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Abstract
Water resources scarcity and competition among stakeholders in water allocation always
highlights the optimal operation of water resources. This research examines the operation of
a multi-purpose water reservoir aiming at providing agricultural, urban, industrial and envi-
ronmental demands. A new evolutionary Hybrid Algorithm (integrating Bat Algorithm (BA)
and Particle Swarm Algorithm (PSA)) first specified total monthly water release to meet the
total monthly needs (agricultural, urban, industrial and environmental) to operate the optimal
reservoir. The new Hybrid Algorithm (HA) helps BA and PSA to increase the convergence
rate and achieve an optimal absolute response by eliminating the weak responses of one
algorithm and substituting the strong responses of the other algorithm. Released water was
then allocated to different demands based on the proportional method in the Game Theory
(GT). The optimal operation of Shahid Dam Reservoir in Fars, southern Iran is the case study
of this research, which has been a serious challenge for decision makers to meet various water
demands. The convergence rate of HAwas more than that of BA and PSA based on the results.
Moreover, the HAwith volumetric reliability of 0.92, 0.89, 0.79 and 0.75 was used to meet the
urban, environmental, agricultural and industrial demands; while, the volumetric reliability
indices of BA and PSAwere less than the HA. Also, the mean water release values by the HA
met different demands much better than BA and PSA in a period of five years.
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1 Introduction

One of the significant issues for water managers and decision makers around the world have
been intense and consecutive droughts (Ehteram et al. 2018a). Increased demands and the
number of consumers make decisions about planning to manage the water resources signifi-
cantly. Water release rates and time of release for downstream users are important issues for
decision makers and consumers (Anand et al. 2018). Therefore, the best way to meet the water
demands is the optimal operation of water resources (Afshar and Hajiabadi 2018).

Optimal reservoir operation seeks to meet downstream demands using the highest reliability
index, and prevent reduction of reservoir volume lower than the permitted values (Han et al.
2018). Researchers have used artificial intelligence and evolutionary algorithms in this regard
during the recent years. Evolutionary algorithms have high ability to solve issues according to
the optimal reservoir operation (Bertoni et al. 2018). Optimal reservoir operation issues include
one or more objective function and constraints and the problem will have the optimal response
based on the satisfaction of objective function and the constraints. Previous studies have
shown that evolutionary algorithms have high adaptation to the hydraulic and hydrologic
conditions of the problem and are highly able to resolve optimization problems. In addition,
they can reduce computation time, solve problems using more than one objective function,
achieve optimal responses, and add different operators to increase the accuracy of responses
(Ehteram et al. 2018b).

Applying game theory is another method to solve the water resources management issues
(Moradi and Mohammadi Limaei 2018). This method is used where water is going to be
allocated among several consumers or various objectives such as agricultural, urban, industrial
and environmental. Various methods of game theory have been used in recent years to solve
water allocation problems which have been successful in various sectors including irrigation,
power generation and optimal production of agricultural products (Game et al. 2018; Adhami
et al. 2018; He et al. 2018).

Operation of multi-purpose or multi-objective systems is one of the important issues to
manage water resources, where the reservoir is responsible for meeting various demands.
These demands can be available in the form of an optimization problem with different
objective functions, or in the framework of constraints of an optimization problem with on
objective function. Thus, in both cases, the complexity of solving the problem is increased
(Ahmad et al. 2018; Jiang and Liu 2018).

Combining evolutionary algorithms and game theory can be one approach to plan and
manage water resources of multi-purpose or multi-objective systems. For instance, the volume
of required water release can be determined for each operation period or month based on the
total needs. This process can be done in the form of an optimization problem to operate the
reservoir in an optimal way with one objective function and several constraints (Daddi et al.
2018). The volume of water obtained at the end of each month is then allocated to the
consumers using one of the water allocation methods and the game theory (Mochizuki et al.
2018). This strategy leads to manage the multi-purpose systems with various objectives
without applying multi-objective algorithms with several constraints.

This study seeks to manage the operation of a multi-purpose system (Shahid Dam Reser-
voir) in Fars, southern Iran, aiming at meeting the agricultural, environmental, urban and
industrial water demands. In this respect, a new Hybrid Algorithm, which combines Bat
Algorithm and Particle Swarm Algorithm, is used to optimize total water release volume from
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the reservoir. Then, one of the methods in the game theory is applied to allocate this water to
different stakeholders (agriculture, urban, environment and industry).

