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Abstract
In the era of the Sustainable Development Goals, for which one of the aims is to pro-
vide universal access to safe water, sanitation and hygiene (WASH) services, it is crucial to
target and prioritize those who remain unserved. Multi-criteria decision analysis (MCDA)
models can play an important role in WASH planning by supporting priority-setting and
policy-making. However, in order to avoid misleading assumptions and policy decisions,
data uncertainty — intrinsic to the available collection methods — must be integrated into
the decision analysis process. In this paper, we present two approaches to incorporating data
uncertainty into MCDA models (MAUT and ELECTRE-III). We use WASH planning in
rural Kenya as a case study to illustrate and compare the two approaches. The comparison
focuses on the way these two models handle uncertainty in the available data. The analy-
sis shows that, while both methods incorporate data uncertainty in a considerably different
manner, they lead to similar prioritization settings.

Keywords ELECTRE III · MAUT · Data uncertainty · Ranking · Water, sanitation and
hygiene (WASH)

1 Introduction

Achieving universal access to safe water, sanitation and hygiene (WASH) services by 2030
is a huge endeavour for countries worldwide (UN-Water 2018). Targets 6.1 and 6.2 of the
Sustainable Development Goals challenge governments to tackle the ‘unfinished business’
of extending WASH services to those who remain unserved, as well as to progressively
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improve the level of services provided. The progressive realization of universal access to
WASH and the reduction of inequalities in service levels is also consistent with the United
Nations resolution on the human rights to water and sanitation (United Nations 2010). How-
ever, the commitment to ‘leave no one behind’ requires increased targeting and prioritization
of those most in need of better WASH services. As the UN Special Rapporteur on the human
right to safe drinking water and sanitation (2011) explains, governments must give “priority
to realizing a basic level of service for everyone before improving service levels for those
already served”.

Among other things, this requires WASH planning tools that target the neediest and
support equity-oriented prioritization (Giné-Garriga et al. 2015). Evidence-based targeting
and prioritization procedures not only allow the identification of the segments and sec-
tors of population in which to focus policies, but also guide a more equitable allocation
of resources. Yet, decision-making processes in the WASH sector often lack transparency
and accountability, and can lead to discrimination against certain population groups (Ibid.).
A step forward to support targeting and prioritization is thus the establishment of appro-
priate decision-making tools that assist policymakers and implementers in revealing which
population groups are the most in need of further WASH services.

Multi-criteria decision analysis (MCDA) models can play an important role in informing
WASH planning. MCDA is a quantitative decision analysis model that evaluates and com-
pares alternative decision options (e.g. communities or administrative sub-units) in terms
of their services on a set of criteria (e.g. service coverage, service levels, etc.). By ranking
population groups against multiple planning criteria, MCDA models can provide insight on
priority-setting and development of WASH interventions. A wide variety of MCDA mod-
els currently exist, which can be grouped into two main approaches (Ishizaka and Nemery
2013): (i) value measurement models (or ‘American school’), based on the construction of
a numerical score for each alternative (e.g. Multi-Attribute Utility Theory, MAUT), and (ii)
outranking models (or ‘European school’), based on the pairwise comparison between the
alternatives (e.g. ELimination and Choice Expressing REality, ELECTRE).

The differences between the two MCDA families are substantial. First, there is no under-
lying utility function in outranking models: the output is a ranking of alternatives without
any scores to indicate the extent to which one alternative is preferred over another. Sec-
ond, the set of decision rules describing the aggregation procedure in outranking models
are only partially compensatory, which limits the trade-offs between the different criteria
(Stewart and Losa 2003). Yet, despite these considerable differences, only a few studies
have attempted to compare these methods or their decision analysis procedures. Table 1
summarizes the most relevant studies in water resources management that address these
comparisons.

