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Abstract
Forecasting freshwater lake levels is vital information for water resource management, includ-
ing water supply management, shoreline management, hydropower generation optimization,
and flood management. This study presents a novel application of four advanced artificial
intelligence models namely the Minimax Probability Machine Regression (MPMR), Rele-
vance Vector Machine (RVM), Gaussian Process Regression (GPR) and Extreme Learning
Machine (ELM) for forecasting lake level fluctuation in Lake Huron utilizing historical
datasets. The MPMR is a probabilistic framework that employed Mercer Kernels to achieve
nonlinear regression models. The GPR, which is a probabilistic technique used tractable
Bayesian framework for generalization of multivariate distribution of input samples to vast
dimensional space. The ELM is a capable algorithm-based model for the implementation of
the single-layer feed-forward neural network. The RVM demonstrate depends on the specifi-
cation of the Bayesian method on a linear model with proper preceding that results in
demonstration of sparse. The recommended techniques were tested to evaluate the current
lake water-level trend monthly from the historical datasets at four previous time steps. The
Lake Huron levels from 1918 to 1993 was managed for the training phase, and the rest of data
(from 1994 to 2013) was used for testing. Considering the monthly and annually previous time
steps, six models were introduced and found that the best results are achieved for a model with
(t-1, t-2, t-3, t-12) as input combinations. The results show that all models can forecast the lake
levels precisely. The results of this research study exhibit that the MPMR model (R2 = 0.984;
MAE = 0.035; RMSE = 0.044; ENS = 0.984; DRefined = 0.995; ELM = 0.874) found to be more
precise in lake level forecasting. The MPMR can be utilized as a practical computational tool
on current and future planning with sustainable management of water resource of Lake
Michigan-Huron.
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1 Introduction

Global warming results in many significance changes in the analysis of climatological
variables viz. flow, precipitation, evaporation, temperature and lake water-level (Burns et al.
2007; Hamed 2008; Qin et al. 2010; Shao and Li 2011; Bonakdari et al. 2019). These
alterations result in considerable alters in the temporal and spatial distribution of water
resources. Reservoirs are essential as far as water resources, and have various advantages
consist of utility water demands, providing drinking water, agricultural land irrigation, making
it accessible for tourism by inland conduits transport and making a promenade around it. In
addition, due to the fluctuation of water level, it s adversely affects the road and rail
transportation, settlements, shore-based recreational, plantations according to floods as well
as educational facilities. Lakes intermittently supply vital water for numerous agricultural,
industrial and domestic applications. Then, the lake level forecasting is a hot scientific subject
in drainage canals, lake navigation, tidal irrigation management, and water resource planning.

Lake level is an intricate phenomenon influenced by the natural water swap among the
distinguished lake and its catchments, hence, the water-level reflect climate change inside the
area. Lake water level might cause damage on account of expanded water level in this way, to
get most extreme advantages from them and convey cost down to the lowest level, the
difference in lake water level ought to be known ahead of time and controlled, where vital.
Alterations in water-level fluctuations are sequels of such parameters like evaporation from the
lake surface, a variation of water and air temperature, entering runoffs from the adjacent
catchments, precipitation over lake surface (or its watershed), groundwater change, humidity,
and groundwater change. It would be an essential advance to build up the relationship
between’s the hydrometeorological factors and lake-level variations (Kisi et al. 2012)

Sophisticated methods taking into account those previously stated parameters may on a
fundamental level be developed, but the vulnerability of lake levels to these variables may be
from one territory to another one. Also, the exact estimation of these parameters are frequently
seriousness and with a remarkable measure of vagueness. Moreover, for numerous examina-
tions and practical applications, it is productive to obtained a unitary model which is capable of
simulating and foreseeing lake level alteration formed on exclusively historical datasets. In this
manner, rather than utilizing conventional strategies with many sources of information, they
are desirable that delicate artificial intelligence techniques (Ebtehaj et al. 2019).

