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Abstract
This study aims to develop an effective model for reservoir water allocation under conditions
of uncertainty. To identify a practical method that increases the benefits by optimizing the
water allocation policies while reducing the costs by optimizing the water transfer scheme,
several stochastic programming models (EOQ-TSP models) were developed by integrating
economic order quantity (EOQ) models into a two-stage stochastic programming (TSP)
framework. The EOQ-TSP models are advantageous for analyzing the effects of the water
inventory scheme on the reservoir water allocation benefits and better at optimizing water
allocation policies while also considering uncertainties regarding different flow levels and
different water inventory conditions in a water supply-inventory-demand system. Finally, the
feasibility of the developed EOQ-TSP models was demonstrated by applying the models to a
real-world case study. The results show that the benefits of the optimal water allocation policy
will be further increased by optimizing the water transfer scheme, and these proposed models
will be helpful for systematizing reservoir water management and identifying optimal reservoir
water allocation plans in uncertain environments.
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1 Introduction

Modeling analysis is a particularly important way to research water resource management
problems in uncertain environments; thus, the modeling approach has been increasingly used
by scholars, especially when conflicts related to water allocation among users occur (Jakeman
et al. 2006; Loukas et al. 2007; Zhang et al. 2016).

Water resource management problems are complicated due to uncertainties, such as the
random characteristics and the uncertainty of natural factors, financial factors, technical
factors, social factors and even political factors (Li et al. 2009, Li et al. 2019). Uncertainties
could comprehensively affect the water resources management of a system and make the
management of the system more complex. Previously, a number of studies researched the
above questions by using stochastic programming models (Mobasheri and Harboe 1970;
Trezos and Yeh 1986; Kelman et al. 1990; Huang 1998; Li et al. 2006; Li et al. 2019, 2019;
Fu et al. 2018;). The two-stage stochastic programming model (TSP), which is an effective
method for analyzing problems under uncertain conditions, has received extensive attention
over the past decade and has been used to research various water resource management
problems in uncertain environments by many scholars (Schultz et al. 1996; Huang and
Loucks 2000; Kovacs et al. 2007; Li et al. 2010a; Zhang et al. 2014).

Although TSP models are an effective method for analyzing problems related to the
management of water resources under conditions of uncertainty, these models cannot ade-
quately address the water inventory problem that widely exists in reservoir water resource
management systems (Li et al. 2011). For example, water is transferred from areas with
relatively abundant water to reservoirs that need to be replenished for allocation purposes
during water shortages. The water inventory risk and transferring costs are increased if too
much water is transferred; in contrast, it is possible to add an insufficient amount of water to
the water-user sectors, which would also cause large economic losses if the amount of
transferred water is too low. Therefore, it is necessary to develop effective optimization models
to comprehensively solve the questions related to the transfer of water from abundant areas to
reservoirs that must be replenished due to water shortages and to optimize the reservoir water
allocation policy under conditions of uncertainty. Many stochastic inventory models have been
established by researchers (Schmitta and Shen 2010; El Saadany and Jaber 2010; Duan et al.
2012; Zhou et al. 2017; Zhang et al. 2014). For example, inventory theory was integrated with
stochastic programming methods to analyze the water resources management of a reservoir
(Suo et al. 2011). The model was based on inventory theory, and inexact chance-constrained
multistage stochastic optimization was used to research water management systems under
conditions of multiple uncertainties (Suo et al. 2011). However, few studies that address the
problem have conducted contrastive analysis of the water allocation polices based on different
water transfer schemes. For example, the problem related to the water transfer policy with
planned shortages could increase the benefits of reservoir water allocation or not. Thus, the
traditional inventory-based stochastic programming models need to be further improved to
solve more complex supply-inventory-demand problems in reservoir water resource manage-
ment systems.

Thus, this study aims to develop a series of new models by integrating EOQmodels into the
TSP framework. The developed models are capable of (1) quantitatively reflecting the
relationship between the reservoir water resource allocation scheme and the reservoir inven-
tory strategy by coordination optimization of the two parts; and (2) gaining insight into the
variation trends of reservoir water resource allocation benefits under different reservoir storage
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strategies based on the comparison of different EOQ-TSP models. Furthermore, these new
models will also be applied in a real-world case study of the H.Q. reservoir, which is located in
Qinghai Province, China, to demonstrate how EOQ-TSP models can optimize reservoir water
transfer policies and water allocation policies and help managers identify more reasonable and
optimal reservoir water resource allocation plans under different flow levels and different water
transfer scenarios under uncertain conditions.

2 Methodology

Transferring water from areas with abundant water is an effective way to replenish reservoir water
shortages that require more water for allocation; this scenario can be described as a supply-
inventory-demand problem. The reservoir water transfer scheme will influence the optimal
reservoir water allocation policy. Thus, analyzing the water allocation problem under the above
conditions should include effectively researching the reservoir water inventory policy.

2.1 EOQ Models

Optimizing the inventory policy to minimize costs is one of the most important aims of
inventory studies, and the EOQ model is one effective method that can be used to address this
optimization problem (Hillier 2001). The EOQ model can be divided into four submodels with
different assumptions: the basic EOQ model (B-EOQ), the EOQ model with planned shortages
(EOQ-S), the EOQ model with a production parameter (EOQ-P) and the EOQ model with
both planned shortages and a production parameter (EOQ-SP).

2.1.1 Basic EOQ Model (B-EOQ)

Assumptions of the B-EOQ Model The B-EOQ model can be depicted as shown in Fig. 1,
and the detail assumptions of the B-EOQ model can be described as follows (Hillier 2001).

1) The demand rate per unit time is fixed constant;
2) Every ordered batch used to replenish inventory arrives simultaneously when the

inventory level drops to zero;
3) Planned shortages are not allowed.

Optimal Inventory Policy of the B-EOQ Model The optimal inventory policy based on the B-
EOQ model contains three main components:

1) The optimal ordering period (T*) is given by Formula (1a), which is the optimal cycle
length.

T* ¼
ffiffiffiffiffiffiffiffiffiffiffi
2Cs
Ch⋅X

r
ð1aÞ
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2) The optimal ordering batch is given by D*, which is the economic order quantity during a
cycle.

D* ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2Cs⋅X
Ch

r
ð1bÞ

3) The optimal total cost per unit time is given by f∗:

f * ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ch⋅Cs⋅X

p
þ Cp⋅X ð1cÞ

where Ch is holding cost per unit per unit of time held in inventory; Cs is the setup cost for
ordering one batch; Cp is the unit cost for producing each unit; X is the demand rate per unit
time.

2.1.2 EOQ Model with Production Parameter (EOQ-P)

The EOQ-P model is suitable for solving the inventory problem, which assumes the condition
of supplying with limited speed or with limited supply.

Assumptions of the EOQ-P Model The EOQ-P model can be depicted as shown in Fig. 2; the
only different assumption of the EOQ-P model to the B-EOQmodel is that there is a supplying
rate (namely, g, and g > X) to replenish the inventory when the inventory level drops to zero
(i.e., the second assumption of the B-EOQ model).

Optimal Inventory Policy of the EOQ-P Model The optimal inventory policy of the EOQ-P
model contains four main components:

1) The optimal ordering period based on the EOQ-P model is given by T*:

T* ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Cs⋅g
Ch⋅X ⋅ g−Xð Þ

s
ð2aÞ

Fig. 1 Diagram of inventory level as a function of time for the B-EOQmodel. Note: X is the demand rate per unit
time; D is the ordered batch size; T is the ordering period
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2) The optimal ordering batch is given by D*:

D* ¼ X ⋅T* ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Cs⋅X ⋅g
Ch⋅ g−Xð Þ

s
ð2bÞ

3) The optimal total cost per unit time is given by f∗:

f * ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ch⋅Cs⋅X ⋅

g−X
g

s
þ Cp⋅X ð2cÞ

4) The optimal replenishing time is given by Tj∗, which is the optimal inventory
replenishing time span during T*:

T j
* ¼ D*=g ð2dÞ

where g is the inventory replenishing rate per unit time.

2.1.3 EOQ Model with Planned Shortages (EOQ-S)

The EOQ-S model is suitable for solving the inventory problem, which includes the condition
that allows inventory shortages.

Assumptions of the EOQ-S Model The EOQ-S model can be depicted as shown in Fig. 3; the
only different assumption of the EOQ-S model to the B-EOQ model is that planned shortages
are allowed (i.e., the third assumption of the B-EOQ model).

Optimal Inventory Policy of the EOQ-S Model Because the planned shortages are allowed,
the optimal inventory policy of the EOQ-S model contains five main components:

Fig. 2 Diagram of inventory level as a function of time for the EOQ-P model. Note: X is the demand rate per unit
time; D is the ordered batch size; T is the ordering period; g is supplying rate (g > X) to replenish the inventory
and Tj is the inventory replenishing time; S is the maximized inventory quantity during each ordering period
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1) The optimal ordering period based on the EOQ-S model is given by T*:

T* ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Cs Chþ Cqð Þ

Ch⋅Cq⋅X

s
ð3aÞ

2) The optimal ordering batch is given by D*:

D* ¼ T*⋅X ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Cs⋅X Chþ Cqð Þ

Ch⋅Cq

s
ð3bÞ

3) The optimal total cost per unit time, i.e., f∗, is:

f * ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ch⋅Cq⋅Cs⋅X
Chþ Cq

s
þ Cp⋅X ð3cÞ

4) The maximum shortage quantity, i.e., B*, is:

B* ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ch⋅Cs⋅X

Cq⋅ Chþ Cqð Þ

s
ð3dÞ

5) The shortage period is given by Tq*, which is the time span of inventory shortage that
exists during T*:

Tq* ¼ B*
X

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2Ch⋅Cs
Cq⋅ Chþ Cqð Þ⋅X

s
ð3eÞ

2.1.4 EOQ Model with Planned Shortages and Production Parameter (EOQ-SP)

The EOQ-SP model is suitable for solving the inventory problem, which includes the
condition that allows supplying with limited speeds and inventory shortages.

Fig. 3 Diagram of inventory level as a function of time for the EOQ-S model. Note: X is the demand rate per unit
time; D is the ordered batch size; T is the ordering period; Tq is the shortage period; B is the maximum shortage
quantity; S is the maximized inventory quantity during each ordering period
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Assumptions of the EOQ-SP Model The EOQ-SP model can be depicted as shown in Fig. 4.
The EOQ-SP model is different than the B-EOQ model in that the ordering batch used to
replenish the inventory has a replenishing rate (namely, g) when the inventory level drops to
zero (i.e., the second assumption of the B-EOQ model). Furthermore, planned shortages are
allowed (i.e., the third assumption of the B-EOQ model).

Optimal inventory policy of the EOQ-SP model The optimal inventory policy of the EOQ-
SP model contains six components:

1) The optimal ordering period based on the EOQ-SP model is given by T*:

T* ¼
ffiffiffiffiffiffiffiffiffiffiffi
2Cs
Ch⋅X

r
⋅

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Chþ Cqð Þ

Cq

s
⋅
ffiffiffiffiffiffiffiffiffiffi
g

g−X

r
ð4aÞ

2) The shortage period, i.e., Tq*, is:

Tq* ¼ T 2
* ¼ Ch

Chþ Cqð Þ ⋅T
* ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Cs⋅Ch

Cq Chþ Cqð ÞX

s
⋅
ffiffiffiffiffiffiffiffiffiffi
g

g−X

r
ð4bÞ

3) The optimal ordering batch, i.e., D*, is:

D* ¼ T*⋅X ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
2Cs⋅X
Ch

r
⋅

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Chþ Cqð Þ

Cq

s
⋅
ffiffiffiffiffiffiffiffiffiffi
g

g−X

r
ð4cÞ

4) The maximum shortage quantity, i.e., B*, is:

B* ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Cs⋅Ch⋅X

Cq Chþ Cqð Þ

s
⋅

ffiffiffiffiffiffiffiffiffiffi
g−X
g

s
ð4dÞ

5) The optimal total cost per unit time, i.e., f∗, is:

f * ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ch⋅Cs⋅X

p
⋅

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cq

Chþ Cqð Þ

s
⋅

ffiffiffiffiffiffiffiffiffiffi
g−X
g

s
þ Cp⋅X ð4eÞ

6) The optimal replenishing time is given by Tj∗:

