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Abstract
The longitudinal dispersion coefficient (Kx) is fundamental to modeling of pollutant and
sediment transport in natural rivers, but a general expression for Kx, with applicability in
low or high flow conditions, remains a challenge. The objective of this paper is to develop a
Pareto-Optimal-Multigene Genetic Programming (POMGGP) equation for Kx by analyzing
503 data sets of channel geometry and flow conditions in natural streams worldwide. In order
to acquire reliable data subsets for training and testing, Subset Selection of Maximum
Dissimilarity Method (SSMD), rather than the classical trial and error method, was used by
a random manipulation of these data sets. A new hybrid framework was developed that
integrates SSMD with Multigene Genetic Programming (MGP) and Pareto-front optimization
to produce a set of selected dimensionless equations of Kx and find the best equation with
wide applicability. The POMGGP-based final equation was evaluated and compared with 8
published equations, using statistical indices, graphical visualization of 95% confidence
ellipse, Taylor diagram, discrepancy ratio (DR) distribution, and scatter plots. Besides being
simple and applicable to a broad range of conditions, the proposed equation predicted Kx more
accurately than did the other equations and can therefore be used for the prediction of
longitudinal dispersion coefficient in natural river flows.

Keywords Multigene genetic programming . Pareto-optimal model . Maximum dissimilarity
method . Longitudinal dispersion coefficient . Natural streams

1 Introduction

Nowadays, it is not uncommon to find dumping of biological, chemical and physical contam-
inants in rivers across the world, despite full knowledge that they pose a potential danger to
public health. Contaminants propagate in vertical, longitudinal and transverse directions
(Tayfour and Singh 2005), however, at a considerable distance downstream from the source
and after mixing, just the longitudinal dispersion is dominant (Riahi-Madvar et al. 2009).
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Therefore, the longitudinal dispersion coefficient is fundamental in one dimensional (1-D)
modeling of river water quality. Several water quality models, such as QUAL2E (Parveen and
Singh 2016), QUAL2K (Hadgu et al. 2014), SIAQUA (Fan et al. 2015) and WASP (Moses
et al. 2016), use the 1-D advection-dispersion equation expressed as (Eq. 1) (Noori et al. 2016):

∂C
∂t

þ u
∂C
∂x

¼ Kx
∂2C
∂2x

ð1Þ

where C is cross-sectionally averaged concentration, u is the longitudinal velocity, Kx is the
longitudinal dispersion coefficient, x is the longitudinal coordinate parallel to the mean flow
direction, and t is the time in unsteady modeling (Noori et al. 2016).

If a set of concentration and velocity measurements in a river are available, then it is simple
to calculate the longitudinal dispersion coefficient. However, these measurements are time
consuming and costly (Najafzadeh and Tafarojnoruz 2016). An alternative is to develop an
equation incorporating the factors that affect the longitudinal dispersion coefficient. Seo and
Cheong (1998) showed that the longitudinal dispersion coefficient can be expressed as a
function of several factors as:

D ¼ f U ;U*; Sn;H ;B
� � ð2Þ

Which H is the flow depth, U* is the bed shear velocity, U is flow velocity, Sn is the sinuosity
of the river, B is the channel width and D is the longitudinal dispersion coefficient (K). Several
investigations have been carried out from the middle of the twentieth century to find an
equation for the longitudinal dispersion coefficient. First, analytical and empirical approaches
were developed (Elder 1959; Fischer et al. 1979; Kashefipour and Falconer 2002; Li et al.
2013). Empirical approaches were based on regression analysis using limited database.

Recently, Artificial Intelligence (AI) approaches have been used. For example, Artificial
Neural Network (ANN) (Alizadeh et al. 2017), Adaptive Neuro-Fuzzy Inference System
(ANFIS) (Riahi-Madvar et al. 2009), Support vector Machine (SVM) (Noori et al. 2009),
and genetic programming (Rajeev and Dutta 2009) were used and found satisfactory in
determining the longitudinal dispersion coefficient. However, most of these studies utilized
small datasets (less than or equal to 150 data sets) of natural rivers. Although their results were
promising, they may not be generalized to all rivers or for the extended data bases. Also,
selection of subsets for training and testing of the AI models must be carefully done as it
impacts the results. The training subset must encompass the high/low flow conditions to
decipher the best pattern of the data. Finally, the optimization of equations is important to
improve the robustness of results.

