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Abstract
The Piano Key (PK) weir is a new type of long crested weirs. This study was involved the
addition of a gate to PK weir inlet keys. It was conducted by the Department of Water
Engineering, University of Tabriz, Iran to determine if the gate increased hydraulic perfor-
mance. A Gated Piano Key (GPK) weir was constructed and tested for discharge ranges of
between 10 and 130 l per second. To this end, 156 experimental tests were performed and the
effective parameters on the GPK weir discharge coefficient (Cd), such as gate dimensions (b
and d), gate insertion depth in the inlet key (Hgate), the ratio of the inlet key width to the outlet
key width (Wi/Wo) and the head over the GPK weir crest (H) were investigated. In addition,
application of soft computing to estimate of Cd was carried out using MLP, GPR, SVM,
GRNN, multiple linear and non-linear regressions methods using MATLAB 2018 software.
This study suggests the relation for Cd with non-dimension parameters. The results of this
study showed that H, Wi/Wo, Hgate and b and d, had the greatest effect on the GPK weir
discharge coefficient, respectively. The GPRmethod was introduced as a new effective method
for predicting discharge coefficient of weirs with RMSE = 0.011, R2 = 0.992 and MAPE =
1.167% and provided the best results when compared with other methods.

Keywords Gated piano key (GPK)weir . Experimental model . Discharge coefficient (Cd) .

Gaussian process regression (GPR) . Artificial intelligence

1 Introduction

The Piano Key (PK) weir is a long crested weir that improves the capacity of discharge
through the constant upstream head by increasing the length of the crest. Due to the resulting
high discharge capacity of these types of weir, reservoir capacity is increased and dams are
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stabilised against flooding. The PK weir has been developed by Lempérière, HydroCoop,
France and Blanc, Hydraulic and Environmental Laboratory, University of Biskra, Algeria
(Lempérière and Ouamane 2003). The first PK weir was built in 2006 on the Goulours dam in
France, with the second being installed in 2008 on Saint-Marc dam in France (Laugier 2007;
Laugier et al. 2009).

Lempérière (2011) suggested the head – discharge relation for the PK weirs. Kabiri-Samani and
Javaheri (2012) presented the experimental relations of discharge coefficients for these types of
weirs in two free and submerged forms. Anderson and Tullis (2012) compared the hydraulic
performances of labyrinth weirs and rectangular PK weirs. They indicated that the reduced loss of
inlet keys, led to better performance from the PKweirs. Anderson and Tullis (2012) showed that for

the value of Wi
WO

=1.25–1.5, the PK weir had the highest efficiency. Machiels et al. (2013) studied the

effect of parapet walls on the hydraulic performance of this type of weir and pointed out its positive
effect due to the increased height of the weir. In addition to structural and hydraulic studies, the
application of artificial intelligence techniques for estimating the weirs’ discharge coefficients can be
noted. Emiroglu et al. (2011) estimated the discharge coefficient of the triangular labyrinth side-weir
on a straight channel using the Artificial Neural Network (ANN) model. Results of this model were
more successful than the multiple non-linear regression model. By using the ANN model, Bilhan
et al. (2011) estimated the discharge coefficient of triangular labyrinth side-weirs in curved channels.
They suggested that the ANN model was more capable of estimating the discharge coefficient
compared to the multiple non-linear regression model. Dursun et al. (2012) estimated the discharge
coefficient of semi-elliptical side weirs by making use of Adaptive Neuro-Fuzzy Inference System
(ANFIS). Their results indicated the success of this technique over Multiple Linear Regression
(MLR) andNonlinear Regression (NLR). Salmasi et al. (2012) estimated the discharge coefficient of
compound broad-crested weirs by applying the Genetic Programming (GP) techniques and ANN.
Results showed that the genetic programming technique is more capable than the ANN in terms of
estimating the weir’s discharge coefficient. Ebtehaj et al. (2015) estimated the discharge coefficient
of triangular labyrinth side-weirs using the gene expression programming. By using the Support
Vector Regression (SVR), Zaji et al. (2016) predicted the modified discharge coefficient of diagonal
side weirs (in triangular form). Results obtained from their investigation showed that SVR-RBF
outperforms the SVR-poly. Shamshirband et al. (2016) estimated the optimum discharge coefficient
of side weirs using the ANFIS model. Results showed the ANFIS model with five inputs was more
accurate than the ANFIS model with a single input. Parsaie (2016) investigated the discharge
coefficient of sideweirs using the experimental formulas,Multi-Layer Perceptron (MLP) andRadial
Basis Function (RBF). TheMLPmodel yielded the best result. Haghiabi et al. (2018) estimated the
discharge coefficient of triangular labyrinth side-weirs using the ANFIS. Results of this model were
compared to MLP neural network’s results. Results achieved from comparing the MLP to ANFIS
indicated that both models function very appropriately, but the ANFIS structure is more accurate.