T j
* ¼ D*=g ð4fÞ
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2.2 Two-Stage Stochastic Programming

TSP is an effective method that can be used to solve problems with uncertain factors (Dantzig
1983, Ahmed et al. 2004). The TSP model can be expressed as follows (Birge and Louveaux
1997, Zhang and Li 2014, Li et al. 2010a, 2010b):

Max f ¼ N ⋅w− ∑
I

i¼1
pi⋅Q xi; δið Þ ð5aÞ

s:t:
A⋅w≤b
W δið Þ⋅wþ T δið Þ⋅xi ¼ H δið Þ
w≥0xi≥0

8<
: ;∀i ¼ 1; 2…; n ð5bÞ

where δ is the random variable (δ ∈Ω), and w is the decision variable of the first stage when
the random variable δ does not occur. x is the decision variable of the second stage, which
depends on the realization of δ. N is the benefit parameter. Q(xi, δi) is the second-stage cost
function (penalty function) when δi occurs, and Pi is the probability level of δi realized
(∑

I

i¼1
pi ¼ 1). f reflects the final benefit of a certain policy that aims to maximize the value

between the first stage and second stage as large as possible. A and b represent the matrix of the
model parameters.{W(δ),H(δ), T(δ)| δ ∈Ω} are the random model parameters, which are all the
functions of the random variable δ.

2.3 TSP Model Based on the EOQ Models

Transferring water from water-abundant areas is an effective way to solve reservoir water
shortages that affect the allocation of water to users; however, many questions must be solved
by managers during this process, such as whether the total quantity of water that should be
transferred from the relatively abundant areas should be transferred all at once or divided into
several small batches. Furthermore, it is necessary to determine whether the total water
shortage amount of the reservoir should be replenished fully or with planned shortages during
this water transfer process. Moreover, it is necessary to determine whether the speed of the
water replenishment affects the benefits related to water allocation. All of the above questions
can be characterized as reservoir water supply-inventory-demand problems under conditions
of uncertainty.

Fig. 4 Diagram of inventory level as a function of time for the EOQ-SP model. Note: X is the demand rate per
unit time; D is the ordered batch size; T is the ordering period; B is the maximum shortage quantity; S is the
maximized inventory quantity during each ordering period; g is the supplying rate (g > X) to replenish the
inventory; Tj is the inventory replenishing time
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The traditional TSP model is an effective method to address the water allocation problem
under uncertain conditions, but it cannot optimize the reservoir water transfer scheme to reduce
the cost, which is the specialized output of the EOQ models. Therefore, in this section, the
EOQ models will be integrated into the TSP framework to develop a series of new models
(EOQ-TSP models) to optimize the water allocation policy that is integrated with the water
transfer policy under uncertainties.

2.3.1 TSP Model Based on the B-EOQ Model

The B-EOQ model was integrated into the TSP framework to set up a new model, namely, the
B-EOQ-Tmodel. Based on models (1) and (5), the B-EOQ-Tmodel can be depicted as follows.

Objective function:

Max Z ¼ N ⋅w− ∑
I

i¼1
pi⋅ f xið Þ

¼ N ⋅w− ∑
I

i¼1
pi⋅

1

2
Ch⋅X ⋅T þ Cp⋅X þ Cs

T

� � ð6aÞ

Subject to:

s:t:
A⋅w≤b
W δið Þ⋅wþ T δið Þ⋅xi ¼ H δið Þ
w≥0xi≥0

8<
: ;∀i ¼ 1; 2…; n ð6bÞ

where Z is the final benefit of reservoir water allocation; w is the promised water allocation
target of the reservoir, which is the decision variable of the first stage; xi is the water quantity of
the allocation target that cannot meet user I when the random variable occurs, which is the

decision variable of the second stage; Pi is the probability level of xi realized (∑
I

i¼1
pi ¼ 1); f(xi)

is the penalty function of cost when the promised water allocation target runs short, and f(xi) is
dependent on the reservoir water transfer scheme. Z reflects that the final benefits of reservoir
water allocation are equal to the value difference between the benefits of the target water
allocation and the cost of water transfer. A and b represent the matrix of the model
parameters.{W(δ),H(δ), T(δ)| δ ∈Ω} are the random model parameters.

The B-EOQ-T model aims not only to maximize the economic benefits of reservoir water
allocation by optimizing the reservoir water allocation policy but also to minimize the cost of
replenishing insufficient reservoir water by optimizing the reservoir water transfer scheme
under uncertainties accordingly. Based on model (1), the f∗(xi) is the optimal value of f(xi), and
model (6) can be transformed into model (7), which is the final form of the B-EOQ-T model.

Objective function:

Max Z ¼ N ⋅w− ∑
I

i¼1
pi⋅ f

* xið Þ

¼ N ⋅w− ∑
I

i¼1
pi⋅

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ch⋅Cs⋅X i

p
þ Cp⋅X i

� � ð7aÞ

where Z represents the final benefits of reservoir water allocation under the condition of the B-
EOQ inventory scheme. The objective function is subject to the same conditions as those for
Formula (6b).
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2.3.2 TSP Model Based on the EOQ-P Model

Similarly, the EOQ-P-T model can be depicted as model (8).
Objective function:

MaxZ ¼ N ⋅w− ∑
I

i¼1
pi⋅ f

* xið Þ

¼ N ⋅w− ∑
I

i¼1
pi⋅

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ch⋅Cs⋅X i⋅

g−X i

g

s
þ Cp⋅X i

 ! ð8aÞ

where Z represents the final benefits of reservoir water allocation under the condition of the
EOQ-P inventory scheme. f∗(xi) is the penalty function when the inventory replenishing speed
is g. The objective function is subject to the same conditions as those for Formula (6b). This
model is suitable for solving the problem of optimizing reservoir water allocation under the
condition of transferring water from relatively abundant areas at a limited speed under
uncertainties.

