
Remotely Sensed Methodologies for Crop Water Availability
and Requirements in Precision Farming
of Vulnerable Agriculture

Nicolas R. Dalezios1,2 & Nicholas Dercas2 & Nicos V. Spyropoulos3 &

Emmanouil Psomiadis2

Received: 1 December 2017 /Accepted: 4 December 2018 /
Published online: 4 January 2019
# Springer Nature B.V. 2019

Abstract
Agriculture is mainly impacted by water availability. Differences in climate conditions and the
appearance of severe events, like droughts, has a significant imprint on local, regional and
global agricultural productivity. The goal of this paper is to present remotely sensed approaches
for water availability and requirements in vulnerable agriculture. Earth Observation (EO) data
contribute to precision agriculture for efficient crop monitoring and irrigation management. A
drought susceptible region considered as vulnerable farming was chosen, in the Thessaly
prefecture in Central Greece. Water availability is measured by means of precipitation frequen-
cy examination and drought estimation. Crop water requirements are measured by assessing
crop evapotranspiration (ET) with the synergistic use ofWV-2 satellite images and ground-truth
data. The remote-based ETcsat is assessed by utilizing the reference ETo derived from Food and
Agriculture Organization (FAO) methodology, while the meteorological data and Kc are
evolved from Normalized Difference Vegetation Index (NDVI). According to the rainfall
frequency studies, indicators demonstrate a significant precipitation decrease. The results reveal
the importance of water availability estimation for facing agriculture water needs and the
necessity for monitoring of drought conditions in a vulnerable Mediterranean area in order to
plan an integrated strategy for climate adaptation. Moreover, the conclusions clarify the
usefulness of collaborating innovative very high spatial and sperctral resolution EO images
along with ground-truth data for crop ETmonitoring and also the assimilation into the precision
agriculture methodology which is valuable for optimal agricultural production.
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1 Introduction

Food production availability is directly affected by climate change worldwide (Hansen 2002;
Sultan and Gaetani 2016). The variability and change of seasonal precipitation patterns,
evaporation, soil moisture storage and runoff is a significant impact of climate change
(Dalezios 2011; Climate Policy Watcher 2017). Temperature and precipitation alteration and
the increasing frequency and severity of environmental hazards are directly influenced by
climate alterations (Dalezios et al. 2017). The Mediterranean basin is characterized by
vulnerable agriculture, because of the combination of temperature increase and precipitation
decrease (Dalezios et al. 2018). Food supply can be at increasing risk as yield variability
increases (Ahmed and Nithya 2016). In extreme weather events, raise of the yield variability
and decrease of the average yield are expected (Alexandrov and Hoogenboom 2000).

Crop water availability and requirements become a significant factor in vulnerable agricul-
ture and drought-prone agricultural areas. There are several commonly used Drought Indices
(DIs) based on conventional (ground) and earth observation data (Heim 2002; Niemeyer 2008;
Kanellou et al. 2008). Traditional drought assessment methods depend on typical hydromete-
orological data, which usually are limited in a region, often unavailable in near real-time and
inaccurate (Thenkabail et al. 2004). On the contrary, Earth Observation (EO) data are
constantly available and reliable for the detection of drought indicators and characteristics.
Moreover, the increasing number and capability of relevant EO satellite systems provide a
wide range of innovative abilities, which are suitable to evaluate and monitor drought effects.

WorldView-2 (WV-2) is a commercial Earth observation satellite that provides very high
resolution spatial data (VHR-0,5 m). The available imagery introduces four new advanced
multispectral bands (especially the yellow, red edge and Near Infrared 2) in addition to the four
standard conventional bands (three of the visible spectrum and the common near infrared).
These novel spectral bands of potential improtance increased significantly the spectral infor-
mation, which, along with the very high spatial resolution of WV2 imagery, provides the
potential for more robust and accurate discrimination between crop types and their character-
istics (Salehi et al. 2012; Psomiadis et al. 2017).

Remote Sensing derived Vegetation Indices (VIs) have been broadly utilized to monitor
changes in the biophysical properties of plants, such as vegetation cover, vigor, and growth
dynamics (Rafn et al. 2008; Mulla 2013; Abuzar et al. 2014). Having as a goal to define
vegetation health, distinguish vegetation from soil, estimate evapotranspiration (ET) and water
requirements modeling, the calculation of VIs like NDVI constitutes a crucial processing step
(Rouse et al. 1974).

Irrigation has always been significant for cultivation yield in most Mediterranean countries,
principally because of the high evapotranspiration rates and limited precipitation inputs
(Bampzelis et al. 2014). The irrigation water demands are expected to increase in a dry
climate, rising the antagonism between water consumers, such as agriculture, urban, and
industry (Olesen and Bindi 2002). Precision agriculture composes a recent sophisticated
approach with a view to managing the concerns of water availability and needs for efficient
crop monitoring in vulnerable agroecosystems (Dalezios et al. 2012b). The increased reliability
and accuracy of the EO data lead to better monitoring and analysis, and aims to implement
appropriate precise spatiotemporal actions to achieve a low-input, high-efficiency, sustainable
agricultural production (Varella et al. 2015).