Artificial intelligence techniques (AITs) are advantageous in clearing up the connection
between a procedure yield and its information in any case. Recently, the utilization of AITs are
generally utilized as an applicable instrument to solve complex nonlinear phenomena
enveloping water resource management and hydrology (Yaseen et al. 2017a, b; Moeeni
et al. 2017a, b; Ghorbani et al. 2017) and particularly prediction of lake water-level such as
artificial neural network (Altunkaynak 2014; Güldal and Tongal 2010; Kakahaji et al. 2013;
Khatibi et al. 2014; Kisi et al. 2012; Li et al. 2015; Vaheddoost et al. 2016); adaptive neuro
fuzzy inference system (Altunkaynak 2014; Güldal and Tongal 2010; Kisi et al. 2012;
Sanikhani et al. 2015; Shafaei and Kisi 2016); Wavelet transform (Altunkaynak 2014;
Shafaei and Kisi 2016); Genetic programming (Aytek et al. 2014; Sanikhani et al. 2015;
Zaji and Bonakdari 2018; Zaji et al. 2018 & 2019); Support vector machine (Shafaei and Kisi
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2016); dynamic linear models (Kakahaji et al. 2013); Gene expression programming (Kisi
et al. 2012; Khatibi et al. 2014); Firefly algorithm (Kisi et al. 2015) and Decision tree
(Vaheddoost et al. 2016).

The neural network is proficient in solution-finding of complex nonlinear issues which
might be troublesomely explained by classical parametric methodologies. There is numerous
training algorithm for neural networks such as backpropagation, hidden Markov model, and
support vector machine. The main shortcomings of classical neural network are deficient
training time of gradient-based algorithm which is widely employed to train these networks,
iteratively tuned of all parameters of neural networks using aforementioned algorithms, low
generalization ability, overfitting of forecasting, local minima and also incapability to offer
probabilistic forecasting (Azimi et al. 2017; Ebtehaj and Bonakdari 2016; El-Shafie et al.,
2013). Accordingly, alternative AIT that addresses these circumscriptions is required for the
lake water-level forecasting.

The innovation of this research study is to apply four nonlinear AITs, in particular,
Minimax Probability Machine Regression (MPMR), Gaussian Process Regression
(GPR), Extreme Learning Machine (ELM), and Relevance Vector Machine (RVM).
Based on the authors’ knowledge, exception for the first one which is employed for
Urmia lake in Iran (Shiri et al. 2016), the other AIT is not reported in lake level field
and for the first time employed in this study. The ELM method (Huang et al. 2006a)
is a training algorithm for the single-layer feed-forward neural network (SLFFNN)
with fast training with high generalizability performance. This algorithm has three
layers with some N neurons is a hidden layer. The input weights are handled
randomly, while the outputsare estimated analytically.

It should be noted randomly tune of input weights in ELM not only don’t reduce the
probability of the optimum solution but also results in high accurate results which are not
effectively accomplished by utilizing convectional neural network models (Huang et al.
2006b; Huang and Chen 2008; Zeynoddin et al., 2018). The second technique, MPMR
(Strohmann and Grudic, 2002), is a nonlinear probabilistic regression which is employed
convex optimizations and linear discriminant. The MPMR was presented based on the
maximization of the lowest feasibility of the target function to be inside the limits of actual
regression. The MPMR approach is an enhanced adaptation of SVM. In this algorithm, a
regression surface is defined and recognize probability bounds for misclassifying a point
without providing distributional supposition (Deo and Samui 2017). The third techniques,
GPR (Rasmussen and Williams 2006), is a non-parametric powerful probabilistic tool where
observation happens in a continuous space or time.

In this model, varied input distribution of is generalized to absolute-dimensional space
developing the controllable Bayesian system to determine the last distributions. The principal
points of interest of this technique are the capacity of GPs from training the dataset to give
uncertainty approximations and to learn the smoothness and noise variables. The fourth model,
RVM (Tipping 2001) is a machine learning approach and an exceptional instance of a sparse
kernel approach that utilizations Bayesian behavior of a generalized linear framework to
acquire parsimonious solutions. The RVM advantage is that they permit sparse sets of
training datasets and extremely relevant features. Given the common advantages and
disadvantages of the ELM, MPMR, GPR, and RVM approach considered, and there is no
earlier examinations have used these techniques for the forecasting water level variation in the
Lake Huron, a comparison of their efficiency, in essence, utilizing AIT is an innovative part of
this investigation.
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In this research study, the exploration plans to apply four innovative AITs for the
Lake Huron (45.814° N; 84.754° W). The state of the art of these AITs demonstrates
display most recently, and advances in the development of execution, and
investigators are enthusiastic to examine its ability in engineering applications.
These AITs are employed for first one in forecasting of water-level of the Lake
Huron. This study aims to assess the utilization of the minimax probability machine
regression (MPMR), Gaussian process regression (GPR), extreme learning machine
(ELM) and relevance vector machine (RVM) for lake water-level forecasting. There-
fore, 76 years of historical datasets are employed to calibrate each model of AITs and
the 20 years data are utilized to validate the performance of each one. To investigate
the ability of all AITs in lake level prediction, five different models were proposed as
a consequence of statistical studying of lagged effects of monthly and annually
altering models in historical dataset of lake level.