2.3.3 The EOQ-S Based on Two-Stage Stochastic Programming

Similarly, the EOQ-S-T model can be depicted as model (9).
Objective function:

Max Z ¼ N ⋅w− ∑
I

i¼1
pi⋅ f

* xið Þ

¼ N ⋅w− ∑
I

i¼1
pi⋅

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ch⋅Cq⋅Cs⋅X i

Chþ Cq

s
þ Cp⋅X i

 ! ð9aÞ

where Z represents the final benefits of reservoir water allocation under the condition of EOQ-
S inventory scheme. f∗(xi) is the penalty function for allowing the inventory plan shortage. The
objective function is subject to the same conditions as those for Formula (6b). The EOQ-S-T
model is developed to analyze the problem of optimizing reservoir water allocation under the
condition of a replenished reservoir with insufficient water with planned shortages.

2.3.4 The EOQ-SP Based on Two-Stage Stochastic Programming

Similarly, the EOQ-SP-T model can be depicted as model (10).
Objective function:

Max Z ¼ N ⋅w− ∑
I

i¼1
pi⋅

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Ch⋅Cs⋅X i

p
⋅

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cq

Chþ Cqð Þ

s
⋅

ffiffiffiffiffiffiffiffiffiffiffi
g−X i

g

s
þ Cp⋅X i

 !
ð10aÞ

where Z represents the final benefits of reservoir water allocation under the condition of the
EOQ-SP inventory scheme. f∗(xi) is the penalty function for allowing an inventory plan
shortage where the inventory replenishing speed is g. The objective function is subject to
the same conditions as those for Formula (6b). The EOQ-SP-T model is used to solve the
problem of optimizing reservoir water allocation under the condition of a replenished reservoir
with insufficient water that has planned shortages and is replenished at a limited speed.
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Figure 5 shows a schematic of the developed EOQ-TSP models.

3 Case Study

3.1 Study Area

The research area is located in the northeast part of Qinghai Province, which consists of the
Datong basin and Huang basin. The S.X. hydrostation and H.Q. reservoir are located along the
Datong River and the Huang River, respectively, and the connection between them is shown in
Fig. 6. One of the key tasks of the H.Q. reservoir is to allocate water to the agricultural,
industrial and municipal water users in the downstream areas. Water is transferred from the
Datong River each year to replenish the shortage of water in the H.Q. reservoir.

This study spans a 15-year planning horizon, which contains three 5-year periods. During
these periods, the stream flow distributions of the Datong River and the Huang River are
shown in Table 1, and the water allocation targets from the H.Q. reservoir to the water users in
downstream areas are shown in Table 2.

As shown in Tables 1 and 2, during these periods, the stream flows of the Huang River at
the highest level are less than 1.9 × 109 m3; however, the total water allocation target of the
H.Q. reservoir to water users in the downstream area is more than 4.8 × 109 m3. Therefore, a
water transfer from the S.X. hydrostation (water supply area) to the H.Q. reservoir (water

Reservoir water

allocation policies under 

different inventory 

schemes

Uncertainties

Probabilistic 

distributions

Two-stage stochastic programming

Inventory phenomenon

Economic order quantity (EOQ)

models 

B-EOQ EOQ-P EOQ-S EOQ-SP

TSP model based on EOQ models (New models):

Reservoir water

resources 

management system

B-EOQ-T EOQ-P-T EOQ-S-T EOQ-SP-T

Generation of alternative decisions

A real application for new models

(Compare results)

Optimal water resources management policy

Fig. 5 Schematic of the EOQ-based TSP models
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shortage area) is necessary to solve this water allocation shortage problem. During the water
transfer process, a large batch size will increase the storage backlogs and cost of water
management. However, if the amount of transferred water is too low, the transfer period and
the allocated shortage risk will increase. Therefore, determining the optimal water transfer and
allocation policies that maximize the benefits of water allocation in an uncertain environment
is a key problem that the managers of the H.Q. reservoir must focus on. Based on the above
analyses, the problems that must be solved in relation to the management of water transfer and
allocation of the H.Q. reservoir can be summarized as follows.

(1) How can an optimal water transfer plan for reservoirs, which contains an optimal transfer
batch and period, minimize the management costs?

(2) Do planning shortages in the process of replenishing reservoir water increase the total
benefits of reservoir water allocation?

(3) Does replenishing reservoir water with a limited speed increase the total benefits of
reservoir water allocation?

(4) How should the limited available water be allocated to the water-user sectors (e.g.,
agricultural, industrial and municipal) to obtain the maximum benefits under different
water transfer policies and different flow levels of the Huang River?

The most suitable plan can be identified using the EOQ-TSP models to solve the questions
outlined above. The economic data on the process of water transfer for the H.Q. reservoir are
shown in Table 3.

Fig. 6 The hydraulic connection between the S.X. hydrostation and H.Q. reservoir

Table 1 The distribution of stream flows

Stream information Stream flow level (l) Probability of
different levels (Pk)

Stream flow in three 5-year periods (109 m3)
Rivers

t = 1 t = 2 t = 3

Huang River High (l = 1) 0.2 1.835 1.798 1.762
Medium (l = 2) 0.6 1.449 1.478 1.508
Low (l = 3) 0.2 1.196 1.172 1.147

Datong River High (l = 1) 0.2 9.951 9.752 9.557
Medium (l = 2) 0.6 7.716 7.793 7.871
Low (l = 3) 0.2 5.821 5.705 5.59
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3.2 EOQ-TSP Models for Reservoir Water Allocation

(1) Application of the B-EOQ-T Model. The B-EOQ-T model is suitable for analysis of the
H.Q. reservoir water allocation plan when the insufficient water is fully replenished by
transferring water from Datong River. Based on model (7), the B-EOQ-T model, in this
case, can be depicted as follows.