There have been many applications of the Gaussian Process Regression (GPR) method in
water engineering sciences. For example, Pasolli et al. (2010) estimated the concentration of
chlorophyll in subsurface waters by the GPR method using remote sensing data. Grbić et al.
(2013) predicted the stream water temperature based on the GPR method. Their technique can
be used as a basis for prediction tools for water resource managers. Once an online Bayes
filtering was made on the global surface temperature data, Wang and Chaib-draa (2017)
analysed the temperature using the GPR method. They suggested this technique was better
than various types of Gaussian Process (GP) and was seen as an accurate and efficient system
for analysis of global temperatures. Karbasi (2017) investigated the 10-year statistical data
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(2000–2009) from Zanjan Synoptic Station, Iran, and predicted the multi-step ahead daily
reference evapotranspiration by the method of Wavelet-GPR and GPR models. Results
showed that the hybrid method of Wavelet-GPR was more capable and accurate over the
GPR model in predicting the daily evapotranspiration.

A review of pertinent literature shows that previous studies regarding PK weirs have not
investigated the effect of an additional gate on each of the inlet keys. This study is the first to
examine such an effect. It also investigates other parameters of PK weirs, using the Gaussian
Process Regression (GPR) method to predict coefficient of discharge (Cd) and compare this
result with Support Vector Machines (SVM), Multi-Layer Perceptron (MLP), Generalized
Regression Neural Networks (GRNN), multiple linear and nonlinear regression methods and
with suggesting the relation for Cd. Thus, this study is distinguished from other studies in this
area. In addition, the GPR method has not been used to investigate the discharge coefficient of
weirs. The present study introduces this method for predicting discharge coefficient of weir.

2 Materials and Methods

2.1 Dimensional Analysis

Dimensional analysis aims at diagnosing the effective parameters in the studied phenomenon
and determining the dimensionless ratios. Due to the geometrical complexity of Gated Piano
Key weirs (GPK weirs), the discharge passing over them is subject to parameters of Eq. 1.

Q ¼ f H ;Hup;Hdown; b; d;Hgate; L;W ;P;Wi;Wo;Bi;Bo;N ; Si; So;Ts; g;μ;σ; ρÞ
� ð1Þ

whereQ is the discharge overflow from GPK weir,H is head on GPK weir,Hup is the upstream
head, Hdown is the downstream head, b is the length of rectangular gate, d is the width of
rectangular gate, Hgate is the water head from the rectangular gate center to the crest of weir, L
is the crest length [L =N(Wi +Wo+ 2B)], W is the total weir width or flume width, P is the
total weir height, Wi is the inlet key width, Wo is the outlet key width, Bi is the downstream or
inlet key overhang length, Bo is the upstream or outlet key overhang length, N is the weir cycle
number, Si is the inlet key slope, So is the outlet key slope, Ts is the weir wall thickness, g is the
gravitational acceleration, μis dynamic viscosity,ρis density and σ is surface tension. Figure 1
shows Gated Piano key weir geometric and hydraulic parameters.

Since Hup and Hdown are function of the H, they can be excluded. The number of cycles,
slope of inlet and outlet keys can be seen as a proportion of other parameters, hence, they can
be excluded, too. Using the dimensional analysis and considering the dimensionless numbers
of Reynolds (Re), Weber (We) and dimensionless ratios, Eq. 1 is reduced to Eq. 2.

Q

g
1
2BH

3
2

¼ f Re;We;
H
P
;
L
B
;
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;
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;
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;
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p
;
d
p
;
Hgate

P

� �
ð2Þ

In accordance with Eq. (2), it can said that Cd is subject to the geometrical parameters of GPK
weirs and dimensionless numbers of Reynolds and Weber. The Reynolds number in channels
is sufficiently large, hence the viscosity can be ignored (Henderson 1966) Therefore, the
Reynolds and Weber numbers are deleted from Eq. 2. To investigate the geometrical param-
eters of GPK weir, Eq. 3 can be proposed.
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2.2 Experimental Set up

These experiments were performed in the hydraulic laboratory, Department of Water Engi-
neering, University of Tabriz, Iran. The experiments were conducted on a 10 m long and
0.933 m wide horizontal rectangular flume. The height of the first 3 m of the flume was 1 m
with the rest of its length being 0.5 m in height. The floor of the flume was constructed from
galvanized iron and the side walls from 10 mm thick glass. The GPK weir was installed on a
1 cm high ramp. The water circulation system included an underground tank equipped with a
100 hp. pump which provided a steady supply of water into a head tank. The upstream tank
(head tank) provided water flow into the flume. The weir returned extra water from the head
tank into the underground tank, thereby ensuring the discharge in the rotation system would be
a fixed amount. The water flowed downstream through the flume, was collected in the
collection tank, and then flowed into the underground tank to be pumped again into the head
tank (Fig. 2).