2 Theoretical frameworks

2.1 Extreme Learning Machine (ELM)

Let us consider the following dataset (D).

D ¼ xi; yið ÞNi¼1

n o
where xi ¼ xi1; xi2;…ximð ÞT∈Rm and yi ¼ yi1; yi2;…yinð ÞT∈Rn ð1Þ

For Q hidden nodes, the following equation can be written

f Q x j
� � ¼ ∑

Q

i¼1
αiK wi; bi; x j

� � ¼ y j ð2Þ

where K(wi, bi, xj) is the activation function.
The eq. (2) is rewritten in the following way

H w1;w2;…wQ; b1; b2; ::bQ; x1; x2;…xQ
� � ¼

k w1:x1 þ b1ð Þ::…k wQ:x1 þ bP
� �

…… :
…… :
…… :

k w1:xN þ b1ð Þ::…k wQ:xN þ bQ
� �

2
66664

3
77775 ð3Þ

α ¼
αT
1
:
:
αT
Q

2
664

3
775
Qxm

andY ¼
yT1
:
:
yTQ

2
664

3
775
Nxm

.

where H is the hidden layer output matrix, wi is the weight connects the ith hidden node to
the input nodes, ami is the weight links the ith hidden node to the output nodes and bi is the
threshold value.,.
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The following relation is used for determination of α

a ¼ HþY ð4Þ
where H+ is the Moore Penrose generalized inverse of matrix H.

2.2 Relevance Vector Machine (RVM)

In RVM, the basic equation is given below for estimation of output (y):

y ¼ ∑
N

i¼1
wiK xi; xð Þ ð5Þ

where N represents the samples number, wi is weight, x denotes input variable and K(xi,x) is
kernel function.

In RVM, a Gaussian prior is assumed on wi. The Gaussian prior has zero mean and
hyperparameters (α−1

i ) variance. RVM uses iterative formulae for hyperparameter estimation
(MacKay 2001). In RVM, nonzero weights are called relevant vectors. The details of RVM
have been obtained from Tipping (2000, 2001).

2.3 Gaussian Process Regression (GPR)

The operational relationship between input vector (x) and target (y) in GPR model is assumed
by Eq. (6):

yi ¼ f xið Þ þ ε ð6Þ
where f(xi) represents an arbitrary function, ε is the noise with an identical distributed Gaussian
function based on the zero mean and variance σ2,which is εN(0, σ2).

To determine the f(x) where f is dependent variable and x is the independent variable and
any unobserved pair (x*, f*) as (Andersson and Sotiropoulos 2015)

f
f *

� �
∼Nnþ1 0;

K X ;Xð Þ k X ; x*
� �

k x*;X
� �

k x*; x*
� �� �� �

ð7Þ

where K(X, X) is a n x n covariance matrix between all the simples in the training data, k(X,
x∗)is an n × 1 vector of covariance between the point x* and training data. In the typical

regression the mean ( f ) from f and then it integrates tof∗:

p f *jx*;X ; f� � ¼ N k x*;X
� �

K X ;Xð Þ−1 f ; k x*; x*
� �

−k x*;X
� �

K X ;Xð Þ−1k X ; x*
� �� 	

ð8Þ

The above eq. (8) expressed X and f by maximizing the joint probability of f∗ conditional on x∗

to determine the f∗.
For utilizing the noisy data, the model has to be accompanied by measurement error.

Therefore the eq. (14) was converted into (Andersson and Sotiropoulos 2015):

f
f *

� �
∼Nnþ1 0;

K X ;Xð Þ þ σ2I k X ; x*
� �

k x*;X
� �

k x*; x*
� �� �� �

ð9Þ
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where the conditional likelihood and the variance change to

f̂ x*
� � ¼ k x*;X

� �
K X ;Xð Þ þ σ2I
� �−1

f ð10Þ
and

Cov f̂ x*
� �� � ¼ k x*; x*

� �
−k x*;X

� �
K X ;Xð Þ þ σ2I
� �−1

k x; x*
� � ð11Þ

where σ2 is the variance of the observed error and I is the identity matrix.