Objective function:

Max Z ¼ Zf witð Þ‐Zs xitlð Þ
¼ ∑

I

i¼1
∑
T

t¼1
Nit⋅wit− ∑

I

i¼1
∑
T

t¼1
∑
L

l¼1
ptl⋅ f

* xitl; δtlð Þ

¼ ∑
I

i¼1
∑
T

t¼1
Nit⋅wit− ∑

I

i¼1
∑
T

t¼1
∑
L

l¼1
ptl⋅

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Cht⋅Cst⋅X itl

p
þ Cpt⋅X itl

� � ð11aÞ

where i represents water users (agricultural, industrial and municipal, i = 1, 2, 3); l is stream
flow level (high, medium and low, l = 1, 2, 3); t is the time period of research (t = 1, 2, 3); Ptl is
the probability of stream flow level l in period t; Nit is the benefit to user i per unit of allocated

Table 2 Water allocation targets of H.Q. reservoir

Water users (wit) Time periods

t = 1 t = 2 t = 3

Water allocation targets (109 m3) To agricultural (w1t) 1.393 1.351 1.311
To industrial (w2t) 2.227 2.249 2.272
To municipal (w3t) 1.283 1.373 1.469

Maximum allowable allocation (109 m3) To agricultural (w1t max) 1.672 1.621 1.573
To industrial (w2t max) 2.672 2.699 2.726
To municipal (w3t max) 1.540 1.648 1.763

Utilizable capacity of H.Q. reservoir (109 m3) 0.132

Table 3 Economic data

Benefit and Cost Time periods

t = 1 t = 2 t = 3

Benefit when water demand is
satisfied, i.e., Nit (Yuan/m3)

Agricultural (i = 1) 11.092 12.09 13.178
Industrial (i = 2) 488.273 507.804 528.116
municipal (i = 3) 394.738 430.264 468.988

Penalty when water supply is
short, i.e., Cqit (Yuan/m3)

Agricultural (i = 1) 12.201 13.299 14.496
Industrial (i = 2) 537.100 558.584 580.928
municipal (i = 3) 434.212 473.290 515.887
Footing (Cqt) 983.5133 1045.174 1111.31

Cost for producing each unit
water, i.e., Cpit (Yuan/m3)

Agricultural (i = 1) 0 0 0
Industrial (i = 2) 0 0 0
municipal (i = 3) 0 0 0

Water holding cost (Cht) (Yuan/m3) 2.549 2.6 2.652
Setup cost of water

transfer (Cst) (Yuan per batch)
1.2 1.32 1.452

Yuan is the unit of Chinese currency
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water during period t (Yuan/ m3); wit is water allocation target for water user i during period t
(m3); xitl is quantity of the water allocation target that is not met to water user iwhen the flow of
Huang River is qtl; Cht is the holding cost per unit water per unit time during period t (contains
the maintenance costs, operation management cost and engineering depreciation of the
reservoir and abstraction works from the supply area to the shortage area, Yuan/ m3); Cst is
the setup cost for water transferred in one batch during period t (contains communication
expenses and administrative costs, Yuan per order); Cpt is the unit cost for producing each unit
of water during period t (Yuan/ m3); Zf represents the benefits function of the target water
allocation (first stage), which is used to determine the first-stage variables (wit) by meeting the
promised water allocation target; Zs is the cost function of water replenishing (second stage),
which is used to minimize the penalty function of the water replenishing cost by optimizing the
water transfer cost (f∗(xitl, δtl)) when the reservoir water allocation target could not be met; Z
represents the final benefits of the water allocation of the H.Q. reservoir under uncertainties,
which is equal to the difference in values between Zf and Zs.

Subject to:

1) Constraint of available water quantity (Formulas (11b)), which indicates that the total
available water quantity in period t should be no less than the quantity of the water

allocation target (∑
I

i¼1
wit) and no more than the quantity of the maximum allowable water

allocation (∑
I

i¼1
wit max

).

∑
I

i¼1
wit ≤qtl þ ∑

I

i¼1
xitl þ Q t−1ð Þl ≤ ∑

I

i¼1
w
it max

; ∀t; l ¼ 1; 2…l ð11bÞ

where wit is the water allocation target for water user i during period t (m3); qtl is available
water from the Huang River in the stream flow level l during period t (m3); Q(t-1)l is the surplus
available water during period t-1 when the flow level of the Huang River is l (m3); wit max is the
maximum allowable water allocation quantity for water user i during period t (m3).

2) The constraint of reservoir capacity (Formula (11c)) indicates that the quantity of surplus
water in period t should be less than the storage volume of the H.Q. reservoir.

qtl þ ∑
I

i¼1
xitl þ Q t−1ð Þl‐ ∑

I

i¼1
wit≤CR ; ∀t; l ¼ 1; 2…l ð11cÞ

where CR is utilizable capacity of the H.Q. reservoir (m3).

3) The constraint of surplus water quantity (Formula (11d)) indicates that the quantity of
surplus water in period t (Qtl) should be equal to the total available water quantity minus
the quantity of water allocation in this period.

Qtl ¼ qtl þ ∑
I

i¼1
xitl þ Q t−1ð Þl‐ ∑

I

i¼1
wit ;Q0l ¼ 0; ∀t; l ¼ 1; 2…l ð11dÞ

where Qtl is the surplus available water during period twhen the flow of the Huang River is qtl (m3).
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4) The constraint of the optimal water transfer period (Formula (11e)) is the optimum time
span of one ordering cycle to replenish the reservoir water shortage, which is based on
Formula (1a).

Ttl
* ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Cst

Cht⋅ ∑
I

i¼1
X itl

vuuut ; ∀t; l ¼ 1; 2…l ð11eÞ

where Ttl is the water transfer period when the flow of the Huang River is qtl (5-year period).

5) The constraint of optimal water transfer batch (Formula (11f)) is the economic ordering
quantity during a cycle to replenish the reservoir water shortage, which is based on
Formula (1b).

Dtl
* ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Cst⋅ ∑

I

i¼1
X itl

Cht

vuuut
; ∀t; l ¼ 1; 2…l ð11f Þ

where Dtl is water transfer batch when the flow of the Huang River is qtl (m3).

6) The nonnegativity constraint is shown as Formula (11g).

X itl ≥0 ; ∀t; l ¼ 1; 2…l ð11gÞ

(2) Application of other EOQ-TSP models. The application of other EOQ-TSP models is
shown in the Appendix 1 to 3.

4 Results Analysis

4.1 B-EOQ-T and EOQ-S-T Models

The main difference between these two models is that the planned water shortage for
replenishing is allowed or not when transferring water from the abundant area. The results
based on these two models are shown in Figs. 7 and 8.