Fallah-Mehdipour et al. (2012) used Genetic Programming to calculate optimal water
release rate from a reservoir to meet different demands. They then used cooperative-games
method in order to allocate this water to agricultural and environmental sectors. The results
indicated that the amount of water release based on the Genetic Programming approach
provided more reliable water volume to meet the demands as compared to Genetic
Algorithm. Ostadrahimi et al. (2012) used PSA in order to operate a multi-reservoir system
aiming at increasing hydroelectric energy generation. The results indicated that PSA faced
premature convergence during the problem-solving process, which was resolved by modifying
the inertial coefficients. Also, the method of non-cooperative games was also used to allocate
water to various systems to produce the power. The convergence rate and power generation of
PSAwas higher than GA and Harmonic Algorithm.

Taghian et al. (2013) used GA and non-linear programming method in order to extract the
rule curves to meet downstream irrigation demands. Results indicated that the released water
reduced the amount of water shortage based on the GA by 20% compared to the non-linear
programming method. Also, although the GA’s responses were more accurate than the non-
linear programming method, but its convergence rate was not desirable. Wu and Chen (2013)
used the improved PSA in order to optimize the reservoir system operation to increase the
energy generation. They also used non-cooperative and cooperative games to allocate the
released water among two power plants. Results indicated that both power plants produce high
hydroelectric energy with 90% reliability.

Bolouri-Yazdeli et al. (2014) used GA and non-linear rule curve equations to specify the
optimal amount of water release from reservoir. Results showed that the equations for which
released rate was based on the non-linear third-order power of the inflow and storage, well
predicted the amount of downstream demands. Madani and Hooshyar (2014) combined Game
Theory and Reinforcement Learning (GT-RL). RL was used to find the systems’ best response
strategies and benefits and GTwas used to allocate the benefits. Steeger et al. (2014) used the
cooperative GT as well as GA, PSA and Harmonic Algorithm to operate a reservoir and
allocate water to downstream power plants. Results indicated that Harmonic Algorithm has
higher convergence rate compared to GA and PSA. Also, the allocation of water based on the
theory of cooperative games caused to increase the total electricity generation capacity by 20%
compared to the current reservoir operation conditions.

Dinar and Hogarth (2015) examined the application of different methods in water alloca-
tion. Their study indicated that solving the reservoir-operation problems with evolutionary
algorithms and game theory has simpler approach, more accurate results, in lesser time periods
as compared to multi-objective algorithms. Skardi et al. (2015) used neural network and Ant
Colony Algorithm in order to determine the amount of water release and extract rule curves.
They also used GT and Shapley and Nash methods to allocate the water among downstream
consumers. Results indicated that Nash method caused higher downstream consumer
satisfaction. Heydari et al. (2015) used Harmony Algorithm, GA, cooperative GT, and non-
cooperative GT to operate a multi-reservoir system and allocate the released water to
downstream power plants in order to increase the profits of hydroelectric generation. Results
indicated that Harmony Algorithm released more water and cooperative GT generated more
hydroelectric.

Ehteram et al. (2018a) used Spider Monkey Optimization Algorithm to optimize the
function of a two-reservoir system to meet the irrigation needs. Based on the results, the
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system’s vulnerability was reduced by 12 and 24% compared to PSA and GA. Ehteram et al.
(2018b) achieved the similar results using Kidney Algorithm (KA), GA and PSA and some
other algorithms. The KAwas superior relative to GA and PSA.

The above literature review indicates that evolutionary algorithms, GT and Nash method
are successfully applied to solve the optimal reservoir-operation problems. But each algorithm
has its own advantages and disadvantages according to convergence rate, getting trapped in
local optimal points, determination of random parameters, or complexity of the structure.
Therefore, this study seeks to alleviate some of the problems by presenting a new Hybrid
Algorithm (HA), which is based on the BA and PSA. The cooperative method in GT is then
used to allocate the released water. Figure 1 shows how to use the methods.

2 Materials and Methods

2.1 Bat Algorithm

Bats are creatures which can produce sound and then receive its reflection from the surround-
ing environment. Bats can detect an obstacle or their food by producing loud sounds and

Consider released water as 

decision variable with 

unknown value for reservoir 

operation

Start

Evaluate the objective function based on 

Hybrid Algorithm of BA and PSOA

Extract the released water or rule curves

for each operation period based on total 

demands (Urban +Environmental + 

Agricultural + Industrial)

Water allocation with consideration of total 

released water with proportional method 

and game theory

Allocation to 
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demands Allocation to 

Environmental

demands

Allocation to 
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Allocation to 

Industrial 

demands 

Fig. 1 Method of performing the procedure
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receiving the echoes from the surrounding environment through strong audio receivers. BA
has the following assumptions (Bozorg-Haddad et al. 2014):

a) All bats are equipped with sound capabilities and strong audio receivers that can detect an
obstacle from food.

b) Bats have random velocity vl in position yl with sound frequency fl. The acoustic
amplitude of the bat is represented by symbol A0 and the wavelength of bat sound is
represented by symbol λ.

c) The amplitude of bat sound varies from A0 to Amin.

