4.5 Normal Cloud Mutation Operator

Because of its properties of randomness and stable tendency, a normal cloud mutation operator
is integrated into D2AMOPSO to maintain the diversity of solutions (Raquel and Naval 2005).

The eigenvector (Ex, En,He) of cloud model for a randomly selected solution xkþ1
i is

formulated as follows:

Ex ¼ xkþ1
i;d

En ¼ xmax
d −xmin

d



 

=20 ffiffiffiffiffiffiffiffiffiffiffi
k þ 1

p
He ¼ En=10

8<
: ð31Þ

where Ex, En and He are the expectation value, entropy and hyper-entropy, respectively, and d
is the randomly selected dimension. The variable xkþ1

i;d will mutate as follows:

xkþ1
i;d ¼ CloudDrp 1ð Þ if CloudDrp 2ð Þ > rand 0; 1ð Þ

xkþ1
i;d else

�
ð32Þ
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where xkþ1
i;d is the mutated value and rand(0, 1) is a random number between

(0,1).(CloudDrp(1), CloudDrp(2)) is a cloud drop which can be formulated as follows:

CloudDrp 1ð Þ ¼ normrnd Ex;En*; 1; 1
� �

CloudDrp 2ð Þ ¼ exp − CloudDrp 1ð Þ−Exð Þ2=2 En*
� �2h i

En* ¼ normrnd En;He; 1; 1ð Þ

8><
>: ð33Þ

4.6 Outline of D2AMOPSO for MLGS

In this section, the detailed procedure of D2AMOPSO for solving MLGS problem is presented
in Fig. 1.

5 Case Study

5.1 Case Study Description

A case study is conducted to investigate the feasibility and effectiveness of D2AMOPSO for
solving the MLGS problems of the TGC. This hydropower system is located at the end of the
upper reaches of the Yangtze River in China, which consists of the Three Gorges hydropower
project (TGP) and Gezhouba hydropower project (GP). As the largest hydropower station in
the world, the TGP plays a vitally important role in the exploitation and utilization of the
Yangtze River with multiple benefits, including flood control, power generation, navigation
improvement, ecological protection, etc. The GP sits 38 km downstream from the TGP and has
the functions of power generation, improving the navigation channel, etc. In our study, some
basic constraints are set as follows. The lower and upper water level bounds of the TGP in the
flood season (i.e., from June to September) are set to 144.9 m and 146.5 m, respectively.
Meanwhile, the TGP’s water level cannot exceed the normal water level of 175 m during the
non-flood season, and fall below 155 m before the end of April. The initial and terminal water
levels of the TGP are both set to 175 m. The TGP and GP are installed with capacities of
22,500 and 2715 MWand guaranteed power outputs of 4990 and 1040 MW, respectively. The
minimum outflow is 5000 m3/s for both the TGP and GP. These constraints can guarantee that
the TGC is operated to maintain the economy and environment on the premise of satisfying the
basic requirements of flood control and navigation. Since the main function of GP is
hydropower generation, the GP is assumed to operate at 65 m during the whole scheduling
period. The other parameters are set the same as in Zhang et al. (2014).

To clarify the superiority of the proposed method, the optimal results of D2AMOPSO,
dMOPSO (Martínez and Coello 2011), MOEA/D (Zhang and Li 2007) and MOPSO (Coello
and Lechuga 2002) and NSGA-III (Deb and Jain 2014) for the MLGS problems of the TGC
are investigated within three typical years: wet (30%), normal (50%) and dry (70%) years. The
inflows of the TGC in these three typical years are given in Fig. 2 where the whole scheduling
period is divided into 12 time intervals with one month for each interval. For each typical year,
the annual ecological underflow and overflow water volume is calculated by comparing the
outflow of the TGC with maximum and minimum ecological flow demands at the Yichang
(YC) hydrological station, which is located 44 km downstream from the TGP. The details of
these ecological flow demands are also shown in Fig. 2.
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5.2 Parameter Settings

All the algorithms are implemented in MATLAB version 2018b and executed on a PC with a
1.9 GHz CPU and 8 GB RAM for all typical years. A few parameters must be set in this
section because most of the parameters have been controlled adaptively in the sections above.
Based on previous experience and numerous numerical experiments, the population size and

Fig. 1 The flowchart of the D2AMOPSO algorithm for the MLGS problem
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maximum iteration are set to 100 and 1000, respectively, for all implementations to obtain fair
results. The external archive size is set to 100 for both D2AMOPSO and MOPSO while the
neighborhood size is set to 20 for MOEA/D. Note that the dMOPSO algorithm used here
adopts the Tchebycheff approach to decompose the MOPs instead of the penalty boundary
intersection (PBI) method used in Martínez and Coello (2011). The settings for other param-
eters of dMOPSO, MOEA/D, MOPSO and NSGA-III are the same as their corresponding
references. Meanwhile, each method is run in 20 simulations independently to obtain the final
PFs.