The present study aims to reveal water availability and requirements in the Mediterranean
region’s vulnerable agroecosystems based on remote sensing data and methods, and to use
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precision agriculture approaches to attain optimal crop water monitoring and irrigation man-
agement. A drought-prone area characterized by vulnerable farming is selected, namely
Thessaly in central Greece. Water availability is considered through rainfall frequency analysis
and drought assessment. Specifically, the remotely sensed Reconnaissance Drought Index
(RDI) was used for meteorological drought estimation (Tsakiris and Vangelis 2005; Dalezios
et al. 2012a). For the detection of agricultural drought and its impacts, the adjusted Vegetation
Health Index (VHI) was utilized (Kogan 2001; Dalezios et al. 2014). Crop water requirements
are also assumed within the precision agriculture context by assessing crop evapotranspiration
(ET) through the synergistic use of WV-2 satellite images with ground-truth data sets
(Psomiadis et al. 2016; Dercas et al. 2017). The satellite-based ETcsat is produced by by
means of the reference ETo derived from FAO-56 using meteorological data (Allen et al.
1998), and Kc calculated from NDVI making use of the Red and NIR satellite bands.

2 Study Area

The region of Thessaly in central Greece represents approximately 10.6% of the country’s
territory with an area of 14,036 Km2 (Fig. 1), out of which 36% of the area is flat, 17.1% is
semi-mountainous, whereas the remaining 44.9% is mountainous. The west part of Thessaly
has a continental climate with cold winters, hot and dry summers and large seasonal temper-
ature variations. On the other hand, the east part of Thessaly is described as a typical
Mediterranean climate. The mean annual precipitation of Thessaly is approximatelly
700 mm, with an unevenly spatial and temporal distribution, which varies from about
400 mm at the central plain area to more than 1850 mm at the western mountain parts. The
mean annual precipitation at the Thessalic plain, has been reduced about 20% over the last
30 years (Dalezios 2011) and ranges from 250 to 500 mm.

Fig. 1 Geophysical map of Thessaly with the location of the experimental fields
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The main crops are cotton, wheat, sugar beets, maize, barley, horticulture, fruits, olive trees
and recently energy crops. The 96% of the total water use in Thessaly consumed for irrigation
purposes. Extreme hydrometeorological events, such as floods, hail and droughts are common
in Thessaly. Droughts occur mainly due to reduced precipitation causing lack of soil moisture,
increased evapotranspiration, increased vegetative stress, runoff reduction, decrease in
streamflow levels in rivers, lakes and dams, lowering of the groundwater table, and finally
water deficit for agriculture.

3 Water Availability

Climate variability and change affect the water availability of the vulnerable agriculture of
Thessaly. For this reason the trend of precipitation is analyzed, as well as drought assessment.
A brief description of the approaches follows.

Annual precipitation is expected to decrease, causing water shortage in the agricultural
sector mainly due to long-duration droughts. Moreover, average yields are anticipated to
decrease in the Mediterranean region. Several studies show an increase in drought frequency
for almost most parts of Europe, especially in eastern and central part, where there is an
increase in the projected irrigation water requirements. A time series of daily precipitation for
two separate periods from Larissa meteorological station were utilized to define variability and
frequency changes (Dalezios et al. 2009; Bampzelis et al. 2006).

The basic features of drought consist of a lack, or deficit, of precipitation, which justifies the
critical role of reliable and long-term precipitation records. Drought monitoring and assess-
ment methodologies rely essentially on rainfall data, which are most of the time limited, often
inaccurate and, most importantly, not easily accessible in near-real time (Thenkabail et al.
2004). If the pattern of regional precipitation is typically seasonal, then it is significant to
identify the Bcritical^ regional precipitation period(s). The difficulty for some Drought Indices
(DIs) may be the lack of a sufficient record length, such as the case of remotely sensed data.
Nevertheless, remote sensing data and methods are currently considered a very useful tool for
the assessment of the distribution and spatiotemporal features of drought at different scales. It
is best to consider multiple indicators to detect and assess the onset and severity of drought.

Drought identification and quantification is not an easy task and it is based usually on
indicators and indices. It is clear that there is a necessity for quantification of drought impacts
and monitoring of drought development in economically and environmentally sensitive
regions. As already mentioned, in order to evaluate and monitor drought, it is essential to
detect several drought features, such as severity, duration, onset, end time, areal extent and
periodicity. The remote sensing techniques, data and methods allow us to delineate the
spatiotemporal variability of several drought features in quantitative terms (Dalezios et al.
2012a, 2014).

3.1 Data Set

For the water availability analysis, the existing daily temperature and precipitation records
were utilized from Larissa meteorological station. The data cover an adequate time span of
46 years (1955–2000) which was a period without missing data. The precipitation data were
classified into nine classes ranging from light to extreme events, and the number of precipi-
tation events per class was calculated. For the period 1955–1975, the temperature trend is
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decreasing, whereas for the period 1976–2000 is increasing (Bampzelis et al. 2006). Therefore,
the data were divided into two phases, namely 1955–1975 and 1976–2000. Since the extent of
the two periods was different, the precipitation frequencies were normalized.