The sounds produced by the bat have an acoustic pulse rate of rl, which takes values between
zero and 1. The velocity, position, and frequency of bats are updated based on the following
equations:

f l ¼ f min þ f max− f minð Þ � β ð1Þ

vl tð Þ ¼ yl t−1ð Þ−Y*½ � � f l ð2Þ

yl tð Þ ¼ yl t−1ð Þ þ vl tð Þ:t ð3Þ
Where fl represents sound frequency of the bat, fmin is minimum frequency, fmax is maximum
frequency, β is a random number, Y∗ is the best bat position, and vl(t) is bat velocity. The local
search process for bats is calculated as:

y tð Þ ¼ y t−1ð Þ þ εA tð Þ ð4Þ
Where, ε is a random number in the range of 1 and − 1 and A(t) represents amplitude of the bat
sound. At each stage, the bat sound amplitude and sound pulse rate are updated. The bat’s
amplitude is decreased and its sound pulse rate is rised when it finds its bait. The bat sound
pulse rate is updated based on the following equation:

rtþ1
l ¼ r0l 1−exp −γtð Þ½ �Atþ1

l ¼ αAt
l ð5Þ

Where, α and γ are constant values. Figure 2 presents the flowchart of BA.

2.2 Particle Swarm Algorithm

If the search space of the problem is considered with D dimensions, the particles’ position will
be displayed as Xi = (xi1, xi2, ..., xiD). Moreover, the particle velocity is represented by the
component Vi = (vi1, vi2, ..., viD). The best particle position in each replication is also represent-
ed by the symbol Pi = (pi1, pi2, ..., piD) and the g symbol represents the best position of a
particle in all replications. In the PSA, the velocity and particle position are updated based on
the following equations (Ehteram et al. 2018a):

vnþ1
id ¼ χ wvnid þ c1r1

pnid−x
n
id

� �
Δt

þ c2r2
pngd−x

n
id

� �
Δt

2
4

3
5 ð6Þ
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xnþ1
id ¼ xnid þΔtvnid ð7Þ

where, vnþ1
id represents the particle velocity at the new time step, w is inertia coefficient, c1 and

c2 are acceleration coefficients,Δt is time step, n is time index, χ is contraction coefficient, and
xnþ1
id is new particle position. First, parameters of the PSA are set. Decision variables are then
inserted into the algorithm in the form of position and initial velocity of the particles and the
initial population. The objective function is calculated for each particle. The best particle
position is determined and the position and particle velocity are updated based on eqs. (6) and
(7), and the cycle continues until the completion of the convergence process.

2.3 The Hybrid Algorithm

The structure of the HA is based on the relationship between the two algorithms (BA and
PSA). The main idea of the HA is the substitution of weak individuals of an algorithm with
stronger ones of the other algorithm. Several parallel population-groups work separately on the
HA. The BA and PSA operate in independent cycles, and the best particles and best position of
the bats are specified after calculating the objective function for particles and bats. The

Fig. 2 Flowchart of the Bat Algorithm (Bozorg-Haddad et al. 2014)
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substitution of bats is then done for the BA with better position with weaker particles for the
PSA, as well as substitution of particles with better position with bats with weaker position. If
the total population is equal to N, then the bat population and PS population will be equal to N

2 .

Figure 3 shows the relationship among two algorithms. In this figure, R represents the number
of times that BA and PSA substitute bats and particles.

The steps in the HA are as follows:

1. First, random parameters of both algorithms are set based on the initialization.
2. Value of the objective function is calculated separately for both bats and particles.
3. Particle velocity and position are updated for PSA based on the eqs. (6) and (7).
4. Position, velocity and frequency of the bats are updated based on eqs. (1) to (3).
5. K bats or particles with better positions are selected in both algorithms and then these bats

or particles substitute the weaker ones of the other algorithm.
6. This process continues until convergence is achieved.

2.4 Game Theory

Shortage of water resources and various droughts have resulted in serious competition among
different users of water to allocate the water resources (Shen et al. 2018). Game Theory (GT) is
a significant strategy that plays an effective and decisive role to allocate the water among users
of water with different hydraulic and hydrologic conditions. Each stakeholder has its own
objective function and each stakeholder or decision-maker attempts to optimize and satisfy its
own objective function regardless of other objective functions in issues related to GT, (Faria
et al. 2018). This results of competition among stakeholders for water resources allocation (Du
et al. 2018).

Different studies have been conducted on GT. The Proportional Method (PM), with
improved coefficients, is one of the most widely used methods in water allocation issues such
as allocating irrigation water to farmers, allocating groundwater, pollutant-related issues and
river inflow to reservoirs (Bozorg-Haddad et al. 2018a). The PM in cooperative GT has high
capabilities in balancing between the stakeholders and choosing different policies. This
method could be used in this case study due to a serious competition between the stakeholders
to allocate the water. In addition, the PM is the best option to allocate the water due to its
serious shortage since the volume of available water is usually less than the required volume
(Madani et al. 2017; Kruitwagen et al. 2017).