Considering these three points, (i.e. subset selection, extended data base, and optimal
solution) the objective of this study was to develop a predictive equation for the longitudinal
dispersion coefficient, using the integrated multigene genetic programming. To that end, the
Subset Selection of Maximum Dissimilarity Method combined with the Multigene Genetic
Programming based on Pareto Optimal solution (POMGGP) was utilized for developing
predictive equations of longitudinal dispersion coefficient in natural rivers with 503 worldwide
data sets. This optimization method is capable of selecting the best generation among all
possible/existing generations. The reminder of the paper is organized as follows. In section 2
the methodology of model development and data sets are presented. Section 3 discusses the
results of prediction and compares them with several existing methods. Finally, section 4
includes the conclusion of the study.
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2 Methodology and Data Analysis

2.1 Longitudinal Dispersion Data

Among the geometrical and hydrodynamic parameters, flow depth (H), bed shear velocity
(U*), flow velocity (U), and channel width (B) have the most effect on the longitudinal
dispersion coefficient (K) (Noori et al. 2016). In this study, non-dimensional parameters of
B/H, U*/U, and Kx/U*H were used to predict the longitudinal dispersion coefficient. A
field dataset comprising 503 samples representing different river flow and pollutant
conditions was collected from the literature (Deng et al. 2001; Kashefipour and Falconer
2002; Carr and Rehmann 2007; Riahi-Madvar et al. 2009; Ahmad 2013). The Kx values in
these data sets are calculated based on the measured concentration profiles of tracer (C-t
curves). Statistical characteristics, such as minimum (Min), maximum (Max), average
(Mean) and standard deviation (SD) of the total, training, and testing datasets, were
selected by the SSMD, as given in Table 1. The SSMD procedure and its results are
discussed in section 2.2.

2.2 Data Pre-Processing by SSMD

The Subset Selection of Maximum Dissimilarity (SSMD) method was used to select training
and testing subsets by random data manipulation. Due to the variability of dataset, this
categorization and data-assimilation method was crucial for MGGP for accurate prediction
(May et al. 2008). It may be noted that too few data create noise on one hand and large
database creates complex equations with over-fitting challenges on the other hand (Yapo et al.
1998). The SSMD, developed by Kennard and Stone (1969), avoided these problems. The
SSMD algorithm generates a subset from the master set in such a way that the subset data
includes the highest dissimilarities. The selected subset does not concentrate on a specified
area or the data from the edge of dataset.

Table 1 Statistical characteristics of datasets

Data Set Parameter Min Max Mean SD Skewness Kurtosis

Total(503 data numbers) W (m) 0.2 867 56.49 110.87 4.86 28.37
H (m) 0.034 19.9 1.42 2.31 4.60 27.43
U (m/s) 0.022 1.74 0.49 0.31 1.26 2.25
U*(m/s) 0.001 0.99 0.066 0.07 7.098 74.00
K (m2/s) 0.005 1798.60 71.56 191.99 5.55 36.85
B/H 1.44 1000 40.72 74.87 8.67 94.4
U*/U 0.022 1.74 0.49 0.31 1.26 2.25
U/√gH 0.004 1.37 0.24 0.24 1.69 2.84
K/U*H 0.96 33,426.67 1039.06 325.9 7.2 59.88

Train (351 data number) B/H 1.44 1000 45.87 86.74 7.79 72.70
U*/U 0.022 1.74 0.47 0.33 1.28 1.87
U/√gH 0.004 1.37 0.21 0.22 2.18 5.79
K/U*H 0.96 33,426.67 1296.27 3818.3 6.17 43.07

Test (152 data numbers) B/H 1.44 156.54 28.71 30.51 1.68 3.50
U*/U 0.023 1.71 0.53 0.27 1.47 4.49
U/√gH 0.005 0.91 0.31 0.26 0.94 −0.27
K/U*H 1.82 6344.47 439.46 924.7 4.68 24.92
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The Kennard and Stone (1969) algorithm chose a subset of N-dimensional points that
were distributed uniformly in the experimental space. If parameter X is the dataset as
X = (x1, x2,…, xp) and a set of m = 1, 2, …, N points are defined as candidates of the subset
for training.