What has not been done before is extending MCDA models to the context where the
data feeding the analysis have a certain level of uncertainty. Data uncertainty — the degree
to which data are inaccurate, imprecise or unknown — arises from various factors, such
measurement errors, data staleness and repeated measurements (Tsang et al. 2011). In the
WASH sector, data uncertainty is intrinsic to the available collection methods. Household
surveys represent a crucial source of data and have developed into standardized sampling
techniques and harmonized questionnaire designs to produce comparable estimates across
countries and over time (WHO and UNICEF 2006). However, data from household surveys
are not extent from uncertainty. All survey point estimates have a certain level of error,
regardless of the size or design of the sample. This is particularly important in decentralized
contexts with small populations (e.g. fewer than 500 households), where the high level of
disaggregation makes it indispensable to balance the precision of survey data against survey
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Table 1 Summary of studies in water resources management comparing different MCDA models

MCDA methods compared Decision problem Reference

ELECTRE-III; MAUT; CP River basin planning: selection of
the best alternative for flood con-
trol in Tucson Basin (USA)

Duckstein et al. (1982)

MATS-PC; ARIADNE; EXPERT
CHOICE; ELECTRE-III

Water resources planning: rank-
ing of water supply project plans
in Washington Metropolitan Area
(USA)

Goicoechea et al. (1992)

MAUT; PROMETHEE-II; AHP;
ELECTRE-III

Water resources management:
evaluation of operation alter-
natives of the Red Bluff
Diversion Dam (USA)

Mahmoud and Garcia (2000)

ELECTRE-III; PROMETHEE-II Strategic natural resources plan-
ning: ranking of forest strategies
in Kainuu (Finland)

Kangas et al. (2001)

ELECTRE-I; ELECTRE-III;
MAUT; AHP; TOPSIS

Flood management: prioritization
of flood management alternatives
in Golestan (Iran)

Chitsaz and Banihabib (2015)

MAUT; AHP Rural water supply planning:
selection of the best technology
for water supply in Bangladesh

Sikder and Salehin (2015)

MAUT; AHP; ELECTRE-III Water resources strategic manage-
ment: ranking of flood management
alternatives in Shahrood (Iran)

Banihabib et al. (2017)

costs (Pérez-Foguet and Giné-Garriga 2018). In using the household survey data for WASH
planning, policymakers and implementers must consider the underlying uncertainty in order
to avoid making decisions based on false or misleading assumptions (Giné-Garriga et al.
2013c).

Against this background, we present two MCDA approaches, based on MAUT and
ELECTRE-III, for integrating data uncertainty into the decision analysis process. Our aim
is guided by three main research questions:

1. How can we adapt MAUT and ELECTRE-III models for incorporating the uncertainty
of the input data during preference modelling?

2. In which manner can we characterize the uncertainty of the input data and quantify its
effect on the resulting model’s output?

3. How convergent or divergent are the results (i.e. rankings) of each model?

The contributions of this paper are twofold. First, to the best of our knowledge, this work
is the first attempt to extend MAUT and ELECTRE-III models to tackle data uncertainty in
water decision-making. Second, the paper addresses the growing need in WASH sector for
improved targeting and prioritization instruments. Although our motivation comes from the
WASH sector, the two approaches we present can also be applied in other areas of water
management to address the issue of numerical inaccuracy in the data.

The remainder of the paper is structured as follows. We present an overview of the
MAUT and ELECTRE-III mtehods in Section 2 and describe a case study of WASH plan-
ning in rural Kenya in Section 3. In Section 4, we present and discuss our proposed MCDA
models for incorporating data uncertainty (4.1), characterizing uncertainty and treating
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propagation of uncertainties (4.2) and the comparison between rankings (4.3). Finally, we
present our conclusions in Section 5.

2 MCDAMethods

Both MCDA methods begin by defining the decision problem, compromising:

– A set of m alternatives, A: A = {a1, a2, ..., ai, ..., am}
– A set of n criteria, C: C = {c1, c2, ..., cj , ..., cn}
– A set of n weights coefficient for the criteria, W : W = {w1, w2, ..., wj , ..., wn}
– The evaluation matrix, G, with the performance values of each alternative ai on

criterion cj in row i and column j : G[i, j ] = gj (ai)

The first of the two models is derived from the multi-attribute utility theory. The model
considers two steps:

– Aggregation: a utility function is defined to construct the global value of each alterna-
tive. Several possible functions (additive, multiplicative and multi-linear) can be used.
For simplicity reasons, we restricted our attention here to the additive form: the utility
value for each alternative, U(ai), is calculated as the sum of the weighted performance
values for each criterion.