If the amount of available water is represented by Et and the stakeholder’s claim is denoted
by Ct, then Et ≤Ct is the water-short conditions and the shortage (Yt) will be calculated as:

Y t ¼ Ct−Et ð8Þ
The PM considers water allocation to i-th stakeholder (αi, t) as:

αi;t ¼ wt � ci;t ð9Þ

wt ¼ Et

Ct
ð10Þ

Where, wt is proportion coefficient. The following nonlinear equation is used to calculate the
shortage fraction (yi, t) as well:
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yi;t ¼ ci;t � 1−wi;t
� � ð11Þ

Where, wi, t represents the amount of water supplied to each stakeholder, which is calculated
based on the optimization process and the following nonlinear equations. Considering that the
present research aims at optimal reservoir operation and allocation of released water to
agricultural, urban, industrial and environmental demands, thus, there are four values of wi, t

(Bozorg-Haddad et al. 2018b).

Minimize Oð Þ ¼ ∑
T

t¼1
Y t− ∑

4

i¼1
yi;t

� �
ð12Þ

subject to :
0:95≤w1;t ≤1

ð13Þ

Fig. 3 Hybrid Algorithm of BA and PSOA
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0≤w2;t ≤1
0≤w3;t ≤1
0≤w4;t ≤1
w4≤w3≤w2≤w1

ð14Þ

Where, O represents the objective function, and w1, t, w2, t, w3, t and w4, t are allocated water
percent to urban, environment, agriculture industrial demands. Equation (13) indicates that the
urban water allocation should not be less than 95% of the total demands.

3 Case Study

3.1 Study Site

The case study is operation of Shahid Dam Reservoir, located in the north of Fars and near to
Semirom city in Isfahan, southern Iran. The earth dam has a crest length of 395 m, height of
80.5 m, and body volume 2.98 million cubic meters (MCM). Normally, the reservoir volume is
150 MCM and its useful volume is 133 MCM. Reservoir outflow has always been a
controversial issue among decision-makers such that it could meet the agricultural, urban,
industrial and environmental demands.

Therefore, the initial parameters of BA and PSA are first determined. Total volume of water
to be released from the reservoir is then determined based on the total declared demands
(agricultural, industrial, urban and environmental) and applying an optimization algorithm.
Figure 4 shows this process schematically. This study considers 5 years of the Shahid
Reservoir operation period (1996-1997 to 2000-2001). The standard precipitation index
(SPI) of the basin in this period was negative, drought conditions have prevailed, the volume
of available water was less than the volume of demands on the basis of published reports by
Iran Water Resources Management Organization and thus optimal operation and allocation of
required water has significant importance in this basin. Figure 5 shows the location of dam and
the inflow water into the Shahid Reservoir for the 5-year period.

The objective function is defined based on minimizing deviation of released water and the
total downstream demands:

Minimize Zð Þ ¼ ∑
T

t¼1

Dt−Rt

Dt

� �
ð15Þ

Where, Z is objective function, Dt is total monthly downstream demands by the stakeholders
(agricultural, industrial, environmental and urban), Rt is total monthly water release and T is
total number of operation periods (months).

The continuity equation to calculate the storage at each month is as follows:

Stþ1 ¼ St þ I t−Rt−SPt−Losst ð16Þ
Where, St + 1 is storage at the new time, It is inflow, Rt is released water, SPt is spill and Losst is
water loss from the reservoir. Reservoir loss, which refers to evaporation, is calculated as:

Losst ¼ EVt � At ð17Þ
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Where, EVt is depth of evaporation from the reservoir, and At is average reservoir level at
time t.

The calculated storage is compared to the values of problem constraints (eq. 18). If the
calculated reservoir storage is not in the permissible range, penalty functions (eqs. 19 and 20)
will be then used:

Start
Compute the ini�al 

parameters

Generate a random sample of released 

water

Compute the con�nuity 
equa�on

Does the reservoir 
storage have a 

reasonable value?

Compute the 
penalty func�on

No
Yes Does the released water have an allowable value?

No

Compute the penalty func�on

Yes

Compute the objec�ve func�on

t=t+1

Yes

No

Consider the Hybrid Algorithm to compute the total op�mum released water for total demands

Is the convergence criteria sa�sfied?