Daily precipitation data for Thessaly water district (with a spatial resolution of 50 × 50 km2)
for the Reconnaissance Drought Index (RDI) evaluation were utilized (acquired from the Joint
Research Center, Ispra, ltaly). The main area is flat with no complex terrain and the interpo-
lation is effective. Initially, monthly crop coefficient maps, using Corine Land Cover dataset of
2000 were created, as well as maps of sunshine day of the study area (for Middle North
Latitude-39.39°). Furthermore, utilizing spectral bands b4 and b5 as well as bands b1 and b2 of
NOAA satellite, ten-day Brightness temperature (BT) (for 20 hydrological years, from October
1981 to September 2001) and NDVI images, were calculated, respectively, with a spatial
analysis of 8 × 8 km2. For the Vegetation Health Index (VHI) estimation, the same procedure
was followed.

3.2 Remotely-Sensed Estimation of RDI

For the quantitative assessment of meteorological drought, the remotely sensed RDI was
developed and evaluated using a specific methodology, a brief description of which follows
(Tsakiris and Vangelis 2005; Tsakiris et al. 2007).

Preprocessing The 10-day NDVI maps of NOAA/AVHRR, are actually the estimated Max-
imum Value Composite (MVC) images. Likewise, the thermal bands of NOAAwere convert-
ed firstly to radiance values and then to BT. The concluding preprocessing steps regard the
noise removal from the NDVI and BT images and finally the calculation of the final NDVI and
BT images, over a monthly time span, by means of MVC and mean pixel values of BT,
respectively.

More specifically, as far as it concerns the used filters, a median filter (3 × 3 to 7 × 7
window range, depending on each image needs) was implemented to NDVI images, while a
conditional mean spatial filter, adjusted only to the pixels that present errors, was applied for
BT images smoothing, which appear with a continuous spatial fluctuations (Dalezios et al.
2014).

Calculation of Air Temperature Land Surface Temperature (LST) is estimated by means of
NDVI and BT images (Kanellou et al. 2008; Dalezios et al. 2012a). The mathematic formula
utilized for the calculation of LST is extracted from the relationship between LST and air
temperature (Tair) and is given by Eq. (1):

Tair ¼ 0:6143*LST þ 7:3674……:R2≈0:82 ð1Þ
Air temperature maps were calculated from the LST images and ground measurements of air
temperature derived from Larissa meteorological station, utilizing regression analysis (number
of observations = 500, standard error = 0,4).

Estimation of Potential Evapotranspiration (PET) PET was calculated using the Blaney-
Criddle (1950) method that is appropriate for areas with dry and hot summers such as the
Mediterranean region, instead of Thornthwaite method, which is more suitable for type of
weather with wet and hot summers (e.g., East U.S.A). The RDI is estimated by means of
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precipitation and PET. Blaney and Criddle (1950) evaluated the monthly potential evapotrans-
piration (ETm) in mm, by the Eq. (2):

ETm ¼ k* 0:46T þ 8:16½ �*p ð2Þ
where T is the mean monthly air temperature, p is the monthly daytime sunshine duration,
depending on the latitude, and k is the crop coefficient.

The mean monthly crop coefficients, as well as maps of daytime sunshine duration (p) were
calculated in a Geographical Information System. These final maps were combined with the
corresponding air temperature maps, to extract the Blaney-Criddle PET for each month (in the
selected time series, from 1981 to 2001).

Extraction of Rain Map RDI estimation requires the computation of monthly areal precipita-
tion. In this study, monthly rain maps over Thessaly were provided by JRC, ISPRA, from 1975
to 2005 with a spatial resolution of 50 × 50 km2. Specifically, from daily rainfall time series,
the monthly cumulative rain for each hydrological year was calculated. Linear interpolation
method was used for the produce of the montly rain maps.

Remotely-Sensed Assessment of RDI RDI estimation uses monthly temperature maps, crop
coefficient (Kc) maps, sunlight maps (p), PET maps based on Blaney- Criddle (1950) and rain
maps (P). In the present study, RDI was estimated on monthly and annual basis. The
estimation of RDI has been described in the original publication (Tsakiris et al. 2007) and
uses the following equation:

ak ¼
∑
j¼k

j¼1
Pj

∑
j¼k

j¼1
PET j

ð3Þ

where Pj and PETj refer to the precipitation and potential evapotranspiration, correspondingly, of
the j-th month of the hydrological year. In the Mediterranean region, the hydrological year starts
in October, hence for October k = l. RDIn is the Normalised RDI, which is given by Eq. (4):

RDIn kð Þ ¼ ak

ak
−1 ð4Þ

The Standardised RDI (RDlst), is used.

RDIst kð Þ ¼ yk−yk
σ̂k

ð5Þ

where yk is the ln ak, yk is its arithmetic mean and σ̂k is its standard deviation. The drought
categories based on RDI are shown in Table 1.

3.3 Remotely Sensed Estimation of VHI

VHI is a very accurate and widely used index and was applied for the quantification of
agricultural drought. VHI estimation utilizing earth observation data follows a certain
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methodology (Dalezios et al. 2014). A preprocessing phase, which includes geometric and
atmospheric correction of all images, was implemented. Subsequently, the VHI was estimated
on a pixel basis.

Prepossessing Ten-day EO data from NOAA/AVHRR satellite were used with pixel resolu-
tion 8 × 8 Km2. Low pass smoothing filters were utilized, analogous to RDI mentioned above.
The extracted variables from satellite data are BT and NDVI, respectively, on a monthly time
span.