– Exploitation: the utility values obtained in the first step are used to rank the alternatives.

The second model is based on ELECTRE-III (Roy et al. 1992). It also consists of two
steps:

– Outranking relation: the method starts by building a preference relation, known as ‘out-
ranking relation’ S(a1, a2), between each pair of alternatives. To do so, a series of
pairwise comparisons of the alternatives are made using the concordance-discordance
principles.

– Exploitation: the outranking relations obtained in the first step are used to build two
pre-orders through descending and ascending distillations, Z1 and Z2. A final pre-order
of the alternatives is suggested as the intersection of these two.

The construction of the concordance and discordance indexes for each pair of alternatives
requires the definition of three discrimination thresholds for each criterion: indifference
threshold (qj ), preference threshold (pj ) and veto threshold (vj ). However, choosing these
thresholds values can be, however, challenging for decision-makers, as it involves a high
degree of subjectivity (Ezbakhe and Pérez-Foguet 2018). Figure 1 illustrates a summary of
the decision analysis procedures of both MCDA models.

3 Case Study

In rural Kenya, a large proportion of the population lacks access to safe WASH services.
According to published national official statistics, only half of the people living in rural
areas used improved sources of drinking water and less than 20% have access to safe sanita-
tion and hygiene facilities (Kenya National Bureau of Statistics 2010). In order to increase
the access to appropriate WASH services, the Kenyan Government (in collaboration with
UNICEF) launched an initiative in 2010 to target the most vulnerable rural populations. This
case study focuses on these rural areas, located in 21 districts across the country (Fig. 2).
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Fig. 1 General decision analysis procedures of the MAUT (left) and ELECTRE-III (right) models

The 2010 initiative included a survey that reached 4,925 households across the 21
targeted districts. In each household, service level was captured through a structured ques-
tionnaire covering multiple WASH-related issues. Issues included: (i) quality of the water
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Fig. 2 Map of Kenya with WASH Program districts (adapted from Giné Garriga and Pérez Foguet 2013a)
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Table 2 WASH issues considered in the case study

cj Criteria Standard

c1 Quality of the water delivered Water delivered with good analysis results

c2 Type of main drinking water source Access to improved drinking water sources

c3 Distance from dwellings to water source Time spent in water fetching less than 30 minutes

c4 Functionality of household water supply Functioning water supply

c5 Person responsible for dwelling water Person responsible not a child

c6 Domestic water consumption Water consumption more than 20 liters per capita per day

c7 Type of sanitation facilities Access to improved sanitation facilities

c8 Sanitary inspection of water supplies No identified risk to contaminate water

c9 Point-of-use water treatment Adequate treatment method used at the household

source, (ii) type of main drinking water source, (iii) distance from dwelling to the water
source, (iv) functionality of water supply in the household, (v) person responsible for
dwelling water, (vi) domestic water consumption, (vii) type of sanitation facilities, (viii)

sanitary inspection of water supplies, and (iv) point-of-use water treatment. The standards
(i.e. the minimum levels to be attained in the provision of WASH services) are shown in
Table 2.

Each household was given a value of 0 or 1 depending on whether it met the standard
(1) or not (0). This provided the number of households (xi) meeting the required standard.
The proportion of households that met the standards (pi) was estimated for each district as
xi/n, with n the total number of households sampled in each district. The survey data are
shown in Table 3. These data constituted the performance values for our MCDA models.
The alternatives in the decision problem were the rural communities in the 21 districts in
rural Kenya, using the criteria the ones shown in Table 2.

In the MAUT model, the weights of criteria were determined by principal analysis com-
ponent (PCA) following the methodology developed by Nardo et al. (2005). This method
has already been used in different WASH-related indices (Giné Garriga and Pérez Foguet
2010, 2013b; Pérez-Foguet and Giné-Garriga 2011). It is important to draw attention to the
fact that, while weights in MAUT represent the relative importance of criteria, weights in
ELECTRE-III express the decision-makers’ deliberate position regarding the ‘voting power’
of each criterion (Figueira et al. 2010). Consequently, a study involving the decision makers
of the WASH sector in Kenya would be necessary to assess their positions on the different
criteria. Without access to these decision makers, it was necessary to translate the weights
obtained in the MAUT model into indices of importance for ELECTRE-III. In this case, we
assigned the same set of weights for both models (Table 4).