Yes

Allocate total released water based on 
game theory to environmental, urban, 

industrial and agricultural demands

No

Shahid Dam

Inflow

Total released water based on op�miza�on process and total claimed demands 
in the downstream

Allocate water to 
environmental 

demands

Allocate water 
to urban 
demands

Allocate water 
to agricultural 

demands

Allocate water to 
industrial 
demands

Fig. 4 Structure of reservoir operation and water allocation of Shahid Dam
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(a)

(b)
Fig. 5 a Dam location, b Inflow to Shahid Dam
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Smin≤St ≤Smax ð18Þ

PF1 ¼ a
jSmin−Stj
Smax−Smin

� �2

þ b ð19Þ

PF2 ¼ c
jSt−Smaxj
Smax−Smin

� �2

þ d ð20Þ

Also, the amount of released water will be compared to the permissible water-release values
(eq. 21), and if it is not within the permitted range, penalty functions (eqs. 22 and 23) will be
then used:

0≤Rt ≤Dt ð21Þ

PF3 ¼ e
jRt−Dmaxj
Dmax

� �2

þ f ð22Þ

PF4 ¼ g
jRtj
Dt

� �
þ h ð23Þ

Where,

Smax maximum storage,
Smin minimum storage,
Dmax maximum demand,
c, d, e,f, g and h constant coefficients

3.2 Evaluation Indices

It is possible to evaluate the evolutionary algorithms used in this study to manage the reservoir
operation through various indices (Hashimoto et al. 1982):

3.2.1 Reliability Index

Reservoirs or water resources systems should be able to meet downstream needs. There are
two types of indices for water system reliability. The first one is known as time reliability
which is defined according to the water system or reservoir should not encounter with the
probability of failure or inability to meet the demands. The second one is volumetric reliability,
which is according to the ratio of released water to the total needs (Hashimoto et al. 1982):

Dt
i ¼

X i
target;t−X

i
Supplied;t←if X i

target;t

� �
> X i

Supplied;t

0←if X i
target;t

� �
¼ X i

Supplied;t

� �
2
4

3
5

RTi ¼ No:of Timesð ÞDt
i ¼ 0

T

ð24Þ

RVt ¼
∑
T

t¼1
X i

target;t−X
i
Supplied;t

� �

∑
T

t¼1
X i

target;t

ð25Þ
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Where, RTt is time-reliability index, RVt is volume-reliability index, X i
target;t: water demand for

the ith user, X i
Supplied;t:water supplied for the ith user, and T is total number of reservoir

operation periods. The higher percentage for these indices represents the more desirable
performance of the system (the algorithms in this study).

3.2.2 Resiliency Index

The resiliency index indicates the quality and rate of the system resiliency after the failure
periods (fail to meet the demands in the critical and drought periods) to normal conditions:

Re ¼ NO:of timesð ÞDt
i ¼ 0follows Dt

i

� �
> 0

NO:of timesð ÞDt
i > 0 occuredð Þ ð26Þ

Where in, Re is resiliency index,

3.2.3 Vulnerability Index

The vulnerability index examines the water shortage after water release planning for the
reservoir. This index indicates average water shortage in each failure period:

Vul ¼

∑
t¼T

t¼0
Dt

i

No:of timesð ÞDt
i > 0 occuredð Þ

water demandi
� � ð27Þ

Where,

Vul is vulnerability index and
Max(shk) is maximum shortage occurred during the operation period.

3.2.4 Statistical Indices

The mean absolute error (MAE) and root mean square error (RMSE) indices were used in
order to evaluate the evolutionary algorithms in meeting the water demands and management
of Shahid Reservoir operation:

MAE ¼
∑
T

t¼1
jDt−Rtj
T

ð28Þ

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
T

t¼1

Dt−Rtð Þ2
T

s
ð29Þ

3.3 Multi Reservoir Operation

The problem of the 4-reservoir system is considered as one of the benchmark issues and
functions that has always been of interest to researchers for evaluating new optimization
algorithms. Having multiple constraints and, in addition, multiple reservoir systems, makes it
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possible to evaluate an evolutionary algorithm well. The objective function is to maximize the
profit from the production of hydropower energy in 12 periods:

MaximizeB ¼ ∑
R

r¼1
∑
T

t¼1
br tð ÞRer tð Þ ð30Þ

where, B the system total profit, r is the reservoir number, t is the period number, T is the total
number of periods, Rer(t) is water release and br(t) is the profit of releasing water from each
reservoir. The continuity equation is based on the following relation:

Sr t þ 1ð Þ ¼ Sr tð Þ þ I r tð Þ−RCMR�RRer tð Þ ð31Þ

where, Sr(t + 1) is the reservoir storage at time t + 1, Sr(t) is the reservoir storage at time t, and
Ir(t) is the reservoir inlet and RCMR × R is the r-order matrix of the reservoir connections that is
based on the following relation:

RCM 4�4 ¼
−1 0 0 0
0 −1 0 0
0 þ1 −1 0
þ1 0 þ1 −1

2
664

3
775 ð32Þ

Figure 1 illustrates the 4-reservoir system.
The reservoir constraints in relation with release and storage of water are as follows:

Reminr tð Þ≤Rer tð Þ≤Rmaxr tð Þ ð33Þ

where, Reminr(t) is the minimum amount of water release.