2.4 Minimax Probability Machine Regression (MPMR)

The principal of Minimax Probability Machine Classification (MPMC) is that probability of
proper categorization of data points should reach to highest possible amount while a classifi-
cation is constructed. For biased approaches, an alternative justification could be provided by
the minimax technique.

To solve the regression problems, the concept of MPMC (Cheng and Liu 2006)
was adopted, and it was extended as Minimax Probability Machine Regression
(MPMR) (Strohmann and Grudic 2002). The accuracy of MPMR depends on the
exactness of mean and covariance estimates. To crack the regression problem, the data
were reduced to a binary classification problem by changing the reliant variable ±ε
(Strohmann and Grudic 2002). The benefit of MPMR is that it can manage an input
having any bounded distribution (Horata et al. 2013). For some unknown regression
function (f∗ : Rd→ R), the arbitrary vector is produced from some different bounded
distribution which has mean (x) and covariance (∑x) and let the training data to be
generated accordingly as:

y ¼ f xð Þ þ ρ ð12Þ
where x is the vector and ρ is the noise term with expected value 0 and finite
variance∞. Let us consider the space Η of functionsRd → R; we want to determine a

model f̂ ∈Η , that increases the least probability of being ±ε accurate symbolized by
Ωf

Ω f ¼ inf
x;yð Þ∼ x�;y�;∑ð Þ

Probabilty j f xð Þ−yj < εf g ð13Þ

where ∑ = cov(y, x1, x2, .. …xd).
No other distributional assumptions were made except x�; y�;∑ are finite. For any function f

which belongs to H the expected f̂ has to satisfy the following condition

Ω f̂ ≥Ω f ð14Þ

For the linear models, Η holds all the functions that build by linear combinations of the
training input vector as follows:

f xð Þ ¼ ∑
d

n¼1
βnxn þ β0

¼ βTX þ β0 where β∈Rd ;β∈R
� � ð15Þ
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The general basis function formulation for the nonlinear model is as Eq. (16):

f xð Þ ¼ ∑
k

m¼1
βmΦm Xð Þ þ β0 ð16Þ

The hypothesis space comprises of linear combinations of kernel functions with the training
inputs vectors as their first arguments, which is nothing but Φm(X) =K(Xm, X) (Smola and
Scholkopf 1998).

f xð Þ ¼ ∑
N

m¼1
βmK Xm;Xð Þ þ β0 ð17Þ

where Xm ∈ Rd which depicts the mth input vector of the training set.
To obtain the minimax regression model, the expected points are to be predicted within the

limit of±ε. So, every training data point (Xm, Ym) for m = 1,…., N converted into two-
dimensional vectors which were stamped as u and v.

um ¼ ym þ ε; xm1; :…; xmdð Þm ¼ 1; :…N
vm ¼ ym−ε; xm1; :…; xmdð Þm ¼ 1; :…N

ð18Þ

3 Materials

3.1 Case study area

The lakes of Michigan, Huron, Superior, Ontario, and Erie are considered as great lakes basins
(Fig. 1a). About 59% of the basins are located in the United States and 41% in Canada. The
length of the basin is 1125 km from the north to the south, 1450 Km from west to east and its
area is 2402 km2. The population of the area is about 33 million people, which economic
activities are including agriculture, tourism, and the industrial manufacturing (Wilcox et al.
2007). This collection is one of the most significant freshwater sources in the United States. In
this basin area, Michigan Lake is connected to the Lake Huron by a deep channel; therefore, all
of the hydraulic conditions, including surface level, are similar.

Hence, these two are known as the Lake Huron (45.814 ° N; 84.754 ° W) (Brinkmann
2000). Because of the size of the lakes, slight changes in their levels lead to dramatic changes
in the amount of stored water. As the displacement of 0.3048 m from the lake leads to a
volume reduction of about 75.0264 × 109 m3. Approximately the amount of water stored in the
great lake is about 22.67 × 1012 m3 (Wilcox et al. 2007). Also, Change in Michigan- Huron
lake level has a significant role in nearshore ecosystems and coastal processes, comprising
maintained and development of wetlands, dunes and beaches and also human activities.