4 Results and Discussion

4.1 Incorporating Data Uncertainty into theMCDAModels

In order to integrate the uncertainty of the input data into the preference modelling process,
we adapted the MAUT and ELECTRE-III methodological frameworks as follows.

Model U , based on the MAUT theory, starts by building the global utility value of
each district U(ai). To estimate the uncertainty associated to this utility value, the model
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Table 4 Criteria weights used in both MCDA models (obtained from PCA)

c1 c2 c3 c4 c5 c6 c7 c8 c9

wj 0.152 0.160 0.101 0.054 0.148 0.052 0.073 0.112 0.147

combines the uncertainty components of the performance values for each criterion gj (ai)

through an ‘uncertainty propagation’ method. This allows us to have the districts’ utility
values together with their uncertainties (i.e. the probability distribution of the utility val-
ues). Finally, the model conducts a statistical hypothesis test (in this case, a Welch’s t-test)
between each pair of districts to determine their statistical significance. If the null hypoth-
esis of no differences in the utility value means is accepted, the districts are considered to
occupy the same ranking position; otherwise, one district ranks higher than the other.

Model S, derived from ELECTRE-III, incorporates data uncertainty in a different man-
ner. Uncertainty of input data is characterized and used to define the discrimination
thresholds, according to Eqs. 1–3.

qj = max |gj (a)U − gj (a)|, |gj (b)L − gj (b)| (1)

pj = |gj (a)U − gj (a)| + |gj (b)L − gj (b)| (2)

vj = k · pj (3)

with gj (a) the performance values of alternative a on criterion j , gj (a)U and gj (a)L
the upper and lower limits of its confidence interval, and k the veto/preference ratio
(k = vj /pj ). In this case, we adapted a ratio of k = 2.

The concept behind these equations is simple: if the performance values and their asso-
ciated uncertainties overlap, it is reasonable to consider them indifferent (indifference
threshold qj ). Otherwise, if there is no overlap, one alternative may be preferred over
the other (preference threshold pj ). Once the discrimination thresholds are calculated, the
model follows ELECTRE-III outranking procedure to obtain the final ranking of districts.

Figure 3 highlights the different ways models U and S integrate data uncertainty. Model
S is more straightforward, as data uncertainty is directly included through the discrimination
thresholds. In contrast, model U requires more steps to propagate uncertainty and conduct
hypothesis testing before obtaining the final ranking.

Input Data
Utility 

Value

Utility 

Value with 

associated 

uncertainty
Error 

propagation
Hypothesis 

testing

Order of 

alternatives

Data uncertainty

Input Data

Thresholds

qj, pj, vj
Data uncertainty

Pre-order of 

alternatives

Model U:

Outranking 

Relations
Model S:

Fig. 3 Incorporating data uncertainty into MCDA models. The model U is based on the MAUT theory, and
model S, on ELECTRE-III.
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4.2 Characterizing and Propagating Uncertainty

Uncertainty of input data can be characterized using various methods, both in terms of
qualitative and quantitative parameters. In this case, our input data are proportions of pop-
ulations in each district, estimated from the household surveys. Consequently, data can be
considered to follow binomial probability distribution, with parameters n as the number of
households surveyed and p, the proportion of households verifying the criteria (note that we
assumed sample sizes n are much smaller than the population size N ). To characterize the
uncertainty in our data (populations estimates), we used confidence intervals. According to
Clopper and Pearson (1934) ‘exact’ method, the lower and upper limits of the confidence
intervals can be expressed as:

piL =
[

1 + n − xi + 1

xi · F1−α/2, 2xi , 2(n−xi+1)

]−1

(4)

piU =
[

1 + n − xi

(xi + 1) · Fα/2, 2(xi+1), 2(n−xi )

]−1

(5)

with F(c, df1, df2) the 1 − c quantile from the F distribution with degrees of freedom
df1 and df2. Although other methods for calculating the binomial proportion confidence
intervals exist, we chose the Clopper-Pearson interval as it was based on the cumula-
tive probabilities of the binomial distribution rather than an approximation to the normal
distribution (Agresti and Coull 1998). The confidence intervals are shown in Fig. 4.