Vegetation Health Index (VHI) The final step comprises the monthly calculation of BT and
NDVI, respectively. The VHI is the sum of the Vegetation Condition Index (VCI) and the
Temperature Condition Index (TCI), both calculated from the EO data, as described in the
original publications (Kogan 1995, 2001). VCI reflects the growth difference of crops among
different years and acts as an extension of NDVI (for NDVImax,VCI is equal to 100) and is
computed by the following Eq. (6):

VCI ¼ 100*
NDVI−NDVImin

NDVImax−NDVImin
ð6Þ

where NDVI, NDVImax and NDVImin correspond to the smoothed 10-day NDVI, its multi-
annual minimum and maximum, respectively. Likewise, TCI depends on the same concept as
VCI and is calculated by the Eq. (7) (for BTmax, TCI is equal to 0):

TCI ¼ 100*
BTmax−BT

BTmax−BTmin
ð7Þ

where BT, BTmax and BTmin correspond to the smoothed 10-day radiant temperature, its multi-
annual minimum and maximum, respectively.

The VHI characterizes the total vegetation health and is widely utilized widely for drought
monitoring and crop yield valuation.

Agricultural drought is demonstrated by five classes of VHI in Table 2. Unambiguously,
from Table 2 it is clear that drought severity is decreasing when VHI values are increasing.
VHI is calculated by the Eq. (8):

VHI ¼ 0:5* VCIð Þ þ 0:5* TCIð Þ ð8Þ

VHI takes values from 0 to 100, where 0 indicates extreme stress and 100 indicates
favorable conditions. VCI and TCI depict the moisture and thermal conditions of vegetation,
respectively (Kogan 2001). Since moisture and temperature contributions during the

Table 1 RDI drought classification
scheme (Tsakiris and Vangelis
2005)

Drought classes RDI Values

Extremely wet >2.00
Very wet 1.50 to 1.99
Moderately wet 1.00 to 1.49
Near normal −0.99 to 0.99
Moderately dry −1.00 to −1.49
Severely dry −1.50 to −1.99
Extremely dry < −2.00
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vegetation cycle were not specified, an equal weight has been hypothesized for both VCI and
TCI, in the VHI calculation. Thermal conditions are especially important when moisture
shortage is accompanied by high temperature, increasing the severity of agricultural drought
and having a direct impact on vegetation health. In many parts of the world, TCI along with
VCI have also proven to be useful tools for the detection of agricultural drought (Dalezios et al.
2014; Kogan 2001).

4 Water Requirements

Precision agriculture methodology for the estimation of the water needs requires a combination
of field observations, such as crop characteristics and water requirements, along with meteo-
rological data, so as to assess reference evapotranspiration (ETo). High-resolution satellite
images are also utilized to evaluate the variability and spatial distribution of crop coefficient
(Kc) and evapotranspiration (ETc) (Dalezios et al. 2011) and contribute through processing and
analysis to decision support at field level (Dalezios et al. 2012b).

4.1 Experimental Fields and High-Resolution EO Data

Three agricultural fields of cotton (1.8 ha, 2.1 ha, 4.3 ha) were used throughout the growing
season of 2015, 2016 and 2017 in Thessaly plain area (Fig. 2a). Eleven WV-2 scenes were
processed having an exceptional spatial and spectral resolution (0.5 m and eight multispectral
bands) (Fig. 2).

Soil water content and meteorological data (rainfall, temperature, wind speed) were
monitored during the three growing seasons. Soil moisture sensors (EC-5 and 10HS
sensors of Decagon Devices, Inc.) were installed in every experimental field. The sensors
were placed to a depth of 30 cm as representative of the whole root zone and readings were
taken regularly with a portable device. At farm level there were also continuous moisture
profile measurements, taken every 2 h at 4 or 5 depth levels spanning from 15 to 90 cm
with EM50 data loggers in order to monitor the whole profile of soil moisture in a single
position or two positions of the fields. Using the soil moisture data at 30 cm depth, we
charted the spatial distribution of the whole farms. The soil moisture data allowed us to
evaluate the water conditions in the root zone and to estimate if the crops suffer from any
water stress.

Image Preprocessing and Rectification The relationship between the radiance of the elec-
tromagnetic radiation reflected by ground targets and that measured by the satellite instrument

Table 2 VHI drought classification
classes (Kogan 2001) VHI values Vegetative drought Classes numbers

of drought

VHI < 10 Extreme 1
VHI < 20 Severe 2
VHI < 30 Moderate 3
VHI < 40 Mild 4
VHI > 40 No –
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is a complex one. The radiance emitted at ground level passes through the intervening
atmosphere (clouds, vapor, aerosol and haze) on its way to the satellite while there are also
possibly geometrically distortions by imperfection in the sensor optical components and by the
effects of varying ground terrain. Overall there is a major requirement for calibration,
preprocessing, correction and rectification of imagery before it can be used in any qualitative
or quantitative analysis.