The discharge rate was measured using an ultrasonic flow meter with 1% precision.
Discharge measuring sensors were installed on a 10-in. pipe which supplied water to the
flume. The discharge ranges were between 10 and 130 litters per second.

In order to reduce the turbulence of the input water flow from the pipe into the
laboratory flume, the water travelled across a porous medium space created by sequential
lattice plates placed along the first three meters of the laboratory flume. By placing the
Styrofoam on the water surface oscillations were prevented and in this way the height of
water was stabilized in the upstream of the GPK weir. The water depth was measured by

Fig. 1 (A) GPK weir hydraulic parameters, (B) The geometric parameters of gate in GPK weirs, (C) PK weir
geometric parameters
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a point gauge moveable along the flume, with a precision of 0.1 mm. Due to the
limitations imposed by surface tension forces the limitation of input discharge, the
measured range of H is varied from 1.5–8 cm depending on the model type.

In this study, a four-cycle GPK weir was used. Figure 3 provides the tested physical models
in this study. The variables in this study are: gate dimensions (b and d), the different gate height
(Hgate), different ratios of the inlet key width to the outlet key width (Wi/Wo), and the head over
the GPK weir crest (H). It can be noted that in addition of GPK weirs, un-gated PK weirs also
were tested in this study.

Fig. 2 The Schematic of laboratory flume and water circulation system

Fig. 3 Physical models of PK and GPK weirs with different geometric specifications

Application of Gaussian Process Regression Model to Predict Discharge... 3933



Tables 1 and 2 shows the PK and GPK weir geometric parameters in physical models. In
Tables 1 and 2 Pm is the weir wall height at the center of weir, B is the weir sidewall length and
n is crest length to weir width ratio (n = L/W). The other parameters were defined previously.

All physical models were built from polyethylene plates with 12 mm thickness. Gates
frames were built from PVC with 1 mm thickness.

2.3 Experimental Data

As can be seen in Table 2, from 188 experiments for both PK and GPK weirs, 156 data set was
relevant to the GPK weir. From this data, 70% and 30% were used as the training data and
model testing data, respectively.

The statistical parameters of training and test data are given in Table 3. Training and test
data were used for training process of models and evaluation of models accuracy, respectively.

2.4 Gaussian Process Regression (GPR)

The Gaussian Process is a suitable method to define the preferred distribution for the flexible
models of regression and classification in which regression or class probability functions are
not limited to the simple parametric forms.

One advantage of the Gaussian Process is the wide diversity of its covariance
functions, which leads to functions with different degrees of smoothness, or various
types of continuous structures, thereby allowing the scholar to choose appropriately
from among them. These models can specify the distributions among the functions
with one or more input variable. When this function defines the mean response in a
regression model with Gaussian errors, the matrix calculations can be used for
inference; this is feasible for those data sets with a sample of greater than one
thousand. Gaussian processes are very important in statistical modeling, because they
have normal characteristics (Neal 1997).

One can assume n observations in a desired dataset of Y = {y1,…,yn} as a single point
sampled from the multiple Gaussian (It has n variables) distribution. Hence, data sets can
be corresponded to a Gaussian process. The Gaussian process, therefore, is as simple as
much as it is comprehensive. It is mostly assumed that the mean of correspondent the
Gaussian process is zero everywhere. What connects one observation to another in such
states is the covariance function, k x; xð Þ. Each observation y can be connected to a main
function through the Gaussian noise model.

y ¼ f xð Þ þ N 0;σ2f

� �
ð4Þ

Table 1 The PK weir geometric parameters in physical models

P Pm L W Wi Wo Si

0.197 0.129 4.744 0.933 0.116,0.093 0.093,0.116 0.006
So B Bi Bo Ts N n
0.006 0.489 0.121 0.121 0.012 4 5
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Where, N 0;σ2
f

� �
is the noise of normal distribution function with mean 0 and variance σ2

f .

Regression, in fact, means looking for f(x). To simplify the next step, a new way for noise
combination in k x; xð Þ is used by writing the following term:

k x; x0ð Þ ¼ σ2
f exp

−
�
x−x

�
0 2

2τ2

2
64

3
75þ σ2

nδ x; xð Þ ð5Þ

where, δ x; xð Þ is the Kronecker delta function. Therefore, n observations of y is taken into
account; the goal is to predict y*.

The predicted values of observations are the same in accordance with Eq. 4, but variances
vary upon due to the observational noise process. To prepare the GPR for covariance function,
Eq. 5 is calculated among all possible combinations of these points and findings are summa-
rized in three matrices:

k ¼
k x1; x1ð Þ k x1; x2ð Þ … k x1; xnð Þ
k x2; x1ð Þ k x2; x2ð Þ … k x2; xnð Þ

⋮
k xn; x1ð Þ

⋮
k xn; x2ð Þ

⋱
…

⋮
k xn; xnð Þ

2
64

3
75 ð6Þ

K* ¼ k X *;X 1ð Þk X *;X 2ð Þ…k X *;X nð Þ½ �; kij ¼ k xi; x j
� � ð7Þ

It should also be noted that the diagonal elements, K, are in the form of σ2
f + σ2n . When the x

receives a large domain, the non-diagonal elements approaches zero (Ebden 2015).