In model S, these confidence intervals are used to define the indifference, preference and
veto thresholds according to Eqs. 1–3. This provides an easy manner of integrating the data
uncertainty in the ranking process.

However, model U requires an uncertainty propagation step in order to determine the
uncertainty in the global utility values. We tested two error propagation approaches: (i) first
order, second moment approximation (FOSM), and (ii) Monte Carlo simulation (MCS).
The first approach uses a Taylor series expansion of the random variable, while the second
approach generates artificial samples of input random variables in order to evaluate the
distribution of the simulated utility value. Both approaches give almost the same confidence
intervals of the global utility values. However, while the FOSM approach only estimates
the mean and standard deviation of the utility value, the MCS approach provides its full
probability distribution. Thus, although it takes a relatively longer time to be completed, we
use the MCS approach for hypothesis testing and district ranking.

4.3 Comparison of Rankings

The two MCDA models resulted in similar district rankings (Fig. 5). This convergence
between the rankings coincides with results of other studies (Duckstein et al. 1982; Roy and
Bouyssou 1986; Goicoechea et al. 1992; Mahmoud and Garcia 2000), whereby rankings
obtained by weighted average and ELECTRE-III methods were largely the same.

In both cases, districts of Molo (A3), Kisumu (A12), Nyando (A16) and Uasin Gishu
(A19) occupied the leading positions. A closer look at the survey data (Table 3) reveals why
these four districts had better WASH services than the rest. For instance, in terms of water
supply (c4), more than 95% of their populations had access to functioning water points; this
is 8% higher than the national average. national average. The same is observed with respect
to the distance from dwelling to water (c3): while on average only 40% of the population
had access to a water source within 30 minutes or less. The proportion in these four districts
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Fig. 4 Confidence of intervals of population estimates. (Note that districts are ordered in descending order
for each criterion)
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Fig. 5 Rankings of the 21 districts obtained with models U and S

was at least 12% higher. In addition, more than 71% of households owned latrines in good
hygienic conditions (c8), far from the national average of 53%. On the other hand, both
models placed districts of Garissa (A5), Isiolo (A6), Mwingi (A18) and Mandera (A20) as
the lowest rankings. These four districts severely lacked adequate quantities of water for
domestic purposes (c6): only 21%-39% of their populations had access to more than 20 liters
of water per capita per day, which is 30% lower than the national average. Furthermore,
although access to improved sanitation services was 46% on average (c7), it was less than
29% in these districts.

The only major divergence between the two models is the position of districts Tana River
(A7) and Kajiado (A15): the model U ranked Kajiado higher than Tana River, while the
opposite was observed for model S. This reflects the different principles underlying the two
models, especially concerning the compensatory nature of their aggregation procedures.
The Kajiado district had better services in terms of distance to source, functionality of water
supplies, domestic water consumption, household water quality and water treatment (c3,
c4, c6, c8 and c9), but performed poorly in criteria related to improved water sources and
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Model U Model S

Fig. 6 Colour (red/orange/green) depicts prioritization of districts based on their ranking (whereby red is the
lowest ranked and green, the highest)

persons responsible for collecting water (c2 and c5). Model U , being fully compensatory,
placed Kajiado in a higher position as the bad performances in the two criteria are compen-
sated by the rest. In contrast, model S (which is only partially compensatory) limited this
compensation, resulting in a lower position for Kajiado district.

Nonetheless, both models lead to similar targeting and prioritization (Fig. 6). These pri-
oritization maps can help understand the inequalities in access to WASH services. In Kenya,
there is a serious gap in WASH services in the North Eastern Province, which should thus
be targeted in future WASH investments. In the context of limited budgets, this type of
targeting and prioritization tools become essential for designing interventions that seek to
reduce inequalities in service provision. However, it is particularly important to highlight
that, even if the two MCDA models resulted in different rankings — and hence dissimilar
prioritization maps —, both are equally relevant and valid. More important than the selec-
tion of which model to apply for WASH planning is to fully understand the mathematical
model and principles behind it.

