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Abstract
Precise and reliable long-term streamflow prediction contributes to water resources planning
and management. Artificial neural network (ANN) have shown its remarkable ability in
forecasting non-linear hydrological processes without involvement of complex, dynamic,
hydrological and hydro-climatologic physical process in the water shed. To improve its non-
stationary responses, decomposition methods are adopted as pre-processing methods in this
study including Empirical Mode Decomposition (EMD), Ensemble Empirical Mode Decom-
position (EEMD) and Seasonal-Trend decomposition using Loess (STL). The original time
sequence is decomposed to several components, which are then taken as the inputs of the ANN
model. EMD and EEMD are data- adaptable methods, and thus the number of Intrinsic Mode
Functions (IMFs) might differ for different sequences, leading to the discrepancy of the input
number for ANN model in training and predicting. Fisher’s ordered clustering is thus used to
classify the IMFs into a determined number of classes based on their frequency spectrum
resulting from Maximum Entropy Spectral Analysis (MESA). The proposed methodology is
applied on four important hydrological stations on the upper stream of the Yellow River and
the Yangtze River in China, respectively, to forecast the streamflow of the next whole year
with the historical daily data of the past 6 years. The Nash-Sutcliffe efficiencies of the monthly
prediction are higher than 0.85 for all of the four cases, and various indicators indicates that the
proposed hybrid method of STL-ANN performs better than other compared methods. The
highlights of this study lies in that only historical daily streamflow data is used to derive an
accurate long-term prediction by data mining based on decomposition technology and map-
ping relationships between the decomposed components and the original sequence in the
future.
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1 Introduction

Forecasting streamflow over a long period is of great significance, not only for various
evaluations, such as reliability of water supply, risk of drought and flood disasters, security
of the eco-environmental maintenance (Wang et al. 2013), but also for the water resources
exploitation, such as water transferring and reservoir construction. Although systematic
hydrometric stations and advanced monitoring techniques have realized short-term streamflow
prediction with high accuracy, the long-term series is still difficult to identify due to the
randomness and complexity (Zhu et al. 2016).

The hydrological changes are influenced by various uncertain factors, such as climate,
weather, human activities and geographical environment, the mechanism of which haven’t
been fully understood. Besides, it is a complex process, manifested in: (l) the hydrological
system is a highly nonlinear system taking precipitation as the input and the streamflow as the
output, and the intermediate processes include evaporation, infiltration, runoff yield and
confluences is highly non-linear; (2) it is hard to establish an accurate mathematical model
to describe the streamflow process, as such a complex dynamic system involving meteorology,
geology, etc., the sub-process cannot be strictly described by mathematical formulae. Limited
by various assumptions or conceptual elements or empirical relationships, the simulation is
usually an approximation of reality with low accuracy; (3) there exist various uncertainty,
randomness, and ambiguity in the streamflow process.

The traditional methods for long-term streamflow forecasting can be categorized into cause
analysis and the statistical analysis. The cause analysis methods are based on dynamic physical
models of atmospheric circulation (Singhrattna et al. 2012), weather processes (Smiatek et al.
2012) and the physical condition of the underlying surface (Sinha et al. 2014). Many countries
and regions have not established complete hydrological monitoring systems, and thus some
information needed in the physical model is difficult to obtain. Statistical analysis uses
mathematical methods to investigate the changing rules of the hydrological factors, which
are then applied on forecasting, mainly including time series analysis (Wang et al. 2015),
multivariate regression (Maslova et al. 2016), and similarity prediction (Sun et al. 2014).
Although statistical analysis has mature model with simple procedures, its application is
restricted by low accuracy without consideration of uncertainties.

In recent years, the advantages of intelligent methods in prediction of nonlinear systems are
also taken for long-term streamflow forecasting, mainly including: gray system model (Ma
et al. 2013), fuzzy algorithm (Shi et al. 2016), Artificial Neural Network (ANN) (Yu et al.
2014), wavelet analysis (Maheswaran and Khosa 2012\), fractal theory (Tao et al. 2011), and
mixed pure theory (Nourani et al. 2012).