The data used is related to the monthly level of the lake level from 1918 to 2013. This data
is measured at Harbor beach hydrometric station. To model and predict this series, its initial
76 years are utilized for the training period and the remaining 20 years of the forecast period.
The Lake Huron lake level series is presented in Fig. 1b. Also, the statistical characteristics of
the Lake Huron time series are presented in Table 1, where x, SD, CV, xmin, Q1, x50, Q3, and xmax
are mean, standard deviation, the coefficient of variation, minimum, first quartile, median,
third quartile and maximum.
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(a) Geographical location of the Huron lakes

(b) Michigan- Huron lake level time series

Fig. 1 Case study a) Geographical location of the Huron lakes. b) Michigan- Huron lake level time series
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In this investigation, to forecast the lake level data using four different methods (MPMR,
GPR, RVM, ELM), different time delays of historical lake level are considered as input
combinations. The number of variables is from 1 to 4 due to statistically lagged effects of
monthly and annually altering patterns in historical lake level dataset. The considering models
are as follows:

Model 1: h(t) = f(h(t − 1))
Model 2: h(t) = f(h(t − 1), h(t − 2))
Model 3: h(t) = f(h(t − 1), h(t − 2), h(t − 3))
Model 4: h(t) = f(h(t − 1), h(t − 12))
Model 5: h(t) = f(h(t − 1), h(t − 2), h(t − 12))
Model 6: h(t) = f(h(t − 1), h(t − 2), h(t − 3), h(t − 12))

3.2 Performance Evaluation Criteria

The proficiency of the intruduced methodology in monthly lake level forecasting at Michigan-
Huron lake should be evaluated. Recognizing the stochastic essence of the hydrological
variable, the use of an individual metric to evaluate the statistical model performance is not
logical (Dawson et al. 2007). Hence, the results of effectiveness evaluation of the MPMR,
GPR, RVM, and ELM techniques regarding the mean absolute error (MAE), root mean square
error (RMSE) and coefficient of determination (R2) as 1st-order statistics is an assessment as
follows:

MAE ¼ 1

N
∑
N

i¼1
jAi−Pij ð19Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N
∑
N

i¼1
Ai−Pið Þ2

s
ð20Þ

R2 ¼
∑
N

i¼1
Ai−A

�� �
Pi−P

�� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
N

i¼1
Ai−A

�� �
∑
N

i¼1
Pi−P

�� �2s
0
BBBB@

1
CCCCA ð21Þ

where P is the forecasted records, A is the actual records, A and P are the mean values of actual
and forecasted records and N is the number of samples in training nad testing stages.

Table 1 Statistical characteristics of the Michigan- Huron lake from 1918 to 2013

Variable SD CV xmin Q1 x50 Q3 xmax

Calibration (76 years) 176.47 0.40 0.22 175.58 176.16 176.48 176.76 177.50
Prediction (20 years) 176.21 0.35 0.20 175.57 175.97 176.10 176.40 177.19
All 176.42 0.40 0.23 175.57 176.08 176.41 176.72 177.50
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It should be noted that the MAE and RMSE construe the goodness-of-fit of each
model irrespective of the sign of the difference between actual and forecasted lake
level. The RMSE criterion is suitable for a set of forecasting errors with a normal
distribution (Chai and Draxler 2014). In fact, the measuring index may not be fulfilled
by all anticipating models. Thus, the MAE has employed to assessment all deflections
of anticipated samples from the actual values in an equivalent way irrespective of the
sign (Krause et al. 2005). The value of R2 designates the variance in the actual lake
level samples that can be described by the anticipating model. However, this index
comes form linear presumptions (Deo et al. 2016). Also, these criteria may be not
sensitive to outliers and proportional, and accretive difference between actual nad
predicted samples (Legates and Mccabe 1999; Willmott and Matsuura 2005). If the
model is appraised exclusively based on one of these indices, a shift in predicted
samples can result in fallacious conclusions.

Supplementary information about the four proposed models’ accurateness was gathered
from the Legates and McCabes Index (ELM), refined Willmott’s Index (Drefined) and Nash-
Sutcliffe coefficient (ENS) as normalised goodness-of-fit as (Nash and Sutcliffe 1970; Legates
and Mccabe 1999):

ELM ¼ 1−
∑
N

i¼1
Ai−Pij j

∑
N

i¼1
Pi−P

��� ��
2
664

3
775; 0≤ELM ≤1 ð22Þ

Drefined ¼

1−
∑N

N Pi−Aið Þ
C ∑

N

i¼1
Ai−A

���� ���

2
664

3
775;