The design points were selected sequentially. If the squared distance between the ith and jth

points is defined as D2
i; j and k points have already been chosen (k < p), then the minimal

distance from candidate point of N to k points can be defined as

D2
i; j ¼ xi−x j

�� ��2 ¼ ∑p
k¼1 xki−xkj

� �2

Δ2
i kð Þ ¼ min D2

1i;D
2
2i;…;D2

ki

� �
i≠m ð3Þ

The point of N is not in the training subset yet where the k points already are in the training
subset. The (k + 1)th point in the training subset was selected from the remaining (N-k)
points by:

Δ2
kþ1 ¼ max Δ2

i kð Þ� �
i≠m ð4Þ

where the N point belongs to the remaining dataset that is farthest from an existing point.
In this study, 70% of the dataset was selected as the training subset, and the remaining
points of dataset made the test subset. Therefore, the steps of SSMD are as follows (Wang
and Huai 2016):

1- Normalize the points of dataset.
2- Choose the first number from the X dataset with the highest x1N and place it in the M

subset as s1.
3- Choose the second point of dataset with the largest distance to s1 and put it in theM subset

as s2.
4- After k steps, the dataset of X includes (p-k) data, where theM subset contains k data. The

distances between M subset components and the remainder of X dataset components are
considered. The minimum value of distance is designated to acquire (N-k) dpmin. The
maximum dpmin is selected as mk= 1

5- Repeat step 4 until 70% of dataset points are put in M or k =MN.
6- De-normalize the selected data in the M and X subsets.

By the SSMD method, 70% and 30% of the data were selected for training and testing of
the derived models, respectively, as shown in Table 1. Figure 1 shows the distribution of
data selected subsets and shows that the training subset covers the boundaries of the data
set and the testing subset is located inside the training subset. Therefore, the SSMD was
able to discover the information on the boundaries of data space. Variations in the training
subset were more extensive than those in the testing subset and will lead to more general
prediction models. The most significant feature of the SSMD is that it encompasses outlier
data in the training set.

2.3 Genetic Programming (GP)

Genetic Programming (GP), proposed by Koza (1992), automatically solves expressional
optimization problems using Darwinian Theory of Evolution by natural selection. GP
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reproduces random population of species to create a new population to find the best fit
solution (DanandehMehr and Kahya 2017). The final GP model may include the pro-
gram’s external inputs, functions, and constants. To choose the best function set from all
functions, a precise guess is required. The GP produces a series of formulas with distinct
complexities, but the formulas that are moderately difficult are preferred. A simple
equation may not be precise, but a complicated one may be over-trained and will result
in over-fitting.

2.3.1 Multigene Genetic Programming (MGGP)

Recently, MGGP has been developed by modifying the classical GP. It linearly inte-
grates small complexity GP expressions (Searson 2015). Every computer program or
individual in MGGP is a weighted linear manipulation of genes (i.e. tree) plus a bias
(noise) term. The linear constants for every MGGP individual are calculated by the
usual least squares technique. MGGP has been shown to simulate more accurately the
nonlinear behavior than does the classical linear regression method (DanandehMehr and
Kahya 2017). Throughout the MGGP development, genes are acquired and removed by
a two-point top level crossover that allows replacing genes between individuals
(DanandehMehr and Kahya 2017).

2.3.2 Pareto Optimal-Multigene Genetic Programming (POMGGP)

Due to its simplicity in producing different levels of Pareto frontiers, the Pareto optimal is used
in hybrid with MGGP. The Pareto solution set operates, based on a balance between multiple
optimization goals, so that the results are more in line with the actual state of the problem,
which can be used as a new way in multi-objective problems. The feasible solutions of a multi-
objective problem are determined by the disassembly sequences that satisfy the disassembly
priority relation.

Fig. 1 Distribution of training and testing subsets selected by SSMD
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A collection of the entire Pareto optimal solutions is entitled as the final Pareto optimal
solutions set, and a set of values of the target function that are related to the disassembly
sequence is called the Pareto optimal frontier (Zhang et al. 2017).

Figure 2 exhibits the implementation process and a flowchart of the SSMD-POMGGP
modeling. The SSMD-POMGGP combines three robust techniques of input subset selection,
optimal solution, and multi-expression findings in an integrated framework as presented in this
figure.