Table 2 Different geometric parameters of the GPK weir in physical model

d b Hgate wi/wo d b Hgate wi/wo

0* 0 0 0.8 0 0 0 1.25
0.05 0.08 0.0272 0.8 0.05 0.08 0.0272 1.25
0.05 0.08 0.0348 0.8 0.05 0.08 0.0348 1.25
0.05 0.05 0.0201 0.8 0.05 0.05 0.0201 1.25
0.05 0.05 0.0442 0.8 0.05 0.05 0.0442 1.25
0.08 0.05 0.0201 0.8 0.08 0.05 0.0201 1.25
0.08 0.05 0.0442 0.8 0.08 0.05 0.0442 1.25

* Note: zero values denote PK weir without gate

Table 3 Statistic parameters of training phase and test dataset

Variable Data range Mean Standard deviation

Training phase Testing phase Training phase Testing phase Training phase Testing phase

H/P 0.051–0.391 0.083–0.376 0.233 0.211 0.090 0.075
Hgate/P 0.097–0.215 0.097–0.215 0.151 0.156 0.051 0.047
wo/wi 0.8–1.25 0.8–1.25 1.035 1.049 0.225 0.224
b/P 0.242–0.388 0.242–0.388 0.293 0.285 0.069 0.066
d/P 0.242–0.388 0.242–0.388 0.282 0.301 0.065 0.071
Cd 0.398–0.9 0.405–0.885 0.589 0.596 0.121 0.114
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2.5 Multilayer Perceptron Model

The Multilayer Perceptron Neural networks (MLP-NN) are the feed-forward networks includ-
ing one or more hidden layers. One way to train the widely used MLP-NN is the back
propagation training rule, which is based on the error correction learning rule (moving in the
negative direction of momentary slope subject to the performance (error) function which
reduces the model error)(Dibike and Solomatine 2001; Negnevitsky 2005).

The back propagation rule is composed of two main paths. On the first path, the inlet
vector is applied to the multilayer network, the effects of which are propagated through
the middle layers to the output layers. The outlet vector formed on the output layer
makes the real response of MLP-NN. On the second path, known as the backward path,
the parameters of MLP-NN are modified and regulated. Such regulation is done in
accordance with the error correction rule. Similarly, the weights of neurons in the middle
layers change in such a way that the error value between the output of neural network
and real output is minimized (Demuth et al. 2014; Goh 1995; Rafiq et al. 2001). Once
the artificial neural network is developed, data is usually divided into two training and
test periods. There is no exact rule for determining the minimum size of training and test
sets. As per such suggestions, approximately 70% of total data is sufficient for network
training and the remaining 30% is used for network testing (Baum and Haussler 1989;
Zare et al. 2012). In this study, structure and architecture of ANN was optimum as 1 ×
11 × 1 on the basis of trial and error conducted on the number of neurons in the middle
layer. This is a three-layer network where 1, 11 and 1 indicate the number of neurons in
input, hidden and output layers, respectively. The activation functions of this network are
hyperbolic tangent sigmoid (tansig) and linear (purelin) functions, respectively, for
hidden and output layers. The learning algorithm is the error back-propagation algorithm
on the basis of Levenberg–Marquardt optimization method.

2.6 Support Vector Machines (SVM) Regression Model

Support Vector Machines (SVM) include two categories: 1. Support vector classifier; 2.
Support vector regression. The SVM is a supervised learning technique which was introduced
by Vapnik (1995) and is based on statistical learning theory (SLT)(Vapnik 2013). In some
cases, complicated and nonlinear structures are needed for data separation. In this case, the
main data is mapped and rearranged in a new space by the SVM through applying a set of
mathematical functions, known as kernel. A SVM algorithm looks for a hyperplane with
maximum margin. From the geometrical perspective, margin is calculated by the distance
between the hyperplane and the closest training samples. The shortest distance from a
hyperplane to sample with label +1 is equal to the shortest distance from that hyperplane to
the samples with label −1. In fact, the margin is calculated by doubling this distance. A
separating hyperplane can be defined as below:

W :X þ b ¼ 0 ð8Þ

where, W = {w1, …, wn} is a vector in which the number of existing elements is equal to the
attributes and is a constant. In 2D space where the data sets are defined with two attributes and
one class label, Eq. 8 is rewritten as Eq. 9, assuming the w0 = b:
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w0 þ w1x1 þ w2x2 ¼ 0 ð9Þ
Accordingly, the samples (points) located on the space above this hyperplane complete the
inequality (10) and the ones below this hyperplane complete the inequality (11).

w0 þ w1x1 þ w2x2 > 0 ð10Þ

w0 þ w1x1 þ w2x2 < 0 ð11Þ
Adjusting the W and b, we have:

w0 þ w1x1 þ w2x2≥1 if yi ¼ þ1 ð12Þ

w0 þ w1x1 þ w2x2≤1 if yi ¼ −1 ð13Þ
This means that each sample located over or on the hyperplane H1 belongs to the class +1 and
the one below and on the hyperplane H2 belongs to the class −1. Those samples which are
exactly on the hyperplane H1 and H2, are called “support vectors”(Burges 1998).