ANN has strong non-linear mapping ability as a simple and operational model.. Satisfactory
results have been achieved from ANN in some short-term streamflow forecasts. Wu et al.
(2005) verified the validity of the ANN model for short-term discharge forecast taking
historical rainfall and discharge as the inputs. Kisi et al. (2012) compared ANN model with
local linear regression (LLR) and dynamic local linear regression (DLLR), and indicated that
the ANN models performed better. Vafakhah (2012) used daily streamflow time series to
develop ANNs, adaptive neuro-fuzzy inference system (ANFIS), and autoregressive moving
average (ARMA) models, respectively, for 1-day ahead streamflow forecasting, and the results
showed that the performance of ANNs are superior. Latt and Wittenberg (2014) used historical
water level and rainfall data to build stepwise multiple linear regression (SMLR) and ANN
models for 1~5 days ahead flood forecasts, and concluded that the performance of ANN
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models are superior, particularly in the extreme floods forecasting. Nanda et al. (2016) used
daily discharge and average temperature as the inputs of the linear autoregressive moving
average with exogenous inputs (ARMAX) and static ANN models for flood forecasting with
leading time of 1~3 days, and concluded that the estimated performance of ANN is superior to
ARMAX.

In addition to short-term forecasting, developing appropriate ANN models for long-term
streamflow forecasting has attracted more and more attention of researchers. Nourani et al.
(2012) combined ANN and GP to develop hybrid WGPNN model for long-term forecasting,
the accuracy of which is higher than the ANN model. Wang et al. (2015) developed hybrid
EEMD-ANN model for long-term forecasting, whose performance is better than single ANN
model. Badrzadeh et al. (2016) combined wavelet analysis and backpropagation neural
networks (BPNN) model for long-term forecasting. Humphrey et al. (2016) coupled concep-
tual rainfall-runoff model with Bayesian ANN to forecast monthly streamflow with rainfall,
evaporation, antecedent precipitation index (API), and ground water data as the inputs.
However, these publications mainly use monthly or annual streamflow sequence as the inputs
of ANN models for long-term forecasting, the result of which is often unreliable. The detailed
data information contained in the time series with small time intervals haven’t been fully
excavated, which could be helpful for long-term forecasting.

Streamflow sequence is a time-related waveform, thus time-domain analysis is the funda-
mental method. To better understand the characteristics of the sequence, its frequency can be
used to explore the intrinsic change rule and improve the prediction accuracy. Decomposition of
the sequence can deconstruct a sequence into several components with different characteristics.
Most of current decomposition methods are on the basis of wavelet analysis. The existing
research shows that compared with the original time series, taking the decomposed time series
derived from the wavelet analysis as the input of ANN results in higher prediction accuracy
(Kasiviswanathan et al. 2016). Nevertheless, there are some considerable disadvantages of
wavelet decomposition. For instance, inappropriate mother wavelet function or decomposition
level may lead to significant decline in the precision accuracy (Maheswaran and Khosa 2012).

Empirical Mode Decomposition (EMD) (Huang et al. 1998) decomposes nonlinear signal
into Intrinsic Mode Functions (IMFs) and one residual component, the time-frequency spec-
trum of which has physical significance. EMD can be used to decompose non-linear and non-
stationary time series. Unlike wavelet transform, EMD works in temporal space directly rather
than in the corresponding frequency space, and it is based on the principle of local-scale
separation without need of any prior basis functions (Zhu et al. 2016). Decomposing the
nonlinear data by EMD and then developing a hybrid model can be applied for streamflow
forecasting. Kisi et al. (2014) used coupled EMD-ANN model and individual ANN model to
forecast monthly discharge 1 month ahead, and concluded that the accuracy of EMD-ANN
model is superior. Huang et al. (2014) coupled EMD with support vector machine (SVM) to
forecast monthly streamflow, and the results indicated that EMD–SVM model has a good
stability with higher accuracy compared with the individual SVM model. Zhang et al. (2015)
combined EMD with ANN and ARMA model, respectively, to hindcast monthly streamflow.