(1) The total amount of water transferred based on these two models (namely, Ytl). The Ytl
based on these two models will vary as a result of different flow levels of the Huang
River. The results indicated that more water would be transferred from the Datong River
to replenish a shortage under low-flow conditions of the Huang River; conversely, less
water would be transferred from the Datong River when the Huang River has high flow.

(2) As shown in Figs. 7 and 8, the values of water transfer batches (Dtl) based on these two
models are negatively correlated with the flow level of the Huang River. However, the
solutions of water transfer periods (Ttl) based on these two models are all positively
correlated with the flow level of the Huang River.
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(3) Maximum water shortage quantity (Btl) and water shortage period (Tqtl). Compared with
the B-EOQ-T model, the main difference in the optimal water allocation policy based on
the EOQ-S-T model is that the planned water shortage is allowed. Therefore, two main
factors were added (Btl and Tqtl) in the EOQ-S-T model. As shown in Fig. 8, Btl increases
as the flow level of the Huang River decreases; however, Tqtl becomes shorter as the
flow level of the Huang River declines.

4.2 EOQ-P-T and EOQ-SP-T Models

The EOQ-P-T and EOQ-SP-T models were used to analyze the H.Q. reservoir water allocation
problem when the insufficient water in the H.Q. reservoir was replenished at a limited speed
from the Datong River. The main difference between these two models is also that the planned
water shortage for replenishing is allowed or not in the water transfer plan. The results based
on these two models are shown in Figs. 9 and 10.

Fig. 7 Results based on the B-EOQ-T model. Note: Ytl is the total amount of water transferred; Dtl and Ttl are the
water transfer batches and periods, respectively

Fig. 8 Results based on the EOQ-S-T model. Note: Ytl is the total amount of water transferred; Dtl and Ttl are the
water transfer batches and periods, respectively; Btl is the maximum water shortage quantity; Tqtl is the water
shortage period
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(1) Total amount of water transferred (Ytl). The results indicated that more water would be
transferred from the Datong River when the Huang River was under low-flow conditions,
and vice versa.

(2) As shown in Figs. 9 and 10, the solutions of water transfer batches (Dtl), water transfer
periods (Ttl) and the water replenishment period (Tjtl) based on these two models were all
negatively correlated with the flow level of the Huang River.

(3) Maximum water shortage quantity (Btl) and water shortage period (Tqtl). The planned
water shortage for the H.Q. reservoir water replenishing is allowed in the optimal water
allocation policy based on the EOQ-SP-T models. Therefore, two main factors were
added (Btl and Tqtl) in the EOQ-SP-T model. Figure 10 shows the solutions of Btl and
Tqtl. As shown, the Btl is minimized when the flow of the Huang River is low during
periods 1 and 2. The solutions of Btl are negatively correlated with the flow level of the
Huang River during period 3. The Tqtl is always negatively correlated with the flow level
of the Huang River.

Fig. 9 Results based on the EOQ-P-T model. Note: Ytl is the total amount of water transferred; Dtl and Ttl are the
water transfer batches and periods, respectively; Tjtl is the water replenishment period

Fig. 10 Results based on the EOQ-SP-T model. Note: Ytl is the total amount of water transferred; Dtl and Ttl are
the water transfer batches and periods, respectively; Btl is the maximum water shortage quantity; Tqtl is the water
shortage period; Tjtl is the water replenishment period
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5 Discussion

5.1 Comparison Between the B-EOQ-T Model and the EOQ-S-T Model

A comparison of the water allocation policies between the B-EOQ-T and EOQ-S-T models
was used to analyze whether the planned shortage in the water replenishment process could
reduce the total cost of it when the effect of the water transfer speed on the benefits of water
allocation of the H.Q. reservoir was not considered.

The final benefit of the water allocation in the application based on the B-EOQ-T model
was approximately 525,391 × 107 Yuan, which was less than the benefit based on the EOQ-S-
T model, which was approximately 524,982 × 107 Yuan. Therefore, the water allocation policy
based on the EOQ-S-T model is better than that based on the B-EOQ-T model. The reasons are
as follows.

(1) Figure 11 shows the values of the total amount of water transferred (Ytl) based on the B-
EOQ-T model minus the value based on the EOQ-S-T model, and the results were all
greater than or equal to zero during each period; thus, the total amount of water
transferred based on the EOQ-S-T model was no more than the amount based on the
B-EOQ-T model. As such, the total water inventory cost and water transfer cost based on
the EOQ-S-T model will be less than the associated costs based on the B-EOQ-T model.

(2) Figure 11 also shows that the values of Dtl and Ttl that were calculated based on EOQ-S-T
minus the values of Dtl and Ttl that were calculated based on B-EOQ-Tare all greater than
zero, i.e., compared with the B-EOQ-T model, the water transfer amount of each batch
based on the EOQ-S-T model increased in this application. At the same time, the water
transfer frequency based on the EOQ-S-T model reduced during period t (t = 1, 2, 3),
which would lead to decreased management costs and simplified water management
tasks during the water transfer process.

From the analysis above, it can be seen that planning shortages in the water replenishment
process could reduce the total cost of this process and increase the final water allocation

Fig. 11 D-value analysis based on B-EOQ-T and EOQ-S-T models. Note: Ytl is the total amount of water
transferred; Dtl and Ttl are the water transfer batches and periods, respectively
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benefits when the effect of the water transfer speed on the water resource allocation benefit is
not considered.

5.2 Comparison between the EOQ-P-T Model and the EOQ-SP-T Model

A comparison of the water allocation policies between the EOQ-P-T and EOQ-SP-T models
was used to analyze whether the planned shortage in the water replenishment process could
bring better economic benefits when the effect of the water transfer speed on the benefit of the
reservoir water allocation was considered.

The objective benefit of the water allocation in the application based on the EOQ-P-T
model was approximately 524,985 × 107 Yuan, which was less than the policy objective
benefit based on the EOQ-SP-T model, which was approximately 525,392 × 107 Yuan.
Therefore, the water allocation policy based on the EOQ-SP-T model was better than that
based on the EOQ-P-T model. The reasons for this difference are as follows.

(1) Figure 12 shows the values of the total amount of water transferred (Ytl) based on the
EOQ-P-T model minus that based on the EOQ-SP-T model, and the results were
approximately no less than zero during each period, i.e., in general, the total amount of
water transferred based on the EOQ-SP-T model was less than that based on the EOQ-P-
T model, which could reduce the cost of water inventory and transferring. Thus, the
benefits of water allocation based on the EOQ-SP-T model were generally better than
that based on the EOQ-P-T model.