2.6.1 Kernel Functions

A common way to solve the nonlinear problems is to use the kernel functions; these functions
are defined based on the inner product of given data. Designing the GPR techniques includes
application of kernel function concept. In fact, with a nonlinear transformation from inner
space to the attribute space with more dimensions (even infinite), problems can be separated
linearly. By transforming the samples from the input space into the attribute space, the
nonlinear separator will become linear.

wT∅ x j
� �þ b ¼ 0 ð14Þ

Primary and dual problems create the attribute space problem.With this difference: that instead

of xTi :x j
� �

the value of xj =∅T(xi)∅ (xj) and k(xi) is used, where, k(xi, xj) is the kernel function
for linearization of nonlinear problems. Among the most important kernels, linear, polynomial,
normalized polynomial, Radial Basis Function (RBF) kernel and Pearson kernel function can
be mentioned.

Simple polynomial kernel function:

k xi; x j
� � ¼ xTi x j þ 1

� �p ð15Þ
Normalized polynomial kernel function:

k xi; x j
� � ¼ xTi x j þ 1

� �pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
xTi xið Þ þ xTj x j

� �r ð16Þ

Radial basis function:

k xi; x j
� � ¼ exp −Y xi−x j

		 		2� �
ð17Þ
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Pearson kernel function:

k xi; x j
� � ¼ 1

1þ 2
ffiffiffiffiffiffiffiffiffiffi
xi; x2j

q ffiffiffiffiffiffiffiffiffiffiffiffi
2

1
w− 1

∅

q� �2
" #w ð18Þ

These kernel functions have individual parameters in their structures, known as the
hyper-parameters 1. The radial basis function, for instance, has Gamma hyper-
parameter and Pearson function has the Sigma and Omega parameters. In addition, to
select the optimum kernel function in applying the kernel function based methods, it is
very important to determine the optimum hyper-parameter related to each function. The
kernel based modeling techniques needs to create the appropriate parameters defined by
the user, since the accuracy of this regression model is highly dependent on selection of
these parameters. In addition to selecting the specific kernel parameters, GPR needs to
specify the optimums of Gaussian noise level. To select the parameters chosen by the
user (i.e. C, γ, σ, ω, ε and Gaussian noise), numerous techniques have been proposed;
manual method (trial and error), network search method, Genetic Algorithm (GA) and
particle swarm optimization. In the present study, the trial and error is used for selecting
the parameters chosen by the user. The optimums of various parameters defined by the
user are selected in such a way that they minimize the root-mean-square error (RMSE)
and maximize the correlation coefficient (Pal and Deswal 2010).

2.7 Generalized Regression Neural Networks Model

The Generalized Regression Neural Networks (GRNN) are a set of Radial basis function
networks together with a linear layer (Chen et al. 1991). GRNN model is based on a
statistically standard technique, known as kernel regression (Cigizoglu and Alp 2006; Li
et al. 2013). These networks, include 4 layers: input layer, pattern layer, summation layer
and output layer (Cigizoglu and Alp 2006). The input layer receives the information. The
number of neurons is equal to the input vector dimension. Then, the inlet neuron from
the input layer transfers the data to the pattern layer which has nonlinear transformation
from the input space to the pattern space. Neurons in the pattern layer (which are also
called the “pattern neurons”) can keep the relationship between the input neuron and the
proper response from the pattern layer and also the number of neurons equal to the input
variables. The summation layer includes a simple summation and a weighted summation.
The former calculates the output arithmetic sum from the pattern layer and the connec-
tion weight is 1. The latter calculates the output weighting sum from the pattern layer.
Once the summated neurons are transferred to the output layer, output of the GRNN
model can be measured. In these networks, the number of neurons in the output layer is
equal to the output vector dimension (Li et al. 2013). Unlike the back propagation
training algorithm, GRNNs do not need frequent training processes (Chen et al. 1991;
Cigizoglu and Alp 2006). These networks take a radius into account around each
observational data where each input data within that radius makes that data involved in
its estimation for a new input value. The effect of the radius of GRNN used in this study
was measured based on trial and error.
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2.8 Statistical Criteria

To investigate the accuracy of models suggested in this study, the following statistical
measures have been used:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑N

i¼1 Oi−Pið Þ2
N

s
ð19Þ

NRMSE ¼ RMSE

Oi

� 100 ð20Þ

MAPE ¼ 1

N
∑N

i¼1

Oi−Pi

Oi

				
				� 100 ð21Þ

R2 ¼
�
∑N

i¼1 Oi−Oī
� �

Pi−Pi

�
̄̄

� �2

∑N
i¼1 Oi−Oī

� �2∑N
i¼1 Pi−Pī̄

� �2 ð22Þ

In these equations, Qi is the mean of observations, Pi is the mean of predictions and N is the
total number of data. Root Mean Square Error (RMSE) is the difference between the predicted
and observed data. Mean Absolute Percentage Error (MAPE) shows the accuracy of model
prediction. R2 describes the connection between the predicted and observed data.