Ensemble empirical mode decomposition (EEMD) is a new noise-assisted data analysis
method based on EMD proposed by Wu and Huang (2009) to overcome the mode mixing
problem without introducing an intermittent subjective as in EMD, which is employed for time
series decomposition in this study, since it can clearly separate scales and requires no a prior
subjective selection criterion (Wu and Huang 2009). There have been several studies applying
EEMD on streamflow forecasting (Di et al. 2014).
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In this study, EMD, EEMD and Seasonal Trends decomposition based on Loess (STL) are
integrated with ANN for long-term stream forecasting without need of any basis functions like
wavelet analysis. The original daily time series is firstly decomposed into several IMFs by
EMD, EEMD, STL, respectively. As data adaptive methods, both EMD and EEMD might
results in different number of decomposed components for different time series, which leads to
inconsistency of the input number for ANN model in training and testing. Fisher’s ordered
clustering method is thus used to classify the IMFs into a designated number of clusters based
on the Maximum Entropy Spectral Analysis (MESA). These models are used for streamflow
forecasting of four cases for a whole year, and the Nash-Sutcliffe efficiencies of the monthly
prediction are higher than 0.85 for all of the four cases with only historical daily streamflow
data being used.

2 Methodology

2.1 Empirical Model Decomposition (EMD)

EMD is essentially a stabilization processing for non-linear sequence. Different com-
ponents with different characteristic scales, called IMF, are decomposed from the
original times seriers. Each IMF needs to meet the following two requirements
(Huang et al. 2003): (1) the number of the extreme points and the number of zero
points should be equal or differs by 1 at most in the entire data range; (2) the average
of the upper and lower envelops should be zero at any point. The detailed EMD
procedure can be found in the publication of Huang et al. (2003).

2.2 Ensemble Empirical Mode Decomposition (EEMD)

The error from observation and processing introduces uncertainty of the initial pattern
of the numerical model. In order to overcome such problems, small random
disturbance field can be superimposed on the prime field, and eliminated by taking
ensemble average.

Wu and Huang (2009) applied the idea of ensemble prediction to decomposition by adding
a certain percentage of the white noise to the original data. The basic principle is that when the
additional white noise is evenly distributed throughout the whole time-frequency space, the
space is composed of different components with different scales divided by the filter bank.
When the signal is coupled with an even-distributed white noise background, the signal areas
of different scales are automatically mapped to the appropriate scale corresponding to the
background white noise. Finally the added white noise offsets each other by assemble average.
Not only the signal information of the original scenario is reserved, but also the mode mixing
problem can be overcome to a great extent to ensure the physical uniqueness of the
decomposition.

The procedure of EEMD includes: (1) superimpose white noise sequence with the
given amplitude on the original sequence; (2) implement EMD on the mixed signal to
obtain IMF1; (3) superimpose a noise sequence with the same amplitude on the
original sequence which has been stripped with IMF1; and (4) carry out EMD on
the new sequence to get IMF2. The above steps are repeated until different IMFs and
trend item RES are obtained.
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2.3 Seasonal-Trend Decomposition Using Loess (STL)

STL uses iterative Loess smoothing to obtain an estimate of the trend and then Loess
smoothing again to extract a changing additive seasonal component. A time series Yv are
decomposed into three components: trend Tv, seasonal term Sv, and remainder Rv, as in Eq. (1).

Yv ¼ Tv þ Sv þ Rv ð1Þ
STL is able to provide confidence intervals for multiple and complex seasonality (Cleveland
et al. 1990). However, to balance the computational efficiency, the assumption that the
seasonal components and coefficients for flexible predictors do not change quickly is taken
in this study.

2.4 Fisher’s Ordered Clustering Based on Maximum Entropy Spectral Analysis (MESA)

Frequency domain analysis is generally superior to time domain analysis in analyzing
the characteristics of signals, and the Power spectral density (PSD) describes how the
power of a signal or time series is distributed over frequency. Compared with classical
spectral estimation methods, the parametric modern spectrum analysis methods can be
used for short sequence with higher resolution. Maximum Entropy Spectral Analysis
(MESA) introduced by Burg (1967) with the basic principle of extrapolating the
autocorrelation function under the maximum entropy criterion is adopted in this study
to analyze the characteristics of the sub-sequences.

The power spectrum S(ω) of an autoregressive (AR) model can be calculated by Eq. (2):

S ωð Þ ¼ ΔtPm

1þ ∑
m

i¼1
a mð Þ
i ⋅e−jωmΔt

����
����
2 ð2Þ

where Pm is the power of the prediction error. As white noise, the error is a random variable
with normal distribution, and satisfies the maximum entropy condition. Equation (2) is thus the
computational formula of maximum entropy power spectrum.