5.3 Result and Discussion

In our study, the constraint handling method in Section 4.1 and the population initiali-
zation strategy in Section 4.2 are used for all the algorithms. Figure 3 presents the final
PFs obtained by different algorithms in wet, normal and dry years. Obviously, all the
algorithms provide a set of PSs for each typical year. Meanwhile, in these PFs, the
annual hydropower generation increases while the annual ecological underflow and
overflow water volume increases. This result means that hydropower generation and
ecological protection have a clear competitive relationship because increasing annual
hydropower generation will inevitably increase annual ecological underflow and over-
flow water volume. A visual comparison with other PFs shows that the PF obtained by
D2AMOPSO has better convergence and diversity performance and a broader range of
choices than those obtained by other algorithms in each typical year.

Spacing (SP) (Schott 1995) and hypervolume (HV) (Zitzler et al. 2000) metrics are adopted
to further demonstrate the advantage of D2AMOPSO. Usually, a smaller SP value and a greater

Fig. 2 Inflows and ecological flow demands for three typical years
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HV value represent that the algorithm has a better performance in diversity and convergence,
respectively. The maximum (Max), mean (Mean), minimum (Min) and standard deviation
(Std) values of SP and HV are shown in Table 1 where the bold values refer to the best
minimum SP, maximum HVand minimum standard deviation among those test algorithms in
each typical year. In Table 1, D2AMOPSO can obtain the second smallest SP for wet and
normal years and the smallest SP for dry year, which means that D2AMOPSO is superior to
dMOPSO, MOEA/D and MOPSO but slightly inferior to NSGA-III in terms of SP. Mean-
while, according to the HV values, D2AMOPSO is considered superior to other test algorithms
for all typical years. The SP and HV convergence curves of different algorithms are shown in
Fig. 4 where the first rows show the whole convergence trajectory and the second rows focus
on the detailed convergence processes in iteration 1 to 200. It is clear that D2AMOPSO is the
first to converge to a relatively good level and flatten out at this level for all typical years. The
average execution times are also listed in Table 1. After 20 independent runs, the average
execution times of D2AMOPSO are 215.1 s, 227.4 s and 221.3 s in wet, normal and dry years,
respectively. The computational efficiency of D2AMOPSO is better than that of the other test
algorithms in the normal year and slightly worse than that of MOPSO in the wet year and
MOEA/D in the dry year. From what has been discussed above, the superiority of
D2AMOPSO for solving the MLGS problems of the TGC in three typical years within a
reasonable computational time has been verified.

Figure 3 shows that the available decision spaces are decreasing for both annual hydro-
power generation and ecological underflow and overflow water volume with the reduction in
inflow. To investigate the effectiveness of the constraint handling method and population
initialization strategy, we select three typical schemes (black marks in Fig. 3) from the final PF
obtained by D2AMOPSO in each typical year. The water level, power output and outflow of
the selected schemes are shown in Fig. 5 where the water level of GP is not presented because
it is a fixed value. Note that Schemes 1, 50 and 100 are featured with the maximum annual

Fig. 3 PFs obtained by different algorithms in a wet, b normal and c dry years

Table 1 SP and HV metric values and average execution times of different algorithms in three typical years

Regime Algorithm SP HV Time (s)

Max Mean Min Std Max Mean Min Std

Wet year D2AMOPSO 0.0140 0.0101 0.0089 0.0010 0.8481 0.8446 0.8407 0.0018 215.1
dMOPSO 0.0983 0.0472 0.0181 0.0264 0.9156 0.7430 0.5713 0.0996 375.5
MOEA/D 0.0703 0.0563 0.0287 0.0164 0.8366 0.7802 0.6357 0.0769 336.4
MOPSO 0.0909 0.0203 0.0081 0.0213 0.9775 0.7541 0.4897 0.1265 213.5
NSGA-III 0.0090 0.0081 0.0070 0.0006 0.8505 0.8438 0.8401 0.0023 432.9