Normalized Root Mean Square Error (NRMSE) is used for comparing the models with
various measures. Model performance with regard to NRMSE is defined as below (Mihoub
et al. 2016):

Excellent if: NRMSE <10%.
Good if: 10% <NRMSE <20%.
Fair if: 20% <NRMSE <30%.
Poor if: NRMSE >30%.

3 Results and Discussion

In this study, the results of artificial intelligence models, MLP, GPR, GRNN, SVM, together
with two linear and nonlinear regression models, were investigated and assessed in terms of
estimating the GPK weir discharge coefficient. The results of the various models are given
below.

3.1 Multi-Layer Perceptron (MLP) Neural Network

A three-layer artificial neural network model (with a hidden layer) was used in this study. The
input and output activation functions were selected as sigmoid and linear. Due to higher
accuracy and speed, the Levenberg-Marquardt algorithm was used for network training
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(Lourakis and Argyros 2004; Ngia and Sjoberg 2000). The most important part in modeling
using the MLP neural network was to determine the number of optimal neurons in the hidden
layer. For this purpose, a trial and error method was applied. The number of neurons in the
hidden layer was changed from 1 to 10 and the best number of neurons was chosen using the
RMSE for the test data of model. Table 4 shows the modeling results by making use of the
MLP neural network. From these results it can be determined that the MLP neural network
with two neurons in the hidden layer has yielded the best outcome with RMSE = 0.024 and
R2 = 0.961. Based on Table 4, it can be seen that as the number of neurons increases, the model
accuracy decreases.

3.2 Gaussian Process Regression (GPR) Model

Table 5 shows the results of the GPR model in estimating the GPK weir discharge coefficient.
To investigate the effect of different kernels on the model accuracy, five types of kernels, i.e.,
Squared Exponential, Exponential, Matern 3/2, Matern 5/2 and Rational quadratic, were
evaluated. The GPR model with the Squared Exponential kernel has yielded the best results
concerning RMSE = 0.011, R2 = 0.992 and MAPE = 1.167%. Comparing different kinds of
kernels (Squared Exponential, Exponential and etc.) indicated that application of different
kernels had minor impact on model performance and varied from RMSE = 0.018 for the
Rational quadratic kernel to RMSE = 0.015 for the Exponential kernel. Results revealed that
the GPR model was not sensitive to the kernel changes. Figure 4 shows the Scatter plots of
observed and predicted values of Cd for GPR model with different kernels. Closeness of the
data to line 1:1 shows the appropriate accuracy of models in estimating the GPK weir
discharge coefficient.

3.3 Support Vector Machine (SVM) Model

Table 6 shows the modeling results obtained from the SVM model. In this study, RBF, Linear
and polynomial kernels were used for modeling. To find the optimum kernel parameters (ε and
γ), the Bayesian optimization algorithm in MATLAB was used. The SVM model with the
RBF kernel gave the best result with RMSE = 0.015, R2 = 0.982 and MAPE = 1.961%. Our
results were consistent with ones obtained by Zaji et al. (2016) . Comparing two linear and

Table 4 Results of MLP model with different number of neuron at hidden layer

Model Neurons RMSE R2 MAPE% NRMSE% RMSE R2 MAPE% NRMSE%
Training phase Testing phase

MLP 1 0.033 0.970 4.800 5.677 0.031 0.934 4.568 5.202
MLP 2 0.028 0.979 3.953 4.752 0.024 0.961 3.441 4.031
MLP 3 0.009 0.998 0.919 1.601 0.080 0.833 4.362 13.334
MLP 4 0.009 0.998 0.881 1.502 0.055 0.889 3.266 9.202
MLP 5 0.008 0.998 0.834 1.419 0.112 0.756 5.664 18.805
MLP 6 0.016 0.994 1.660 2.655 0.030 0.937 2.945 4.947
MLP 7 0.008 0.999 0.767 1.282 0.032 0.941 2.276 5.436
MLP 8 0.009 0.998 0.816 1.451 0.041 0.921 2.667 6.865
MLP 9 0.010 0.998 0.903 1.651 0.300 0.391 10.890 50.221
MLP 10 0.008 0.998 0.768 1.406 0.082 0.818 4.664 13.746

Note: Bold numbers refer to the best models
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polynomial kernels indicates the superiority of the SVMmodel with the linear kernel (RMSE =
0.042) over the polynomial model (RMSE = 0.057). Figure 5 shows Scatter plots of observed
and predicted values of Cd for SVM model with different kernels.