Three WV-2 series of scenes from May, June, July and September of 2015 (4 images),
from July and Aug 2016 (2 images) and from May, June, July, August and September 2017
(5 images) over cotton fields were atmospherically corrected, radiometrically enhanced
and georeferenced (Lanzl and Richter 1991; Updike and Comp 2010). Four WV2 for the
cotton farm of 2015 and seven scenes for the cotton farms of 2016 and 2017 were used,
respectively. The local different weather conditions occurred during the acquisition of the

Fig. 2 a Τhe shape and area of the three experimental fields, b, c, d The redNDVI extracted from the three
selected cotton crops
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cloud free imagery, seasonal atmospheric models for the concerned geographic latitude,
the type of land-use and 5 m Digital Elevation Model were used to run the corrections of
the data. Initially a top of the atmosphere reflectance image (ToA) was created to be
followed by haze removal and cloud masking process, converting Digital Numbers (DN)
to reflectance values above the atmosphere. Reflectance values were then transformed to
ground reflectance taking into account the solar azimuth and zenith angles on the acqui-
sition date (Lanzl and Richter 1991; Dercas et al. 2017). The ATCOR3 Top of the
Atmosphere and Ground reflectance workflows available in Geomatica 2016 system were
used. ATCOR has already available the WV2 sensor gain and offset parameters (mW/cm2 sr
micron). The subsequent geometric correction followed two different geocoding approaches,
by means of image-to-GCPs and image-to-image registration. The first acquired image for the
three cotton fields was used as master to slave all the rest. The first WV-2 acquired on May 17,
2015 and corrected using 10 GCPs, acquired from a differential GPS, while all the other images
were registered using as reference for the first image. It has to be mentioned that the area of the
cotton fields is relatively flat with no terrain fluctuations and the farm sizes is not more than
5 ha. The bilinear algorithm was used to correct the sensor optical aberration satellite instabil-
ities and terrain variations. This algorithm does not alter the DN values of the pixels, a critical
decision for the subsequent qualitative analysis and build of vegetation indices. In all cases a
half pixel RMR error was achieved in X and Y axes.

Image Processing Initially, three different band combinations or False Color Composites
(FCCs), of pan-sharpened fusion data were processed and developed to assist the subse-
quent field interpretation work. Pan-sharpening is the result derived from the fusion of 2 m
multispectral channels with the 0.5 m panchromatic band to generate multispectral bands
that maintain the spectral information, but in higher spatial resolution of 0.5 m, thus
enhancing the information analysis and clarity, which is very important for the fragmented
small mixed and multiple land-uses of Mediterranean agricultural fields. The first FCC
was the 5,3,2 (red, green, blue) using the visible part of the electromagnetic spectrum. The
second was the 6,5,3 (redEdge, red and green) and the third one the 8,5,4 (NIR2, red and
yellow). The two latter combinations exhibited and depicted crop and soil variations
(Fig. 3).

The reflectance calibrated WV2 data then processed to build the VIs such as Chlorophyll,
redNDVI and redEdgeNDVI using red, redEdge and the two near infrared channels NIR1 and
NIR2. The use of the second innovative near-infrared band of WV2 is the first attempt to reach
better quality VIs, since is less influenced by the atmosphere.

In Mediterranean agricultural areas, the NDVI derived from very high spatial analysis WV2
data has shown that it constitutes a significant indicator of green biomass vegetation density
and health. NDVI uses leaves chlorophyll properties that demonstrates high energy absorption
in the RED part and high reflectance in the Near-Infrared (NIR) part of electromagnetic
spectrum, and uses the following formula (Eq. 9):

NDVI ¼ RNIR�RREDÞ= RNIR þ RREDð Þð ð9Þ

where R is the reflectance. The NDVI takes pixel values from −1 to 1. In general NDVI lower
than 0.2 correspond to non-vegetated surfaces, while NDVI greater to 0.2 to vegetated ones.
(Figs. 2, 3 and 4).
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Fig. 3 a–e WV-2 False Color Composites (using NIR2 band – 8,5,4-RGB) of May, June, July, August and
September 2017, f–j The cotton crop redNDVI of 2017, for the 5 months, respectively
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The redEdge NDVI index (nir–redEdge)/(nir + redEdge) had different behavior from
NDVI. WV-2 red edge channel is more sensitive to the change of vegetation reflectance so
it was also generated to monitor cotton phenological cycle. Additionally, Chrorophyll index
[(nir/redEdge)-1] was also produced to extract and monitor the behavior of local cotton farm.

In conjunction with meteorological and ground data, as well as models, the imagery was
utilized to calculate reflectance, NDVI, fractional cover, crop coefficient (Kc) and crop
evapotranspiration (ETc) maps over the image coverage.

Estimation of ETo Reference evapotranspiration (ETo) is calculated by the Penman-Monteith
method created according to FAO-56 using conventional meteorological data and it is reliable
with the water use data of the crops (Allen et al. 1998) (Eq. 10):

ET0 ¼
0:408 Rn−Gð ÞΔþ γ

900

Tmean þ 273

� �
u2 es−eað Þ

Δþ γ 1þ 0:34u2ð Þ ð10Þ

where: Tmean is mean temperature (οC) and u2 is 2 m height wind speed.