2.4 Performance criteria

The proposed framework was assessed, using statistical evaluation criteria such as the root
mean square error (RMSE), mean absolute error (MAE), Nash-Sutcliffe Efficiency (NSE),
coefficient of determination (R2), index of agreement (d), persistence index (PI), confidence
index (CI), and relative absolute error (RAE). Also, several pre- and post-processing visual-
ization approaches were used to assess model predictions. Model performance was assessed
using estimated and measured Kx values to calculate the Standard Deviation (SD), Centered
Root Mean Square Difference (RMSD), and correlation coefficient (R2), as summarized by the
Taylor diagram (Taylor 2001).

Taylor (2001) presented a single diagram to abbreviate several accuracy indices (RMSD
and R2) to compare models. This is mentioned as the Taylor diagram and works as a complete
technique of evaluating the performance of different estimators. It graphically illustrates a
series of points on a polar diagram. The azimuth angle shows the correlation coefficient
between the estimated and measured values. The radial location from the beginning charac-
terizes the proportion of the normalized standard deviation (SD) of the estimated values from
their equivalent measured values.

Fig. 2 Flowchart of integrated SSMD with POMGGP modeling
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3 Results and Discussion

3.1 Pareto Optimal MGGEP Model Results

The authors explored the use of subset selection (SS) technique for pre-processing of 503 field
data of natural rivers. By combining the SSMD outputs with MGGP, predictive equations were
derived. In the MGGP algorithm, different parameters which affect the general applicability of
derived equations should be justified. These parameters were adjusted in a trial-and-error
manner based on the published values (Gandomi and Alavi 2012a, 2012b). From Pareto
analysis the MGGP models for the prediction of Kx had the lowest prediction error. The
number of derived models was determined by the population size. The complexity of
optimization was controlled by the number of populations. The maximum acceptable number
of genes in a multi-gene program and the maximum tree depth directly determined the size of
the search field and the number of expressions discovered inside the search field. These
parameters were set as a compromise between the running time and the complexity of
developed expressions. The parameters used to find the best MGGP models are presented in
Table 2.

Figure 3 shows the changes of log values of the best and average model fits in different
generations during training. By increasing the generation size, the model fitness value
decreases and the model tends to converge. The optimal fitness value was established at
the 55th generation (fitness = 2868.494). It is worth noting that in each generation the
RMSE was calculated and when the change in RMSE in two successive generations was
less than 10%, then the generation stopped and the final fitness value was selected as the
optimal fitness.

Although two variables of B/H and U*/U and three genes were used in the present paper,
MGGP extract too complicated expressions to increase the estimation accuracy that would
be unsuitable for practical applications. The complexity of derived multigene solutions is
discussed by (Gandomi and Alavi 2012a, 2012b; DanandehMehr and Kahya 2017;
DanandehMehr and Nourani 2017; Wang et al. 2017). In order to meet this challenge,
Pareto front analysis of model population was used. The Pareto front plots the best model

Table 2 Parameter adjustments for the MGGP model

Run parameter Value Run parameter Value

Population size 300 Lexicographic selection pressure On
Max. generations 500 Probability of pareto tournament 0
Generations elapsed 55 Max. genes 3
Input variables 2 Max. tree depth 4
Training instances 352 Max. total nodes Inf
Tournament size 15 ERC probability 0
Elite fraction 0.3 Complexity measure Expressional
Crossover probability 0.84 High levelCrossover 0.2
Low levelCrossover 0.8 Sub-tree mutation 0.9
Mutation probabilities 0.14 Replacing input terminal with

anotherrandom terminal
0.05

Gaussian perturbation
of randomly selected constant

0.05

Function set ×, +, −, /, √, exp., ln, sin,cos, tanh, square, log, multi3, cube, abs
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population versus its estimation performance and the complexity of model. Figure 3 shows
the population of the developed expressions as a function of their complexity, which is
stated by the number of nodes, on the horizontal axis, as well as their predictive perfor-
mance (1-R2 parameter) on the vertical axis. The smaller values in Pareto front plot of each
population are desirable. The produced equations that perform somewhat accurate with less
complexity than the best equation in the population can be clarified in this plot.