The key of MESA is to determine the parameter of the AR model am and the prediction
error power Pm. In this study, the burg algorithm is adopted, using the sum of forward and

backward errors as the predictive error, to minimize which, the a mð Þ
m is determined, as shown in

Eq. (3).

a mð Þ
m ¼

2 ∑
N

t¼m
eþ mð Þ
t e− mð Þ

t

∑
N

t¼m
eþ mð Þ
t

� �2
þ e− mð Þ

t

� �2
� � ð3Þ

where eþ mð Þ
t and e− mð Þ

t are the m-th order forward and backward prediction errors calculated by
Eqs. (4) and (5), respectively.

eþ mð Þ
t ¼ ∑

m

j¼0
am−1j xt− j ¼ ∑

m

j¼0
am−1m− j xt−mþ j ; t ¼ m; :::;N ð4Þ
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e− mð Þ
t ¼ ∑

m

j¼0
am−1j xt−mþ j ¼ ∑

m

j¼0
am−1m− j xt− j ; t ¼ m; :::;N ð5Þ

Given a mð Þ
m , the power-density spectrum can be obtained by Eqs. (6) and (7):

Pm ¼ Pm−1 1− a mð Þ
m

�� ��2� �
ð6Þ

P0 ¼ 1

N
∑
N

j¼1
x2j ; eþ 0ð Þ

t ¼ e− 0ð Þ
t ¼ x j ð7Þ

Plot Pm of the IMFs with different frequency, and if there exists a peak, the corresponding
frequency is taken as the dominant frequency. MESA is suitable for the process with unknown
basic distribution. The disadvantages of the classical Spectral Analysis such as subjective
assumption of missing data are overcome by MESA.

With the given frequency, the IMFs are clustered by Fisher’s ordered clustering method,
which divides N-sample sequence {xi} into k classes and searches an optimal clustering
scheme to make the sum of the dispersion minimum (Fisher 1958). There are two features
of this method: one is that these N samples are ordered, and the other is that the continuity of
the sample order is maintained during the clustering without any jump. The optimal clustering
criterion is to get the minimum variance within the same class, and maximum variance among
different classes.

2.5 Rolling EEMD-ANN and EMD-ANN Hybrid Methods

ANN is a network system simulating artificial intelligence with strong ability of nonlinear
computation and learning. A neuron receives the weighted accumulation of all inputs con-
nected, and the weighted sum is compared with a threshold. If the sum is greater than the

Fig. 1 Framework of the proposed rolling EEMD-ANN hybrid method
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threshold, the artificial neuron is activated, and the signal is transmitted to the higher order
neuron associated with it.

BP (Back-Propagation)-ANN is a multi-layer feed-forward network trained by transmitting
error back, so that the weights and thresholds in the network are constantly adjusted to make
the output of the network satisfying. It has been proved mathematically that the three-layer
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Fig. 2 Decomposition results of the historical data at the Yalong river by EMD: a from the year 1990 to 1995; b
from the year 1991 to 1996

Decomposition-ANN Methods for Long-Term Discharge Prediction Based on... 3101



neural network with sigmoid nonlinear transfer function is able to arbitrarily approximate any
continuous function.

Figure 1 shows the schematic diagram of the proposed decomposition-ANN hybrid
method. The original sequence is firstly decomposed into n components by various methods,
such as EMD, EEMD, and STL in this study. W and b are the weight matrix and the threshold
vector of the neurons in the hidden layer, respectively. The sigmoid function is applied as the
transfer function φ, where the hidden layer uses tansig (.) and the output layer uses logsig (.).
The original signal is used to adjust the weight and threshold, so as to find out the intrinsic
relationship between the input and output. The BP algorithm essentially transforms a set of
sample input and output problems into a nonlinear optimization problem, and uses its gradient
to adjust the network parameters. If the output is not satisfying, the backward propagation
begins, and the error signal returns along the original path. The error is minimized by
repeatedly modifying the weights and thresholds of neurons in each layer.

The numbers of input nodes for both the training and the testing data need to be the same
for ANN, while EMD/EEMD is a data adaptive method, i.e., different data set produces
different numbers of IMF components. It is important to classify the IMFs into a settled
number of categories.

Streamflow sequence contains multiple information with complex variation charac-
teristics, such as high nonlinearity, periodicity in multiple time scales, and variability.
STL uses LOESS to decompose a time series into three sub-series, and EMD/EEMD
decompose the original signal into different IMF components with different frequency
or trends. Hence, the frequency of the sub-series is selected as the classification
criterion, estimated by MESA first, and then classified by on Fisher’s ordered
clustering to unify the number of the decomposed components, which are then taken
as the input of the ANN.