Sminr tð Þ≤Sr tð Þ≤Smaxr tð Þ ð34Þ

where, Sminr(t) is the minimum storage of the reservoir and Smaxr(t) is its maximum value.
Another constraint regarding the reservoir storage at the start and the end of the operation
period is also considered based on the following relation:

P1;t ¼ 0←if Sr tð Þ > Sminr tð Þð Þ
g � Sr tð Þ−Smaxr tð Þð Þ2←otherwise

	 

ð35Þ

P2;t ¼ 0←if Sr tð Þ < Smaxrð Þ
g � Sr tð Þ−Smaxr tð Þ½ �2←otherwise

	 

ð36Þ

P3;t ¼
0←if Sr tð Þ > Stargetr tð Þð Þ
g � Stargetr tð Þ−Sr T þ 1ð Þ� �2

←otheriwse

	 

ð37Þ

P1, t, P2, t and P3, t are penalty functions and g is constant coefficient. The values of the penalty
functions will be reduced from the objective function.
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4 Results and Discussion

4.1 Sensitivity Analysis

Evolutionary algorithms have some random parameters and require accurate sensitivity
analysis. Sensitivity analysis means examining the changes in a parameter versus
changes of the objective function. Since the objective is to minimize the objective
function, thus, if the value of objective function against the value of one parameter
reaches its minimum, this parameter value is then considered as the best parameter to
be used in the optimization process. For instance, Table 1 shows the sensitivity
analysis of parameters for the algorithms in our case study. For example, if the
population of BA and PSA is 50, the objective function becomes minimum (0.98).
Also, maximum frequency of BA was different from 3 to 9 Hz, and the best value of
the objective function (0.97) was obtained by maximum frequency of 7 Hz. T
Minimum frequencies of 2 Hz was used to obtain the best value of the objective
function (0.98). The inertia coefficient of PSA was different from 0.3 to 0.9, and the
best value of the objective function (0.98) pertained to inertia coefficient of 0.5.
Table 1 shows other coefficients of HA .

4.2 Results of 10 Random Implementations

Table 2 shows the results of 10 random runs of different algorithms. These results are
significant because they represent the quality of responses provided by different algorithms:

a) The average response obtained for the HA is equal to 0.98, which is 12.5% and 19.6%
lower than the PSA and BA, respectively. Therefore, the HA has minimized the objective
function and has reduced the difference between water demands and released water from
the Shahid Reservoir better than BA and PSA.

b) The time is calculated 12 s for HA, which is reduced by 20% and 29% compared to BA
and PSA.

c) The coefficient of variation of HA is less than the other two algorithms, indicating that
even the results of one program run of HA are reliable.

Table 1 Results of sensitivity analysis for Hybrid Algorithm

Population
size

Objective
function

Maximum
frequency
(HZ)

Objective
function

Minimum
frequency
(HZ)

Objective
function

Inertia
coeffi-
cient

Objective
function

10 1.44 3 1.33 1 1.21 0.3 1.10
30 1.12. 5 1.12 2 0.98 0.5 0.98
50 0.98 7 0.97 3 1.14 0.7 1.12
70 1.11 9 1.14 4 1.19 0.9 1.15
c1 = c2 Objective

function
Maximum

loudness
(db)

Objective
function

1.6 1.15 0.3 1.10
1.80 1.01 0.50 1.03
2.0 0.90 0.70 0.98
2.2 1.09 0.90 1.12
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d) Figure 6 shows the convergence of different algorithms. It indicates that HA converged
faster than BA and PSA.

4.3 The Allocated Water to Different Demands

Table 3 shows the allocated water to different demands. The time reliability-index, based on
the HA, for urban demands is equal to 0.98. The lowest index (0.65) belongs to the agricultural
sector. This means that meeting the urban water demands, based on the HA, is related to the
higher probability of non-failure. Also, it is clear that more volume of urban water demands are
provided when volumetric reliability-index values are compared to each other, based on the
HA and various demands. The volumetric reliability-index of urban demands by HA is 0.92
and that of agricultural demands is 0.75. Therefore, less volume of agricultural water demands
is met by the HA and PM in GT. Also, HA has the more value for SI index compared to the
other methods.