∑
N

i¼1
Pi−Aið Þ

∑
N

i¼1
Ai−A

���� ��� ≤2

∑
N

i¼1
Pi−Aið Þ

C ∑
N

i¼1
Ai−A

���� ��� −1;
∑
N

i¼1
Pi−Aið Þ

∑
N

i¼1
Ai−A

���� ��� > 2

8>>>>>>>>>>><
>>>>>>>>>>>:

; 0≤Drefined ≤1 ð23Þ

ENS ¼ 1−
∑
N

i¼1
Ai−Pið Þ2

∑
N

i¼1
Ai−O

�
i

� 	2

2
664

3
775;−∞≤ENS ≤1 ð24Þ

3.3 The architecture of AIT models

The optimum parameters of the AIT frameworks hired in the current study are given in
Table 2. In this Table, the NHN, AF, WRBF, NRV, and EP are the Number of hidden neurons,
radial basis function, Width of radial basis function, number of relevance vector and error
parameter, respectively.
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4 Results and discussion

In this part, the outcomes of the Lake Huron water level modeling are presented using four
methods ELM, MPMR, GPR, and RVM in testing stage dataset. The predicted results for the
lake level are recorded based on monthly observations on this lake.

The proposed models in this study have been calibrated using historical data for 76 different
years. Using the data for the next 20 years, the prediction accuracy of each model has been
investigated using different statistical indices. To achieve modeling results with appropriate
accuracy, in addition to using the proper method, the input components of the model can also
have a significant effect on the results. The incorrect selection of compounds may have a
negative effect on the results of a method.

Therefore, in this study, for each of four presented methods, the modeling results related to
six different models that have effects of one to three months ago along with the amount of lake
level in the desired month of the prior year (t-12), is considered as inputs. Table 3 shows the
values of different statistical indices (R2, MAE, RMSE, ENS, defined, ELM) for each of the
methods for six input combinations. The maximum value of the coefficient of determination
for model 1, to estimate the lake level which is used only the amount of prior month (t-1), R2 =
0.96, is related to the MPMR model.

The results of this index for other models show that the least difference with MPMR model
is related to the ELM model (R2 = 0.959). However, the value of this index relative to the other
two methods (i.e., RVM & GPR) also shows no significant difference with the MPMR. The
values of the MAE and RMSE index, which examine the mean squared of modeling error,
show that the superior performance in this index is also related to the MPMR model (MAE =
0.056 & RMSE = 0.069). The RMSE index for ELM, RVM and GPR models was about 4%,
11%, and 7%, respectively, and the MAE index values were about 3%, 7%, and 10%
respectively more than the index value of MPMR.

The superiority of the MPMR model in comparison with other models in all of the indices
presented in Table 3, except the defined (defined(ELM) = 0.998), represents a higher performance
of this model than other models. In addition to quantitative comparisons of the models
presented, the qualitative study of these models can present significant perception into the
performance of each of the models. Figure 2 illustrated the boxplot for actual data and
estimated lake level values for test data. The best performance among the four MPMR,
GPR, ELM, and RVM models is related to the MPMR method.

Hence, the distribution of observed and predicted values with MPMR for the model
according to the indices minimum, maximum, median, lower, and upper quartiles are the

Table 2 Various design parameters of the developed models

Developed Parameter Model 1 Model 2 Model 3 Model 4 Model 5 Model 6
models

ELM NHN 2 8 9 6 7 10
AF RBF RBF RBF RBF RBF RBF

RVM WRBF 0.009 0.05 0.05 0.08 0.08 0.09
NRV 533 75 124 61 148 194

GPR WRBF 0.01 0.2 0.1 0.1 0.5 0.5
EP 0.007 1.5 1.1 0.2 0.2 0.2

MPMR WRBF 0.002 0.4 0.5 0.6 0.6 0.45
EP 0.002 0.001 0.003 0.002 0.002 0.004
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same. Figure 3 presents the relative error distribution (RE) of the intended samples for the
testing of 4 different models that the highest RE value has a normal distribution and the
predicted samples have a similar distribution to the measured lake level. Comparison of
relative values of MAE (%) (Fig. 4) shows that all four models of MPMR, GPR, ELM and
RVM have good accuracy for lake level prediction, that the lowest is related to the MPMR
method (Relative MAE = 0.02%).

The results presented in Fig. 4 and 5 show that the proposed models have a high ability to
estimate the lake level. The results of the scatter plot for these four models show a high
correlation between the observed and predicted samples, as for all the range of samples
considered for model testing, the predicted values have a small difference with actual values.
Also, these models also have acceptable performance in peak values.