Estimation of Kc The crop coefficient (Kc) is developed from NDVI index using red, NIR1 and
NIR2 channels of WV-2. The Kc integrates the effect of features that distinguish a typical crop
cultivation from the reference type of grass reference, having a uniform and a completely ground
cover appearance. The Kc values depend on crop type and growth stages, climate and soil
evaporation (Allen et al. 1998). In FATIMA project, the following relationship was developed
as follows (Dercas et al. 2017) (Eq. 11, number of observations = 1.000, standard error = 0,12):

Kc ¼ 1:33* redNDVIð Þ þ 0:21 R2 ¼ 0:92
� � ð11Þ

Estimation of Crop Evapotranspiration ETc Crop Evapotranspiration ETc is the evapotrans-
piration from a crop with good health, optimum conditions of irrigation, fertilization, growing
in large fields, and achieving high production yields under specified climatic conditions (Allen
et al. 1998). In FAO method, ETc is calculated as follows (Eq. 12):

ETc ¼ Kc
*ET0 ð12Þ

where ETo is calculated by ground-based observations. The satellite-based ETcsat is calculated by
utilizing the reference ETo fromFAO-56 Penman-Monteith formula derived frommeteorological
data (Allen et al. 1998) and Kc extracted using redNDVI of WV-2, respectively. If a complete
data set is not available for the usage of Penman-Monteith equation, several other empirical
equations could be operative, such as Hargreaves or Turk models, among others. In this analysis
due to reduced meteorological data crop Evapotranspiration (ETc) was estimated with Har-
greaves equation, using FAO crop coefficients. Actual evapotranspiration was adjusted with
ground moisture measurements and according to the water balance method at the farm level.
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5 Results and Discussion

5.1 Analysis of Results

The results of the precipitation frequency demonstrate that in Thessaly there were indications
of a shift towards higher precipitation intensities for the period after 1975 (Dalezios et al.
2009). More specifically, precipitation of a slightly greater volume but less frequent was
recorded in the Larissa station for the period 1955–1975 as related to the latest period
(1976–2000) (Fig. 5). This element reveals a trend for precipitation events with smaller total
amounts, but of increased intensity that causes floods and greater loss of water. The reduction
of precipitation inputs and decrease of water availability could adversely affect future crop
production in the region and consequently the local economy.

The results of RDI analysis are summarized in Fig. 6 and Table 3. Specifically, Fig. 6 is a
plot of the computed RDI annual time series for Larisa, where the negative RDI values
represent drought years and the positive RDI values refer to non-drought years based on the
RDI classification scheme of Table 1.

In Fig. 6, the term conventional RDI means computation of the RDI from conventional
meteorological data at Larisa station, whereas satellite RDI means the corresponding remotely
sensed RDI values, as computed for a 3 × 3 pixel area above the Larisa station.

The results of Fig. 6 indicate that there were eight drought episodes during this 20-year
period in the study area of Thessaly, Greece. Moreover, the duration, as well as the start and
end times of droughts of Fig. 6 based on RDI monthly estimates, coincide with the duration
and start of the hydrological year in most of the cases, i.e., 12 or 13 months in duration starting
in October. The RDI time series of Fig. 6 constitutes the basis for frequency and/or periodicity

Fig. 4 Cotton 2017 redNDVI variation along the cultivation period
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analysis (Dalezios et al. 2000). Table 3 demonstrates in pixels the monthly areal distribution of
the RDI values, which sums the four severity classes of drought for each of the eight drought
hydrological years. From Table 3 it is assessed that in Thessaly during the drought years, two
classes of droughts were revealed, high and low severity, respectively, based on the cumulative
areal extent.

Moreover, several additional findings can be extracted by comparing Fig. 6 and Table 3. In
particular, it can be specified that drought usually starts during the first 3 months of the
hydrological year as far as it concerns the years of considerable areal extent, whereas drought
begins in spring (April or May) in the years of small areal extent.

The monthly results of VHI for the same period of 20 years (1981–2001) using satellite data
are presented in Table 4 (for high drought severity classes 1 and 2) and Table 5 (for low

Fig. 5 Precipitation Frequency analysis for Larissa station (from Dalezios 2011)

Fig. 6 Annual RDI of Larissa for 1981–2001 (October to September, from Dalezios et al. 2012a)
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drought severity classes 3 and 4), respectively, based on the VHI classification scheme of
Table 2. In particular, extreme and severe drought classes 1 and 2 merged into one class
(Table 4), and moderate and mild drought classes 3 and 4 merged into a second class (Table 5),
respectively. The analysis of agricultural drought based on VHI estimation shows that drought
takes place every year from April till October, during the warm period. Moreover, Tables 4 and
5 display the monthly total and the average for the merged classes, where the greater number
of pixels is gathered among mild and moderate drought severity classes (Table 5). On the other
hand, according to Table 4, the number of pixels of monthly extreme drought classes is
relatively small. Additionally, Tables 4 and 5 reveal that the peaks of drought severity and areal
extent appear mainly at the end of the summer period.

In summary, eight drought periods enduring 12 months each in a 20-year study period were
detected, for meteorological drought based on RDI. Nevertheless, during the warm season
(from April to October) agricultural drought is appeared to occur every year, utilizing the VHI
approach. The above mentioned findings rationalize the new scientific trend to develop and
create composite drought indices for regional drought evaluation and monitoring (Dalezios
et al. 2017).

The results of water requirements are summarized in Fig. 7, and Tables 6 and 7. The
estimated Kcsat (Kc assessed using satellite data) average values for cotton at the field scale are
computed from Eq. (11) and the Kc from FAO for cotton during the growing season of 2015.