Normal year D2AMOPSO 0.0156 0.0102 0.0089 0.0014 0.8050 0.7905 0.7806 0.0084 227.4
dMOPSO 0.0957 0.0374 0.0154 0.0194 0.8198 0.6697 0.5061 0.0790 376.3
MOEA/D 0.0621 0.0543 0.0289 0.0064 0.8155 0.7622 0.7025 0.0214 242.4
MOPSO 0.1276 0.0238 0.0091 0.0326 0.9910 0.7189 0.5207 0.1145 309.6
NSGA-III 0.0096 0.0084 0.0075 0.0006 0.7895 0.7786 0.7694 0.0049 429.5

Dry year D2AMOPSO 0.0138 0.0105 0.0093 0.0011 0.7967 0.7883 0.7852 0.0031 221.3
dMOPSO 0.1221 0.0572 0.0132 0.0375 0.6652 0.5364 0.3864 0.0932 353.7
MOEA/D 0.2000 0.0855 0.0361 0.0607 0.8319 0.6143 0.0001 0.2871 155.4
MOPSO 0.0163 0.0113 0.0087 0.0020 0.7743 0.6147 0.4220 0.1168 422.3
NSGA-III 0.0831 0.0117 0.0062 0.0168 0.7947 0.7584 0.1900 0.1338 429.5

R
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hydropower generation, minimum annual ecological underflow and overflow water volume
and compromise schemes, respectively. Figure 5 shows that the water level, output and
outflow of the TGC in the selected schemes for three typical years are limited to their preset
feasible regions during the whole scheduling period, illustrating that the constraint handling
method and population initialization strategy used in this paper works well. Furthermore,
taking the wet year as an example, the water level trajectories of the TGP in the selected
schemes are similar during the flood season because its water level is fixed to the flood-limited

Fig. 4 SP (left column) and HV (right column) convergence curves of different algorithms in three typical years
during iteration 1 to 1000 (first rows) and 1 to 200 (second rows)
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water level. During the flood season, the outflow and total power output of the TGC in each
selected scheme change with its inflow and may be restrained by its maximum outflow and
power output capacities. An obvious difference between both the TGP water level and outflow
of the selected schemes exists in the non-flood season. Meanwhile, the differences in water
level and outflow also lead to the total power output deviation of the selected schemes in the
same period. During the non-flood season, Schemes 1 and 100 have the highest and lowest
TGP water level, respectively. The outflow of Scheme 1 best fits the ecological flow demands
while the outflow of Scheme 100 shows the most telling difference. In terms of Scheme 50, its
water level, power output and outflow are a compromise of those of Schemes 1 and 100 with
similar change processes. Meanwhile, similar results can be obtained by analyzing the normal
and dry years.

Fig. 5 The detailed information of the selected schemes for wet (first row), normal (second row) and dry (third
row) years
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6 Conclusions

MLGS is a complicated MOP that simultaneously considers annual hydropower generation
and ecological underflow and overflow water volume while satisfying various equality and
inequality constraints. In this paper, D2AMOPSO was proposed to solve the MLGS problem
effectively. The significant characteristics of D2AMOPSO are as follows. A decomposition-
based selection mechanism based on an improved Tchebycheff approach is adopted to update
the personal best and global best for each particle. The non-dominated solutions found so far
are stored in an external archive where crowding distance and ELS are performed to improve
its diversity. A mechanism based on Pareto entropy is introduced for the inertia weight and
acceleration coefficients adjustment to balance the global exploration and local exploitation
abilities. A normal cloud mutation operator is integrated to overcome the loss of population
diversity and escape the local minima. Finally, the D2AMOPSO algorithm was applied to the
MLGS problems of the TGC in three typical years with the proposed constraint handling
method and population initialization strategy. The results show that compared with dMOPSO,
MOEA/D, MOPSO and NSGA-III, D2AMOPSO has a significant advantage in obtaining
more annual hydropower generation and less annual ecological underflow and overflow water
volume schemes within a reasonable computational time. These schemes are closer to the true
Pareto front and more evenly distributed. This paper provides a novel effective alternative to
solving the MLGS problem for CHS but pays a little attention to the modeling of real
ecological problems, such as the impacts of the operation of the TGC on China sturgeon in
the Yangtze River. Further work should use D2AMOPSO to solve the MLGS problem with
considering the impacts of reservoir operation on more detailed ecological problems.
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