Table 2 Results of 10 random runs for different algorithms

Run Hybrid Algorithm Bat Algorithm Particle Swarm Algorithm

1 0.98 1.11 1.21
2 0.97 1.12 1.24
3 0.99 1.14 1.25
4 0.98 1.11 1.21
5 0.98 1.11 1.21
6 0.98 1.11 1.21
7 0.98 1.11 1.21
8 0.98 1.11 1.21
9 0.98 1.11 1.21
10 0.98 1.11 1.21
Average 0.98 1.12 1.22
Coefficient of variation 0.003 0.005 0.007
Computational time (s) 12 15 17
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Fig. 6 Convergence trend for different algorithms
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The vulnerability value is 0.005 × 106 m3 for HA and urban water demand; while the
agricultural sector has the highest vulnerability value (0.24 × 106 m3), which indicates that the
higher shortages are supposed to be observed in the agricultural sector during the reservoir
operation period. Also, resilience coefficient of different water demands in Table 3 shows that
the HA meets urban demands better than agricultural demands (Re=0.99 vs. 0.61). Comparing
the results of MAE and RMSE shows that these indices for HA are better than for BA and
PSA. Also, comparing the time and volume reliability of BA and PSA shows that these indices
are lower than BA for PSA. In general, HA, in cooperation with GT, outperformed BA and
PSA in providing water demands of different sectors, leaving the failures and reducing the
maximum water shortages. Figure 7 shows how different demands are provided. Average
urban water demand was 4.6 MCM, and the average released water volumes for urban
consumption by HA, BA and PSAwere 4.2, 3.8 and 3.2 MCM.

Moreover, the highest demand belongs to the agricultural sector. As Table 3 shows, the
volumetric and time reliability in the agricultural sector have a smaller value for all the
algorithms compared to other sectors. The average demand in the agricultural sector for 5-
year period was 14.97 MCM, and water released by HA, BA and PSA was equal to 14.74,
12.01 and 11.99, indicating the outperformance of HA. The performance of HAwas good in
other two sectors too. Bozorg-Hadad et al. (2018b) used a standard operation policy (SOP) and
genetic programming (GP) for optimal operation of the mentioned reservoir. Comparing the
results of the hybrid algorithm shows that the volumetric reliability for genetic programming
and standard operation policy for all water supply sectors is less than the new hybrid algorithm.
For example, volumetric reliability value is equal to 87% for urban sector and 82%, based on
genetic programming and standard operation policy, while this coefficient is 92% in urban
section. Also, the algorithm in other sections and indexes has been able to improve the results
of genetic programming and standard operating policy methods.

4.4 Discussion about Multi Reservoir System

Table 4 presents the sensitivity analysis of the hybrid algorithm. The objective function
of the 4-resvoir system is to increase energy production, and thus, the values of the

Table 3 Different indices in allocation of water to various demands by the three algorithms

Demand RTt RVt Vul (106 m3) Re SI MAE (106 m3) RMSE (106 m3)

Hybrid Algorithm
Urban 0.98 0.92 0.005 0.99 0.97 0.21 0.24
Environmental 0.90 0.89 0.21 0.87 0.89 0.23 0.25
Industrial 0.89 0.79 0.22 0.75 0.88 0.29 0.31
Agricultural 0.65 0.75 0.24 0.61 0.87 0.33 0.35

Bat Algorithm
Urban 0.96 0.91 0.007 0.97 0.89 0.22 0.27
Environmental 0.88 0.87 0.39 0.86 0.87 0.24 0.29
Industrial 0.85 0.77 0.44 0.72 0.86 0.31 0.33
Agricultural 0.63 0.74 0.49 0.60 0.84 0.35 0.37

Particle Swarm Algorithm
Urban 0.94 0.90 0.009 0.95 0.85 0.24 0.32
Environmental 0.85 0.86 0.41 0.84 0.84 0.26 0.41
Industrial 0.82 0.75 0.47 0.70 0.83 0.32 0.48
Agricultural 0.60 0.72 0.55 0.58 0.82 0.37 0.51
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parameters that can maximize the objective function are known as the desired value. For
instance, the most appropriate population is equal to 50, in which the objective function
has its highest value, which is equal to 308.29. Moreover, the best values of maximum
frequency parameters, minimum frequency and loudness are equal to 7, 2, and 0.5. Other
parameters are shown in Tables 4 and 5. Table 6 shows the results of 10 random runs,
based on which, the average of the 10 HA runs (i.e., equalling 308.29) is greater than the
two other algorithms. Also, the calculated value is perfectly consistent with the value
obtained from the Lingo software, as the absolute optimum. In addition, the answers
obtained from HA are of less variation coefficients compared with the bat and particle
swarm algorithms. In the case of comparing the results with other studies, it can be seen
that HA has achieved a higher value of the objective function that is equivalent to higher
profits in comparison with other methods such as WCA, FA, MFA and HBMO and
addition, this values is obtained based on less NFE, which indicates the better ability of
the new hybrid algorithm. Figure 8 also presents the values of water release and storage
associated with the hybrid algorithm and the convergences of different algorithms are
compared, based on which the new hybrid algorithm has been able to achieve a higher
objective function with better convergence speed.