(2) Figure 12 also shows the values of Ttl and Tjtl based on the EOQ-SP-T model minus the
values of Ttl and Tjtl based on the EOQ-P-T model. The differences in the Ttl values
between the EOQ-SP-T model and the EOQ-P-T model are all very small, i.e., the
frequency of water transfer based on these two models was approximately the same.
However, the values of the water replenishment periods (Tjtl) based on the EOQ-SP-T
model were much smaller than those based on the EOQ-P-T model; namely, the time
span of water replenishment based on the EOQ-SP-T model was much shorter than that

Fig. 12 D-value analysis based on EOQ-P-T and EOQ-SP-T models. Note: Ytl is the total amount of water
transferred; Ttl is the water transfer period; Tjtl is the water replenishment period
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based on the EOQ-P-T model. This result indicated that compared with the EOQ-P-T
model, the time span of water replenishment based on the EOQ-SP-T model was much
lower when the water transfer frequency of these two models was at a similar level.
Therefore, the water allocation policy based on the EOQ-SP-T model would decrease the
costs of reservoir water resource management and simplify reservoir water management
tasks.

From the analysis above, it can be seen that the planned shortage in the water allocation
process could also reduce the total cost of this process and increase the final water allocation
benefits when the effect of the water transfer speed on the reservoir water allocation benefit is
considered.

5.3 Comparison Between the EOQ-S-T Model and the EOQ-SP-T Model

A comparison of the water allocation policies between the EOQ-S-T and EOQ-SP-T models
was used to analyze the effect of the water transfer speed on the benefit of reservoir water
allocation, when the planned shortage in the water replenishment process was allowed.

Comparing the objective benefits based on these two models reveals that the benefit based
on the EOQ-S-T (524,982 × 107 Yuan) model is less than that based on the EOQ-SP-T model
(525,392 × 107 Yuan). This result means that the water allocation benefits of the reservoir
increased as the water transfer speed changed from infinitely great to finite. Therefore,
transferring water from relatively abundant areas with a reasonable limited speed to replenish
the water allocation shortage of reservoirs would obtain better economic benefits.

5.4 Comparison between EOQ-TSP Models and TSP Model

The problem of transferring water from the Datong River to replenish the water allocation
shortage of the H.Q. reservoir under conditions of uncertainty can also be analyzed using the
traditional TSP model, which optimizes the reservoir water allocation policy without consid-
ering the effect of the water transfer scheme.

Based on Fig. 13, the objective benefit (15 years) based on the TSP model in this
application is approximately 522,339 × 107 Yuan, which is far less than that derived from

Fig. 13 Comparison of objective benefits among models. Note: Yuan is the unit of Chinese currency
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the policies based on the EOQ-TSP models. This result reflected that the benefits of the
optimal reservoir water allocation policy will be further increased by optimizing the water
transfer scheme; additionally, the EOQ-TSP models can more adequately address the com-
plexity of the reservoir water resources management system.

Furthermore, as shown in Fig. 13, the policy of reservoir water allocation based on EOQ-
SP-T model is the optimal plan for the H.Q. reservoir when the planned water shortage is
allowed,; the optimal policy of allocating water to the three water-user sectors based on the
EOQ-SP-T model is shown in Table 4, and the optimal policy for water transfer schemes is
shown in Fig. 10. Otherwise, the policy of reservoir water allocation based on the EOQ-P-T
model is the optimal plan for the H.Q. reservoir when the planned water shortage is not
allowed; the optimal policy of allocating water to the three water-user sectors based on the
EOQ-P-T model is shown in Table 5, and the optimal policy for water transfer schemes is
shown in Fig. 9.

6 Conclusions

In this research, the EOQ models were integrated into the TSP framework to establish a series
of new EOQ-TSP models, and a case study was provided to assess the feasibility of the EOQ-
TSP models. Based on this study, the following conclusions were obtained.

Table 4 Optimal water allocation policy when the planned water shortage is allowed

Optimal water allocation to users in different periods and flow levels (109 m3)

Users Flow level Probability t = 1 t = 2 t = 3
Agricultural High 0.2 1.063 1.014 0.589
Industrial 1.065 1.014 2.269
Municipal 1.065 1.015 0.425
Agricultural Medium 0.6 1.190 1.161 1.311
Industrial 1.190 1.162 0.632
Municipal 1.198 1.164 1.469
Agricultural Low 0.2 0.197 0.172 1.311
Industrial 2.227 2.249 1.243
Municipal 1.283 1.373 1.469

Table 5 Optimal water allocation policy when the planned water shortage is not allowed

Optimal water allocation to users in different periods and flow levels (109 m3)

Users Flow level Probability t = 1 t = 2 t = 3
Agricultural High 0.2 0.250 0.250 1.323
Industrial 2.422 2.449 1.717
Municipal 0.396 0.476 0.25
Agricultural Medium 0.6 0.250 0.250 1.323
Industrial 2.422 2.449 1.839
Municipal 0.914 0.796 0.25
Agricultural Low 0.2 0.250 0.250 1.323
Industrial 2.422 2.449 2.464
Municipal 1.035 1.102 0.25

Inventory Theory-Based Stochastic Optimization for Reservoir Water... 3893



(1) Compared with the TSP model, the EOQ-TSP models were better for analyzing the
reservoir water supply-inventory-demand problem, and the EOQ-TSP models could
more adequately respond to the complexity of the reservoir water resources management
system.

(2) The benefits of the optimal reservoir water allocation will be further increased by
optimizing the water transfer scheme.

(3) Reservoir water allocation and transfer policies with planned shortages could increase the
final water allocation benefits, regardless of whether the effect of water transfer speed on
the water resource allocation benefits is considered.

(4) Transferring water from a relatively water-abundant area using a reasonably limited
speed to replenish the shortage obtains better economic benefits.