When unifying the input neurons numbers of the training and the testing data for the ANN
model, the classification number k of the Fisher’s ordered clustering method is defined in Eq.
(8) to reserve the information from the IMFs as much as possible:

Fig. 3 PSD of IMFs decomposed by EMD with testing data at the Yalongjiang River
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k ¼ Min n;mf g ð8Þ

where n and m are the number of IMFs derived from the trained and tested data of the ANN,
respectively, as shown in Fig. 1.
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Fig. 4 Sub-time series components of original dataset decomposed by STL at the Yalongjiang River
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3 Case Study

3.1 Study Cases

The hybrid methods proposed in this study are applied for the streamflow forecasting at four
hydrological stations including Tangnaihai and Lanzhou station located on the Yellow River,
and Shigu and Yalongjiang station located on the Yangtze River in China. The daily
streamflow data of 8 years are adopted in this study. The first 6 years is used to train the
BP-ANN model, while the 2nd~7th year is used for test. The established model is used to
predict the daily streamflow of the 8th year, which is compared with the historical data.

The Yellow River ranks as the sixth longest river in the world with the length of 5464 km.
Tangnaihai station is the boundary of the source region of the YellowRiver, where the annual runoff
is about 20 × 109m3. As themajor water source area, the upper reaches of theYellowRiver provides
abundant water. Recent decades, with the rapid exploitation and development of the Yellow River
Basin, the long-term streamflow forecast becomesmore andmore important for the water allocation
and management. Lanzhou Station is also on upstream of the Yellow River. The daily streamflow
time series of 8 years (from 2010 to 2017) are used for the two stations.

The Shigu station is located on the Jinshajiang River which is the upper reaches of the
Yangtze River in China. The Yangtze River is the third longest river in the world. The daily
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Fig. 5 Ten-day prediction results by the proposed hybrid methods for study cases
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streamflow time series of 8 years (from 1990 to 1997) are utilized. The Yalongjiang station is
located on Yalongjiang River which is the largest tributary of the Jinshajiang River, and also
one of the rivers with the most abundant hydropower resources in China with the annual flow
of about 1860 m3/s. The daily streamflow data from 1990 to 1997 are chosen for study.

3.2 Decomposition from EMD/EEMD

Figure 2 shows the decomposition results of the historical streamflow of the Yalongjiang River
by EMD. Figure 2a uses the training data from the year 1990 to 1995, deriving 7 IMFs and a
residual; while Fig. 2b uses the testing data from the year 1991 to 1996, and results in 8 IMFs
and a residual. Such discordance between IMFs which decomposed by EMD method proves
the necessity of Fisher’s clustering based on MESA, which helps to unify the number of inputs
for the trained and tested data into the ANN model.

3.3 Classification of IMFs by Fisher’s Ordered Clustering

For the Yalongjiang River, the PSD for each IMF of testing data can be plot as shown in Fig. 3
by using MESA, and the dominant frequency can be identified. For other study cases, the
number of IMFs for the training and testing data into the ANN model are equal.
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The IMFs of testing data shown in Fig. 2 are classified in to 8 categories for the EMD by
Fisher’s ordered clustering method which equate the number of IMFs for training data: IMF1,
IMF2, IMF3, IMF4, IMF5, IMF6, IMF7 + IMF8, and r.

3.4 Data Processing for STL

The decomposed result by STL is shown in Fig. 4. Unlike the data adaptive method such as
EMD and EEMD, STL results in three terms for any time series: seasonal term, trend term, and
residual term. The training dataset from the year 1990 to 1995 are used to decompose by STL,
as shown in Fig. 4a, and the testing dataset from the year 1991 to 1996 are used to decompose
by STL, as shown in Fig. 4b.

4 Results and Discussion

The long-term streamflow forecasting results for four study cases by the proposed
STL-ANN, EEMD-ANN, and EMD-ANN methods based on Fisher’s ordered cluster-
ing with MESA are compared in Figs. 5, 6, 7 and 8. Figures 5 and 6 show the 10-
day prediction results, the monthly means of which is presented in Figs. 7 and 8.
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It can be seen that the prediction by STL-ANN method are generally closer to the
observations than the EMD-ANN and EEMD-ANN hybrid methods from scatter plots.
STL-ANN hybrid method can result in the prediction evenly distributed on both sides of the
observation line.