3.4 Generalized Regression Neural Networks (GRNN) Model

Table 7 shows the modeling results of GRNN in estimating the GPK weir discharge coeffi-
cient. The optimal model was obtained by changing the Spread parameter in GRNN. In view
of Table 7, the Spread parameter equal 0.001 yielded the best results for with RMSE = 0.073,
R2 = 0.651 with further reduction of this parameter having no significant impact on results.

3.5 Multiple Linear Regression

Analysis of multiple linear regression was conducted on the experimental data. The Dimen-
sionless eq. (22) was obtained for estimating the discharge coefficient of the GPK weir.
Analyses were made in MATLAB.

Table 5 Results of GPR model with different kernel types

Model Kernel RMSE R2 MAPE% NRMSE% RMSE R2 MAPE% NRMSE%
Training phase Testing phase

GPR SqExponential 0.009 0.998 0.787 1.558 0.011 0.992 1.167 1.805
GPR Exponential 0.000 1.000 0.006 0.014 0.015 0.983 1.558 2.496
GPR Matern 3/2 0.001 1.000 0.123 0.187 0.015 0.984 1.538 2.448
GPR Matern 5/2 0.004 1.000 0.408 0.648 0.017 0.979 1.753 2.849
GPR Rational quad 0.005 0.999 0.533 0.888 0.018 0.976 1.894 3.065

Note: Bold numbers refer to the best models

Fig. 4 Scatter plots of observed and predicted Cd for GPR model with different kernels
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3.6 Multiple Nonlinear Regression

To evaluate the nonlinear regression in estimation of the discharge coefficient of the GPK weir,
an equation within the general form (23) was evaluated:

Cd ¼ a0
H
P

� �b0 b
P

� �c0 d
P

� �d0 Hgate

P

� �e0 wi

w0

� � f 0

ð24Þ

Coefficients of a0; b0; c0; d0; e0; f 0 were determined using MATLAB:

Cd ¼ 0:375
H
P

� �−0:53 b
P

� �0:096 d
P

� �0:012 Hgate

P

� �0:148 wi

w0

� �0:276

ð25Þ

3.7 Comparing the Techniques of Artificial Intelligence and Regression Analysis

Table 8 compares the best model built in each method by artificial intelligence with linear and
nonlinear regression analyses. In Table 8, the statistical parameters of RMSE, R2, MAPE and
NRMSE were used for training and testing datasets. As seen in Table 8, three artificial
intelligence models, GPR, SVM and MLP, outperformed the regression models and only the
GRNN model did not give acceptable results. Comparison between the GPR, SVM and MLP
models indicated that the GRP model yielded the best results with RMSE = 0.011, R2 = 0.992
and MAPE = 1.167%, followed by the SVMmodel with RBF kernel with RMSE = 0.015, R2 =
0.982 and MAPE = 1.961%. The MLP model with two neurons in the hidden layer is ranked as
the third with RMSE = 0.024, R2 = 0.961 and MAPE = 3.441%. The GRNN model with

Table 6 Results of SVM models with different kernels and optimized parameters

Model Kernel ε γ RMSE R2 MAPE% NRMSE% RMSE R2 MAPE% NRMSE%
Training phase Testing phase

SVM RBF 0.015 0.273 0.012 0.996 1.926 2.109 0.015 0.982 1.961 2.566
SVM Line 0.091 0.001 0.117 0.708 6.517 19.846 0.042 0.879 4.692 6.983
SVM Poly 0.002 0.472 0.096 0.820 3.752 16.328 0.057 0.779 4.634 9.591

Note: Bold numbers refer to the best models

Fig. 5 Scatter plots of observed and predicted Cd for SVM model with different kernels
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RMSE = 0.073 was ranked sixth and yielded weaker results than the linear regression. Compar-
ison between the two regression models indicated the superiority of nonlinear regression model
over the linear one. With RMSE = 0.035, R2 = 0.961 and MAPE = 4.562%, nonlinear regression
gave acceptable results for estimating the discharge coefficient of GPK weir. In the linear
regression model, values of RMSE = 0.061, R2 = 0.865 and MAPE = 9.491% were obtained.
Figure 6 shows the Scatter plots of observed and predicted values of Cd for all of the six models
compared in Table 8. As can be seen in Fig. 6, the data for GPR model is closer to line 1:1.

Figure 7 shows the points related to the observational and estimated data together with a
confidence interval (CI) 95% for the GPR model. With regard to this figure, most of the
observed data points are within the CI 95%.