5 Conclusions

Safe WASH services are central to meeting global development goals on health, poverty and
economic growth. However, strengthening the role of WASH in poverty alleviation requires
evidence-based targeting and prioritization instruments in order to identify and focus on
those most in need for better WASH services. In this sense, MCDA can provide insight on
priority-setting and development of WASH interventions, but the task of choosing of the
most appropriate model can still be challenging. This selection is even more difficult when
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dealing with uncertainty in the input data, as there is a lack of studies extending MCDA
models to integrate data uncertainty.

In this paper, we present and compare two MCDA models, based on MAUT and
ELECTRE-III, for targeting and prioritization of WASH services. Unlike other compar-
isons in the literature, we adapted the MCDA methodological frameworks to address the
uncertainty of the input data.

Our main conclusions from this comparison are:

– The two models incorporate uncertainty in the input data in a considerably different
manner. Model U , based on MAUT, requires a step of ‘uncertainty propagation’ in order
to characterize the uncertainty of global utility values, as well as a step of ‘hypothe-
sis testing’ to determine the ranking of alternatives. Model S, based on ELECTRE-III,
presents a more straight-forward ranking procedure, as data uncertainty is directly
included through the discrimination thresholds.

– In the WASH sector, household estimates used for targeting and prioritization purposes
are inferred from representative samples from the overall population. Therefore, it is
important to characterize the precision of the estimated values. A simple way to express
uncertainty in the estimates, and its effect on the MCDA models output, is through
confidence intervals.

– Both models can be useful decision-aid instruments for targeting and prioritization
in the WASH sector. In this case study, the two models yield similar rankings and
lead to similar prioritization. However, it is noteworthy to remember that MCDA
models should not be used to reveal the ‘correct’ prioritization, but to guide the deci-
sion analysis process. While the selection of the MCDA model is important, more
emphasis should be given on both defining the decision problem comprehensively and
understanding the theoretical principles underlying each technique.
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Pérez-Foguet A, Giné-Garriga R (2018) Sampling in surveys with reduced populations: a simplified method

for the water, sanitation, and hygiene sector. Waterlines 37(3):177–189
Roy B, Bouyssou D (1986) Comparison of two decision-aid models applied to a nuclear power plant siting

example. Eur J Oper Res 25(2):200–215
Roy B, Slowinski R, Treichel W (1992) Multicriteria programming of water supply systems for rural areas.

Water Resour Bull 28(1):13–31
Sikder A, Salehin M (2015) Multi-criteria decision making methods for rural water supply: a case study from

Bangladesh. Water Policy 17(6):1209–1223
Stewart TJ, Losa FB (2003) Towards reconciling outranking and value measurement practice. Eur J Oper Res

145(3):645–659
Tsang S, Kao B, Yip KY, Ho WS, Lee SD (2011) Decision trees for uncertain data. Trans Knowl Data Eng

23(1):64–78
UN Special Rapporteur on the human right to safe drinking water and sanitation (2011) Report of the Spe-

cial Rapporteur on the human right to safe drinking water and sanitation, Catarina de Albuquerque.
A/HRC/18/33. New York, UN

UN-Water (2018) Sustainable development goal 6: Synthesis Report on Water and Sanitation 2018, New
York, UN

United Nations (2010) Human rights and access to safe drinking water and sanitation. A/HRC/RES/15/9.
New York, UN

WHO and UNICEF (2006) Core questions on drinking water and sanitation for household surveys. Geneva,
UN


	Multi-Criteria Decision Analysis Under Uncertainty: Two Approaches...
	Abstract
	Abstract
	Introduction
	MCDA Methods
	Case Study
	Results and Discussion
	Incorporating Data Uncertainty into the MCDA Models
	Characterizing and Propagating Uncertainty
	Comparison of Rankings

	Conclusions
	References