The cotton Kcsat values based on Red and NIR spectral bands of WV–2 data are quite
similar to the Kc values from FAO for 2015, (Fig. 7). Indeed, Kcsat is dependent on the type of
satellite data and cannot be implemented in a generic way. Spatial and spectral resolutions are
the critical components of any sensor, which is used for Kcsat extraction. Additionally, the type
and size of fields, such as small size farms or land fragmentation, plays a role on the satellite
data and thus on the Kc equation to be used. The Kc obtained by the new proposed Eq. (11)
(using the NDVI obtained byWV-2 images) for 2015, 2016 and 2017 are presented in Table 6.
In Table 7 the ETc estimated according to KcFAO and Kcsat are presented. In both cases the
ET0 was estimated using the Hargreaves method due to limited meteorological data. The
values of ETcsat and ETcFAO are in good agreement for both methods, which is a promising
mark for the new WV-2 approach. The water conditions in the experimental fields were

Table 3 Drought years’ monthly areal extent (period 1981–2001), in number of pixels (pixel size 8 × 8 km)
(from Dalezios et al. 2012a)

Year 1984–85 1987–88 1989–90 1991–92 1992–93 1996–97 1999–00 2000–01
Month

October 207.70 0.04 75.21 81.91 111.18 2.59 25.98 16.68
November 84.98 0.23 167.91 163.81 128.34 207.77 8.40 207.69
December 95.53 66.21 23.02 205.77 203.18 45.35 74.16 205.27
January 82.09 86.31 207.71 207.65 199.04 72.43 199.30 40.96
February 2.44 0.24 207.79 207.496 45.35 199.36 22.15 164.46
March 0.27 0.22 207.79 203.925 199.72 201.37 207.42 207.61
April 167.15 127.71 159.59 0.22 206.44 0.41 203.73 4.85
May 125.92 196.15 2.09 12.47 0.11 207.76 185.27 14.04
June 205.14 59.79 161.48 8.48 114.88 16.73 12.29 133.98
July 128.74 60.47 40.13 8.39 201.54 146.55 171.26 0.09
August 114.99 130.75 0.25 203.84 191.96 0.13 193.57 49.07
September 123.33 83.68 77.02 204.07 81.29 203.82 75.57 199.30
Total 1338.27 811.80 1330.01 1508.02 1683.01 1304.26 1379.09 1244.01
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analyzed for all the cases and were not under any water stress. The actual evapotranspiration
was estimated and showed that the crops were well irrigated. This was a essential condition in
order to be able to confirm that the Kc evaluated was not a Kc stress.

5.2 Discussion

The ambition of this research effort has been to increase the water use efficiency by better
matching spatiotemporal supply with crop demand. In order to achieve the above goal, new
incentives and policies for ensuring the sustainability of agriculture and ecosystem services are
needed in addition to new technology and methods.

Precision agriculture is certainly considered a high-technology advanced approach to
agriculture. The main interest remains on the implications of high technology for
agriculture. At the present time, the generally accepted rationale of precision agriculture
is that with existing technology, it is possible to match inputs and management at a sub-
field scale in a site-specific manner without sacrificing mechanization efficiency. For the
farmer, this means to gain the productive benefit of large field mechanized crop produc-
tion and husbandry on a much smaller scale. By skipping the concept of high technology
and costly equipment, the rationale becomes to use as much information as possible in a
consistent and controlled manner to achieve the most efficient management of the farm at

Table 4 Monthly drought VHI values and their cumulative areal extent (number of pixels) (calculation of
severity classes 1 and 2) (from Dalezios et al. 2014)

Cummulative

May June July August September October SUM

1981 0 0 19 38 65 66 188
1982 0 1 14 28 31 31 105
1983 0 9 10 13 17 17 66
1984 0 1 6 10 10 10 37
1985 0 12 30 58 71 71 242
1986 0 3 13 25 33 33 107
1987 0 0 7 8 17 17 49
1988 0 10 24 36 40 40 150
1989 1 19 36 43 53 53 205
1990 3 39 57 69 69 69 306
1991 0 0 1 2 2 2 7
1992 0 2 3 5 5 5 20
1993 0 1 2 10 10 10 33
1994 0 0 0 0 0 0 0
1995 0 0 17 20 20 20 77
1996 1 13 18 19 19 19 89
1997 0 0 2 2 3 3 10
1998 0 2 3 11 12 12 40
1999 0 6 6 7 7 7 33
2000 1 2 12 17 18 18 68
2001 0 7 15 15 15 0 52

6 127 295 436 517 503
Average 0.29 6.05 14.05 20.76 24.62 23.95
SD 0.72 9.27 13.84 18.68 22.45 23.09
Min 0 0 0 0 0 0
Max 3 39 57 69 71 71
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Table 5 Monthly drought VHI values and their cumulative areal extent (number of pixels) (calculation of
severity classes 3 and 4) (from Dalezios et al. 2014)

Cummulative

May June July August September October SUM

1981 0 0 123 252 343 418 1136
1982 8 74 193 321 416 431 1443
1983 36 142 228 331 433 464 1634
1984 6 72 173 266 308 332 1157
1985 23 134 240 361 494 568 1820
1986 45 139 249 350 471 513 1767
1987 9 71 204 287 405 418 1394
1988 19 108 243 359 467 541 1737
1989 18 107 211 315 408 474 1533
1990 84 169 298 422 511 561 2045
1991 0 38 129 203 266 306 942
1992 16 103 174 265 323 374 1255
1993 12 94 173 260 310 352 1201
1994 9 60 101 154 213 236 773
1995 4 44 146 215 278 318 1005
1996 49 148 237 309 338 347 1428
1997 27 124 228 291 358 379 1407
1998 25 106 196 284 336 365 1312
1999 40 145 227 305 357 376 1450
2000 43 129 243 337 421 431 1604
2001 45 141 229 299 345 1059