3.8 Sensitivity Analysis

In order to evaluate the impact of input parameters on estimated discharge coefficient of the
GPK weir, the sensitivity analysis was conducted using the GRP model (given its less error). In
this analysis, each time a parameter was omitted from the model inputs, the model was
implemented and accuracy was evaluated. The deleted parameter with the highest effect on
decreased model accuracy and increased model error was evaluated as the most important
parameter. In view of the analysis results, seen in Table 9, deleting the parameter H/P had the
highest effect on accuracy and caused the RMSE to increase to 0.128. The error percentage
achieved MAPE = 16.621%. Parameter wo/wi was the second most effective parameter on the
discharge coefficient of the GPK weir. With its deletion RMSE increased to 0.079.

Comparison of the parameters related with gate Hgate

P ; bP ;
d
P

� �
showed that Hgate

P (RMSE =

0.032) affected more than two parameters of b
P (RMSE = 0.029) and d

P (RMSE = 0.027). Given

the statistical measures, two parameters of b
P and d

P had the same effect on model accuracy.

Table 7 Results of GRNN model with different spread parameter values

Model Spread RMSE R2 MAPE% NRMSE% RMSE R2 MAPE% NRMSE%
Training phase Testing phase

GRNN 1 0.190 0.401 20.103 32.181 0.111 0.154 14.608 18.651
GRNN 0.5 0.177 0.405 18.031 30.043 0.106 0.152 14.027 17.811
GRNN 0.1 0.097 0.842 6.413 16.411 0.078 0.547 8.048 13.090
GRNN 0.01 0.008 0.998 0.359 1.413 0.073 0.650 5.589 12.262
GRNN 0.001 0.000 1.000 0.001 0.002 0.073 0.651 5.757 12.304
GRNN 0.0001 0.000 1.000 0.001 0.002 0.073 0.651 5.757 12.304

Note: Bold numbers refer to the best models

Table 8 Comparison of best models

Model RMSE R2 MAPE% NRMSE% RMSE R2 MAPE% NRMSE%
Training phase Testing phase

LM 0.104 0.717 10.267 17.566 0.061 0.865 9.491 10.283
NLM 0.038 0.963 4.336 6.440 0.035 0.961 4.562 5.882
GPR 0.009 0.998 0.787 1.558 0.011 0.992 1.167 1.805
SVM 0.012 0.996 1.926 2.109 0.015 0.982 1.961 2.566
MLP 0.028 0.979 3.953 4.752 0.024 0.961 3.441 4.031
GRNN 0.000 1.000 0.001 0.002 0.073 0.651 5.757 12.304

Note: Bold numbers refer to the best models
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4 Conclusion

Designing weirs with high discharge capacity is important in order to control flood flows
entering the rivers and reservoirs of dams and maintaining safe levels. The GPK weir was
proposed as a new idea in order to increase the capacity of weir discharge and improve its
performance. In this study, effective parameters on the GPK weir discharge were investigated
using soft computing methods MLP, GPR, SVM, GRNN, linear and non-linear regressions.

For this purpose, data from 156 laboratory tests was collected and processed in MATLAB
software 2018. The results of this study showed that H,Wi/Wo, Hgate, b and d, (defined in fig. 1),

Fig. 6 Scatter plots of observed and predicted values of Cd for the six methods

Fig. 7 Point and interval predictions of Cd by GPR model
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had the greatest effect on the GPK weir discharge coefficient, respectively. Three artificial
intelligence models, GPR, SVM and MLP, outperformed the regression models and only the
GRNN model did not give acceptable results. Comparison between the GPR, SVM and MLP
models indicated that the GRP model yielded the best results, followed by the SVM model with
RBF kernel. The MLP model with two neurons in the hidden layer was ranked third. The GRNN
model was ranked sixth and yielded weaker results than the linear regression. Comparison
between the two regression models indicated the superiority of the nonlinear regression model
over the linear one. According to the results of artificial intelligence techniques in this study, the
GPR method was found to be a new and accurate method for predicting the discharge coefficient
of weirs.
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Notation The following symbols are used in this paper: b: Length of rectangular gate; B: Weir sidewall
length; d: Width of rectangular gate; Bi: Downstream or inlet key overhang length; Bo: Upstream or outlet
key overhang length; Cd: Dimensionless discharge coefficient; g: Gravitational acceleration; GPK weir:
Gated piano key weir; H: Head over the crest; Hdown : Downstream head; Hgate : Water head from the
rectangular gate center to the crest of weir; Hup: Upstream head; L: Crest length; [L= N(Wi+Wo+2B)]. n:
Crest length to weir width ratio; (n= L/W). N: Weir cycle number; P: Total weir height; Pm: Weir wall
height at the center of weir; PK weir: Piano key weir; Q: Discharge; Si: Inlet key slope; So: Outlet key
slope; Ts: Weir wall thickness; W: Total weir width or flume width; Wi: Inlet key width; Wo: Outlet key
width; μ: Water dynamic viscosity; ρ: Water density and σ: Water surface tension.
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