These new EOQ-TSP models are not only suitable for analyzing the reservoir water
management problem but can also be used to research other resource management
scenarios with imbalances between the quantities of the resource demand and supply
under uncertainties, such as the problems of supplying materials for plants or supplying
food for the market, where the materials or food play the same role as that of water, and
the purchases and supplies of different areas can be described as the supply-inventory-
demand phenomenon.

Further research is needed on how to incorporate the EOQ-TSP models with interval linear
programming and dynamic programming to establish more practical stochastic inventory
models.
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Appendix 1

The applications of the EOQ-P-T model are described as follows. The EOQ-P-T model
is suitable for analyzing the water allocation and transfer problems of a reservoir when
the reservoir’s insufficient water is fully replenished by transferring water from the
Datong River, and when assuming the replenishment has a limited speed (runoff of the
Datong River). Based on model (8), the EOQ-P-T model can be depicted as follows.

Max Z ¼ ∑
I

i¼1
∑
T

t¼1
Nit⋅wit− ∑

I

i¼1
∑
T

t¼1
∑
L

l¼1
ptl⋅

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Cht⋅Cst⋅X itl⋅

gtl−X itl

gtl

s
þ Cpt⋅X itl

 !
ð12aÞ
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s:t:

∑
I

i¼1
wit ≤qtl þ ∑

I

i¼1
xitl þ Q t−1ð Þl ;∀t; l ¼ 1; 2…l

∑
I

i¼1
wit max

≥qtl þ ∑
I

i¼1
xitl þ Q t−1ð Þl ;∀t; l ¼ 1; 2…l

qtl þ ∑
I

i¼1
xitl þ Q t−1ð Þl‐ ∑

I

i¼1
wit ≤CR ;∀t; l ¼ 1; 2…l

Qtl ¼ qtl þ ∑
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i¼1
xitl þ Q t−1ð Þl‐ ∑

I

i¼1
wit ;∀t; l ¼ 1; 2…lt;Q0l ¼ 0

Ttl
* ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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Cht⋅ ∑
I

i¼1
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X itl

� �
vuuut ;∀t; l ¼ 1; 2…l

Dtl
* ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Cst⋅ ∑
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i¼1
X itl⋅gtl

Cht⋅ gtl− ∑
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i¼1
X itl

� �
vuuuuut ;∀t; l ¼ 1; 2…l

T*
jtl ¼ D*=g

X itl ≥0 ;∀t; l ¼ 1; 2…l

8>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ð12bÞ

where gtl is the stream flow of the Datong River when the flow level is l during period t (m3);
Tjtl is the water replenishing period when the flow of the Huang River is qtl (5-year period);

Appendix 2

The applications of the EOQ-S-T model are described as follows. The EOQ-S-T model is
suitable for analyzing the water allocation and transfer problems of the H.Q. reservoir when the
insufficient water in the H.Q. reservoir is replenished using planned shortages. Based on model
(9), the EOQ-S-T model can be depicted as follows.

Max Z ¼ ∑
I

i¼1
∑
T

t¼1
Nit⋅wit− ∑

I

i¼1
∑
T

t¼1
∑
L

l¼1
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s
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 !
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∑
I

i¼1
wit max

≥qtl þ ∑
I

i¼1
xitl þ Q t−1ð Þl ;∀t; l ¼ 1; 2…l
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where Cqt is the shortage cost (penalty) per unit water per unit time during period t (Yuan/ m3);
Btl is the maximum water shortage quantity when the flow of the Huang River is qtl (m3); Bitl is
the water shortage quantity to water user i when the flow of the Huang River is qtl; Tqtl is the
water shortage period when the flow of the Huang River is qtl (5-year period).

Appendix 3

The applications of the EOQ-SP-T model are described as follows. The EOQ-SP-T model is
suitable for analyzing the water allocation and transfer problems of a reservoir when the
insufficient water is replenished using planned shortages and assuming the replenishment is
limited by the speed of runoff in the Datong River. Based on model (10), the EOQ-SP-T model
can be depicted as follows.

M a x Z

¼ ∑
I

i¼1
∑
T

t¼1
Nit⋅wit− ∑

I

i¼1
∑
T

t¼1
∑
L

l¼1
ptl⋅

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Cht⋅Cst⋅X itl

p
⋅

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cqt

Cht þ Cqtð Þ

s
⋅

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gtl−X itl

gtl

s
þ Cpt⋅X itl

 !
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s:t:

∑
I

i¼1
wit ≤qtl þ ∑

I

i¼1
xitl þ Q t−1ð Þl ;∀t; l ¼ 1; 2…l

∑
I

i¼1
wit max

≥qtl þ ∑
I

i¼1
xitl þ Q t−1ð Þl ;∀t; l ¼ 1; 2…l

qtl þ ∑
I

i¼1
xitl þ Q t−1ð Þl‐ ∑

I

i¼1
wit≤CR ;∀t; l ¼ 1; 2…l

Qtl ¼ qtl þ ∑
I

i¼1
xitl þ Q t−1ð Þl‐ ∑

I

i¼1
wit ;∀t; l ¼ 1; 2…lt;Q0l ¼ 0

Ttl
* ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Cst

Cht⋅ ∑
I

i¼1
X itl

vuuut ⋅

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cht þ Cqtð Þ

Cqt

s
⋅
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gtl

gtl− ∑
I

i¼1
X itl

vuuut ;∀t; l ¼ 1; 2…l

Dtl
* ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Cst⋅ ∑

I

i¼1
X itl

Cht

vuuut
⋅

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Cht þ Cqtð Þ

Cqt

s
⋅
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gtl

gtl− ∑
I

i¼1
X itl

vuuut ;∀t; l ¼ 1; 2…l

Btl
* ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Cst⋅Cht⋅ ∑

I

i¼1
X itl

Cqt⋅ Cht þ Cqtð Þ

vuuut
⋅

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gtl− ∑

I

i¼1
X itl

gtl

vuuut
;∀t; l ¼ 1; 2…l

Tqtl
* ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Cst⋅Cht

Cqt Cht þ Cqtð Þ ∑
I

i¼1
X itl

vuuut ⋅
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

gtl

gtl− ∑
I

i¼1
X itl

vuuut ;∀t; l ¼ 1; 2…l

T*
jtl ¼ D*=g

X itl ≥0 ;∀t; l ¼ 1; 2…l
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