518 2148 4245 6186 7801 8204
Average 24.67 102.29 202.14 294.57 371.48 410.2
SD 20.88 43.36 48.86 59.92 78.61 89.43
Min 0 0 101 154 213 236
Max 84 169 298 422 511 568

Fig. 7 Comparison of Kcsat fromWV-2 and Kc produced by FAO for the cotton field in 2015 (from Dercas et al.
2017)
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appropriate scales. More specifically, the goals of precision agriculture can be defined as:
optimum production and economic efficiency, minimization of risk, limit the impact of
agriculture on the wider environment. The implemented Earth Observation (EO) meth-
odology in this research effort for mapping irrigated and rainfed areas and for calculating
crop water requirements is considered internationally mature (Calera et al. 2017;
Dalezios et al. 2017).

The step forward in this paper, has been to use time series of high and very high spatial
resolution images of WV-2 at resolution 0.5 m, to describe, map and assess water stress.
Timely and easy-to-use maps about water requirements are the natural way in which the
information is valuable for precision farming application.

The results of this paper justify the usefulness of precision agriculture, which, in return,
suggests that policies should be analyzed and considered for synergies, conflicts, bottlenecks
and set procedures leading to an enabling environment of sustainable crop production. Farm
advisers should play a critical role in informing farmers on precision farming tools and
methods. This requires the development of specific data analysis tools with special emphasis
on cost-benefits. In addition, the potential economic benefits of precision farming are not yet
easily measurable and stakeholders often lack the tools to calculate potential profits and
benefits. This is partly due to unclear business models of precision farming methods and
associated costs and benefits. Furthermore, validated precision farming decision-support
models and analytical tools need to be available for farm advisers and farmers. Precision
farming can also be useful for small and medium-sized farms, provided that ways are found to
reduce investment needs and risk. Finally, more applied research, involving farmers, advisers
and supply chain partners, is needed, which is gradually promoted. Relevant research should
adopt a systems approach covering social, economic, environmental and technical aspects.

Table 6 Kc FAO and Kc sat for the WV-2 acquisition days

Cotton 2015 Cotton 2016 Cotton 2017

Acquisition
date

Kc
FAO

Kc
sat

Acquisition
date

Kc
FAO

Kc
sat

Acquisition
date

Kc
FAO

Kc
sat

May 12 0,35 0,57
June 13 0,35 0,35 June 30 1,07 0,80
July 29 0,99 0,91 July 8 1,13 0,99 July 29 1,15 1,21

August 12 1,15 1,05 August 18 1,15 1,16
Sept 2 1,15 1,28 Sept. 1 1,11 1,31

Table 7 ETc FAO and ETc sat for the WV-2 acquisition days (2015, 2016, 2017)

Cotton 2015 Cotton 2016 Cotton 2017

Acquisition
date

ETc FAO

(mm)
ETc sat
(mm)

Acquisition
date

ETc FAO

(mm)
ETc sat
(mm)

Acquisition
date

ETc FAO

(mm)
ETc sat
(mm)

May 12 1,96 3,19
June 13 2,42 2,42 June 30 9,46 7,07
July 29 6,65 6,11 July 8 6,24 5,46 July 29 7,19 7,56

August 12 5,66 5,17 August 18 6,06 6,11
Sept 2 6,64 7,39 Sept. 1 5,35 6,31
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6 Summary and Conclusions

Climatic projections indicate decreases in precipitation and increases in temperature, combined
with drought events, in the Mediterranean region. Agriculture is estimated to be the most
influenced by the adverse impacts of climate change and variability, with a high probability of
crop production reductions, due to less lack of irrigation water. The results of the frequency
analysis show that there was a shift towards higher precipitation intensities for the second
period (after 1975) indicating a trend for precipitation episodes with less amounts, but of
increased intensity causing floods and more significant loss of water. Furthermore, trying to
decrease the risk of climate change impacts on agriculture, integrated methodologies need to
be developed, composing the results of studies on drought and evapotranspiration calculation
and monitoring, for the formulation of cost-effective mitigation measures and adaptation
strategies. The study outcomes the designation that agricultural drought takes place every year
at the warm period with increasing severity and areal extent, having its maximum appearence
at the end of summer of summer, which is quite typical in the Mediterranean region. The
greater number of pixels is gathered between mild to moderate drought severity classes
indicating a significant decrease in the number of pixels from gentle to extreme drought
classes for all the months. There is, thus, a new scientific trend of developing composite
drought indices for regional drought assessment and monitoring.

The comparison of WV-2 earth observation data with measurements in situ has revealed
that the utilization of very high resolution satellite data can definitely be an advantageous tool
for precision or operational farming, providing apart from the extraction of crop area a number
of valuable parameters, such as ETc from Kc, that can be utilized for the assessment of crop
water needs. The results of the implemented methodology explain the synergistic use of WV-2
images with ground-truth data set for monitoring ETc in different crops.
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