Table 4 Information and details for the multi reservoir system

a
Period
Data Reservoir 1 2 3 4 5 6 7 8 9 10 11 12
Net inflow to reservoir

(unit)
1 2 2 2 2 2 2 2 2 2 2 2 2
2 3 3 3 3 3 3 3 3 3 3 3 3
3 0 0 0 0 0 0 0 0 0 0 0 0
4 0 0 0 0 0 0 0 0 0 0 0 0

Maximum allow able
reservoirs storage

1 10 10 10 10 10 10 10 10 10 10 10 10
2 10 10 10 10 10 10 10 10 10 10 10 10
3 10 10 10 10 10 10 10 10 10 10 10 10
4 15 15 15 15 15 15 15 15 15 15 15 15

Thebenefit (unit) 1 1.1 1.0 1 1.2 1.8 2.5 2.2 2.0 1.8 2.2 1.8 1.4
2 1.4 1.1 1.1 1.0 2.0 1.8 2.5 2.2 2.0 1.8 2.2 1.8
3 1.0 1.0 1.2 1.8 2.5 2.2 2.0 1.8 2.2 1.8 1.4 1.1
4 2.6 2.9 3.6 4.4 4.2 4.0 3.8 1.4 3.6 3.1 2.7 2.5

Table 5 Sensitivity Analysis for multi reservoir system

Population
size

Objective
function

Maximum
frequency
(HZ)

Objective
function

Minimum
frequency
(HZ)

Objective
function

Inertia
Wei-
ght

Objective
function

10 307.91 3 307.76 1 308.01 0.3 308.05
30 307.99 5 307.91 2 308.29 0.5 308.12
50 308.29 7 308.29 3 308.24 0.70 308.29
70 308.21 9 308.10 4 308.12 0.90 308.11
c1 = c2 Objective

function
Maximum

loudness (db)
Objective

function
1.6 307.85 0.3 308.12
1.80 308.21 0.50 308.29
2.0 308.29 0.70 308.10
2.2 308.11 0.90 308.14
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5 Conclusion

Shortage of water resources, optimal exploitation of these resources and significance of water-
allocation studies make optimal reservoir-operation a priority among decision-makers. This
study tried to optimize the Shahid Dam Reservoir operation aiming at providing various
demands (agricultural, environmental, industrial and urban). First, a new evolutionary Hybrid
Algorithm was used to calculate total monthly volume of needed water, which is a combina-
tion of Particle Swarm Algorithm and Bat Algorithm. Removing the weak responses from one
algorithm and substituting it with the strong responses of the other algorithm developed the
new algorithm. This issue increased the convergence rate of Bat Algorithm, as well as
resolving the problem of immature responses of Particle Swarm Algorithm. The released
water from the reservoir was then allocated to each downstream need based on the Propor-
tional Method in Game Theory. Based on the results, the average responses obtained for the
objective function by the Hybrid Algorithm was better than the Particle Swarm and Bat
Algorithms. In addition, the computation time by the Hybrid Algorithm was less than the
other two algorithms. Also, the values of different evaluation indices confirmed the
superiority of the Hybrid Algorithm. For example, the RMSE for environmental demands
was equal to 0.25 MCM based on the Hybrid Algorithm, while it was 0.29 and 0.41
MCM for Bat and Particle Swarm Algorithms. The volumetric reliability index for
agricultural sector was 0.75 based on the Hybrid Algorithm; while, it was 0.74 and
0.72 for the Bat and Particle Swarm Algorithms. In general, the method of water release
by the Hybrid Algorithm to meet different water demands outperformed other algo-
rithms. It is recommended that in the future studies, water allocation can be conducted

Table 6 Ten random results for the multi reservoir system

Run Hybrid algorithm Bat algorithm Particle swarm
algorithm

1 308.24 308.19 308.01
2 308.29 308.20 307.89
3 308.29 308.20 308.01
4 308.29 308.20 308.01
5 308.29 308.20 308.01
6 308.29 308.20 308.01
7 308.29 308.20 308.01
8 308.29 308.20 308.01
9 308.29 308.22 308.01
10 308.29 308.22 308.01
Average 308.28 308.20 307.99
Coefficient of

variation
0.00001 0.00002 0.0001

Global solution
(Lingo)

308.29

Garousi-Nejad et al.
(2016)

Method Number of functional
evaluations (NFE)

Objective function
value

LP – 308.26
Water cycle algorithm (WCA) 1,100,000 307.500
Firefly algorithm (FA) 500,000 306.25
Modified firefly algorithm (MFA) 500,000 308.25
Honey be mating optimization

algorithm (HBMO)
1,100,000 308.070

HA 300,000 308.29
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based on different Game Theory policies, such that the results are associated with further
promotions.
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