Although prediction of the lake level is of great accuracy with the models presented for the
average observational samples, as previously stated, a change of about 0.3 m from the lake
level leads to a significant change in the volume of the lake about 75 × 109 m3 (Wilcox et al.
2007). For the MPMR method, with the input combination given for Model 1, the maximum
difference between the meausred and estimated values is about 0.18 m.

Therefore, it is necessary to provide other input combinations to increase the accuracy of
modeling. Models 2 and 3, in addition to considering the amount of lake level from the
previous month in the estimation of lake level of the current month, also use the lake level
values for two months and three months before (respectively). The values of the statistical
indices given in Table 3 show that the use of h(t-2) and h(t-3) along with h(t-1) leads to an
increment in the accuracy of modeling. Comparison of these two models with model 1 shows
the rise of R2 index and reduction of other indices for these two models.

Table 3 Statistical indices for MPMR, GPR, RVM, and ELM in testing stage

Test R2 MAE RMSE ENS DRefined ELM

Model 1 ELM 0.959 0.058 0.072 0.957 0.998 0.791
RVM 0.951 0.062 0.077 0.950 0.991 0.779
GPR 0.955 0.060 0.074 0.954 0.989 0.787
MPMR 0.960 0.056 0.069 0.960 0.989 0.798

Model 2 ELM 0.983 0.038 0.046 0.982 0.989 0.864
RVM 0.977 0.042 0.053 0.977 0.997 0.850
GPR 0.974 0.046 0.057 0.973 0.990 0.836
MPMR 0.982 0.038 0.047 0.981 0.993 0.864

Model 3 ELM 0.976 0.045 0.054 0.976 0.990 0.840
RVM 0.961 0.054 0.069 0.960 0.997 0.806
GPR 0.974 0.046 0.056 0.974 0.993 0.836
MPMR 0.976 0.045 0.054 0.975 0.991 0.840

Model 4 ELM 0.959 0.057 0.070 0.959 0.986 0.797
RVM 0.955 0.061 0.075 0.953 0.982 0.782
GPR 0.959 0.058 0.071 0.958 0.979 0.793
MPMR 0.960 0.056 0.069 0.960 0.990 0.799

Model 5 ELM 0.981 0.038 0.048 0.981 0.992 0.863
RVM 0.970 0.046 0.060 0.970 0.997 0.836
GPR 0.981 0.038 0.048 0.980 0.987 0.862
MPMR 0.982 0.038 0.046 0.982 0.991 0.866

Model 6 ELM 0.970 0.048 0.062 0.968 0.979 0.827
RVM 0.961 0.054 0.069 0.960 0.986 0.806
GPR 0.980 0.040 0.050 0.979 0.992 0.858
MPMR 0.984 0.035 0.044 0.984 0.995 0.874
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According to the boxplot (Fig. 2), the distribution of predicted values in the GPR method
differs from other methods and data. This model at minimum lake level values shows lower
accuracy than the other models. In the lake level, this happens to the RVMmodel, which is less
accurate than other methods. The RE distribution (Fig. 3) for both models 2 and 3 compared to
model 1 has less elongation, which its variations for model 2 compared to model 1 is
significant. Increasing the number of inputs in models 2 and three has led to a decrease in
Relative MAE (%) in (Fig. 4) in both models 2 and three compared to model 1. The value of
this index in MPMR, GPR, RVM and ELM methods has been decreased 32%, 22%, 32%, and
35% respectively for Model 2, and about 20%, 22%, 12% and 23 respectively for Model 3.

Fig. 2 Boxplots demonstration of MPMR, GPR, RVM, and ELM for the investigated six models at testing stage
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In addition to the three models presented, models 4 to 6, in addition to considering input
combinations in these models, also examined the effect of annual variations (t-12) in these
models. The results of the scatter plot (Fig. 5) regarding the four methods of MPMR, ELM,
GPR, and RVM in model 4 show that in general, this model predicts the lake level with
accurate accuracy. The quantitative comparison of model 4 with model 1 (Table 3) shows that
the use of the parameter h(t-1) not only has not significantly changed the accuracy of
predictions but also in some of the indices like as defined index related to the ELM method,
using this input, also had a negative effect. Indeed, the reason for this is the effectiveness of
changes in the second and third previous months compared to the first month, while comparing
models 2 and 3 with model 1, it was also shown that in order to achieve a good model, in
addition to using lake level value in just one month before (h(t-1)), it is necessary to consider
the effect of the second and third prior months (h(t-1) and h(t-2)).