The Root Mean Square Error (RMSE), Mean Absolute Error (MAE), as well as
Nash-Sutcliffe Efficiency (NSE) are used as evaluation indices in this study, as
defined from Eqs. (9) to (11), respectively. RMSE can be used to evaluate the fitting
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Fig. 8 Scatter plots of the monthly predicted and observed data for study cases

Table 1 Evaluations of the prediction by different hybrid methods

Cases EMD-ANN EEMD-ANN STL-ANN

RMSE MAE NSE RMSE MAE NSE RMSE MAE NSE

Ten-day prediction
Tangnaihai 183.78 153.98 0.406 118.47 97.33 0.753 107.86 94.88 0.795
Lanzhou 190.73 144.27 0.675 175.63 136.99 0.724 157.02 120.25 0.780
Shigu 588.44 358.72 0.652 422.56 285.80 0.821 475.20 258.24 0.773
Yalongjiang 290.77 152.83 0.676 282.49 208.55 0.694 188.38 103.80 0.864

Monthly prediction
Tangnaihai 160.31 138.85 0.763 116.21 96.62 0.875 93.82 84.85 0.919
Lanzhou 142.77 117.49 0.941 141.46 102.69 0.942 110.87 91.95 0.964
Shigu 435.36 301.83 0.827 324.54 221.19 0.904 386.35 187.90 0.864
Yalongjiang 242.89 149.19 0.786 207.30 155.43 0.844 152.84 94.35 0.915
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degree of the predicted value and the high flow observed data; while MAE is adopted
to evaluate the fitting degree of the predicted value and the observed data with
middle/low flow. NSE represents the performance of hybrid methods.

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

N
∑N

i¼1 x0i −x
p
i

� 	2r
ð9Þ

MAE ¼ 1

N
xoi −x

p
i

�� �� ð10Þ

NSE ¼ 1−
∑
n

i¼1
xoi −x

p
i

� 	2

∑
n

i¼1
xoi −xo

� �2 ð11Þ

where N denotes the number of datasets; xoi and x
p
i represent the observation and the prediction,

respectively.
The evaluation results are shown in Table 1.
Both the graphic comparison and the statistics of prediction accuracy indicate that the STL-

ANN method performs the best among the three predictive methods in this study. The NSE of
the STL-ANN hybrid model for monthly prediction are higher than 0.85, and the prediction
result is satisfying.

The EMD method might have mode mixing problem because of signal intermittency which
is defined as that a single IMF contains signals of widely disparate scales, or a signal of a
similar scale resides in different IMF components. Such problem would result in the inability
of representing instinct different time scale characteristics of original time series for those
IMFs (Wu and Huang 2009). To resolve the mode mixing problem, EEMD method was
developed. EEMD defines the true IMF component as the mean of an ensemble of trials, and
each trail consists of the original signal and a white noise with finite amplitude. The additional
white noise exists through the whole time-frequency space uniformly with the constituting
components of different scales. EEMD can eliminate the mode mixing problem to a great
extent and preserve physical uniqueness of the decomposition (Wu and Huang 2009). With the
help of the EEMD method, each component represents instinct change rule for different time
scale of the original data, therefore the accuracy of EEMD-ANN method is higher than EMD-
ANN.

5 Conclusion

As data-driven methods, ANN does not involve complex, dynamic, hydrological and hydro-
climatologic physical process in the water shed, and have shown promise in modeling and
forecasting non-linear hydrological processes. However, it has some drawbacks with non-
stationary responses. To handle such instances of “seasonality”, the input data pre-processing
is required. In this paper, a hybrid method mainly coupling EMD/ EEMD/ STL and ANN
model is proposed. The difficulty of applying EMD/EEMD/STL methods on ANN input pre-
processing lies in their self- adaptability, i.e., different number of IMFs will result from
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different original time series, which leads to the disagreement of the input data between the
training and predicting process. The Fisher’s ordered clustering is thus adopted to classify the
IMFs into a determined number of classes according to the frequency spectrum of each IMF
from MESA. Three statistical performance evaluation measures (MAE, RMSE, and NSE) are
adopted to evaluate various methods. The statistical results indicates that the proposed STL-
ANN method can perform superiorly to the other hybrid methods, which is conducive to long-
term hydrological prediction.
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