The scattering of the estimated values using four different methods by boxplots (Fig. 2)
shows that the ELM and GPR methods estimates small amounts related to the lake level and
the RVM method, which estimates both small values and the peak values with less accuracy
than the actual values. Despite these three methods, the MPMR method has good accuracy,
and the value distribution in this method is approximately the same as the values measured at
the Harbor Beach Station. Similarly, the RE distribution (Fig. 3) and the relative MAE value
(%) (Fig. 4) for all models are relatively similar to model 1. Comparing model 5 with model 2,
it also has almost the same results compared to model 4 with 1.

As different methods have various functions regarding each index, and in all cases, using
the input combination presented in model 5, showed no significant increase in the performance

Fig. 3 Relative error distribution histogram for MPMR, GPR, RVM, and ELM for six models at testing stage
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of each method in all indices. Therefore, to achieve a suitable model, in addition to using an
appropriate method, it is required to assess different input compounds that take into account
the physics of the problem.

The MPMR method, using the model 6, shows superior performance than the model 3,
which the only difference with model 6 is the use of h(t-12) as input combination. Comparison
of the statistical indices presented in Table 3 shows that this model has higher accuracy than
the model 3 for most of the proposed parameters. In the case of indices that the value for model

Fig. 3 (continued)

Fig. 4 Relative mean absolute error (MAE%) for the MPMR, GPR, RVM and ELMmodels for all six models in
testing stage
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6 compared to model 3 is less, there is generally no significant difference between the two
indices. The qualitative study of this model (Fig. 4 and 5) also shows that this model has a
good ability to evaluate the water-level of Lake Huron.

The Relative MAE (%) value also shows that the lowest value of this index among the 24
models presented (six different models calibrated using four methods) is related to model 6,
which is calibrated byMPMRmethod. The relative error distribution (Fig. 3) and the presented
boxplot associated with the MPMR method with the input combinations presented in model 6
show that the good accuracy of this model in the prediction of the lake level.

5 Concluding Remarks

Application of advanced artificial intelligence forecast models is needed to achieve a higher
dergree of accuracy due to the chaotic feature of lake water level fluctuation patterns. The
primary aim of this study was to introduce a novel method for the forecasting of monthly lake
water-level one month ahead using historical datasets for the Lake Huron (45.814° N; 84.754°
W). The projecting variables considered were lake level at different lags (t-1, t-2, t-3, t-12) for
the period (1918-2013). All datasets were categorized into 76 years for calibration and the 20
years for validating. The numbers of six models are proposed considering one to four models.
The inputs of each model are include monthly and annually delays. The result indicates the
best results for input combination with only monthly delays are achieved at Model 3 (t-1, t-2, t-
3). Also, the use of annually lag (t-12) results in a boost in model accuracy especially in

Fig. 5 Scatter plots of the observed and forecasted lake level (m/month) for MPMR, GPR, RVM and ELM
models at the test stage
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MPMR techniques which is the best Model is gained for Model 6 (t-1, t-2, t-3, t-12) validating
using MPMR. All four AIT yielded encouraging general execution, in spite of the fact that the
execution of the MPMR model was moderately superior to the ELM, RVM, and GPR models.
This was shown by the lowerMAE, RMSE, ENS, defined, ELM, and higher correlation coefficients
and rarer outliers in the predicted values of lake level. It is important to note that the overall
accuracy of the MPMR and ELM models was not significantly different. Given the present
discoveries, it is interpreted AITs developed for forecasting of the lake level must incorporate
circumstance of monthly and annually time delays in their indicator datasets, as these factors
gave the most important highlights in the forecast of lake level, particularly in the present
investigation district.

This novel model offers a fascinating prospect for the estimating of lake level,
which underscore to examine the methodology on annually or seasonally time scale.
In its feasible implementation, the dependability of the MPMR, ELM, GPR and
RVM models can be assessed advance for a scope of hydrological destinations,
consisting of the further hydro-meteorological information (e.g., vaporization, inflow,
and precipitation) that could be utilized to examine the stochastic impact of such
attributes on lake level estimating. Moreover, the model could be connected to other
hydrological procedures, for example, groundwater level, evaporation, rainfall, and
streamflow.

Fig. 5 (continued)
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