When the Pareto-front location in the solution space is recognized, one can simply choose
between the accuracy and complexity of solutions and pick up a thrifty model. In this study the
Pareto-optimal predictive equation was chosen in such a way that the Pareto-optimal solution
had statistical significant R2 value and enveloped the input variables of B/H and U*/U in the
best solution. The critical R value for the training stage with 351 degrees of freedom was 0.148
(R2 > 0.022, α = 0.01 level of significance), As illustrated in Fig. 3, the solution with the

Fig. 3 Changes of the best and average fitness functions with generation size and Pareto front optimal solutions
in terms of their complexity and fitness
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smallest complexity that positioned below the horizontal line of 0.56 and had included two
input variables can be picked as the Pareto optimal solution. As the Pareto optimal solution
was derived based on the model performance in the training step, its accuracy should be
verified at the testing step and then used as the Pareto-optimal equation of Kx. As shown in
Fig. 3, the Pareto front in the population is depicted by blue circle and the best solution in the
population is colored in green circle as the Pareto-optimal equation. Finally, the equation with
the expressional complexity 116 was chosen as the POMGGP equation for the estimation of
Kx in natural rivers.

The final multigene model of Kx, derived by the Pareto solution, is shown in
Fig. 4. The final Pareto solution had 3 individual genes. Although the structure of the
final best model for Kx included some nonlinear components (e.g. divide, power,
square), but in the form of its coefficients, it is a linear multigene model with
specified weights of its genes. The tree structure of individual genes that comprise
the model is shown in Fig. 4 and the mathematical form of each gene includes its
weighting coefficient, as presented in Table 3, in which numerical precision reduced
for display purposes and x1 = (B/H)0.5, x2 = U*/U. The structural properties relating to
the GP tree representation were as genes equal to 3, Nodes were equal to 38, model
complexity was 121 with a depth of 4. The last two columns in Table 3 show gene
weights and statistical significance of each of the three selected genes of the best
Pareto model. The weight of gene 3 was greater than the other genes and bias term.
Also, the grade of importance of each gene was assessed by means of p values. As is
seen, the involvement of genes, regardless of bias term with p value = 0.1152, to

Fig. 4 Structure of the optimized multi-gene
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explain changes in Kx was strong, as their p values were small and seemed equal to 0.
The statistical importance of the bias term, because of its highest p value, was lower
than the genes.

The simplified mathematical expression of the Kx equation was derived according to the
bias term and genes coefficients. The predictive PO-MGGEP model in the form of dimen-
sionless parameters can be written as:

Kx

BU* ¼ 33:99
B
H

� �0:5

þ 8:497
B
H

U*

U

� �2

þ 8:497BU*

HU
þ 16:99

BU*

HU
þ

0:0000486 B
H

� �0:5−0:00021� �
H1:5U*

4 B1:5U 4 þ 0:01478

ð5Þ

In which Kx is dispersion coefficient (m2/s); H is flow depth (m); U*is bed shear velocity
(m/s); U is flow velocity (m/s); and B is channel width (m); Kx/HU* is Dimensionless
dispersion coefficient, B/H is width to depth ratio and U*/U is ratio of shear velocity to mean
velocity.

In Fig. 5, the scatter plot of Kx/HU* and POMGGP predictions along with their 95%
confidence ellipse (Johnson and Wichern 2007) are presented. These confidence ellipses
show the predictability of observations by the developed equation in their acceptable
statistical bounds and covering zones. As is seen, the POMGGP model was capable to
estimate the observed points with the acceptable amount of accuracy. There are 16, 6
and 22 points outside of 95% confidence ellipse in train, test subsets and all data
respectively.

3.2 Comparison of POMGGP Model and Existing Equations

The longitudinal dispersion coefficient was calculated for the testing phase using eight
formulas from the literature. Comparison between the results of the Pareto optimal equation
and those of the available empirical equations based on a set of statistical indices over testing
data set is illustrated in Table 4. The statistical criteria were computed for all previously
published equations, which are presented in Table 5. According to these criteria, the Pareto
model performed much better than the previous formulae. The coefficient of determination for
the Pareto model was 0.41 in the testing phase, while it was near zero for all other formulae. As
an example, the Liu (1977) formula showed a value about 0.1. Also, the NSE values were

Table 3 Multigene results of Pareto solution

Term Value Gene Weights P value

Bias 0.0148 0.0148 0.1152
Gene 1 -(2.07e-4 x13)/x24 −0.000207 2.574e-17
Gene 2 (4.86e-5 x14)/x24 4.86e-05 1.753e-22
Gene 3 (8.5 x1 (4.0 x2 + 2.0 x1 x22 + x1 x23 + 1.0))/x2 8.497 1.692e-26

Overall simplified
model

Kx/HU* = 34.0 x1 + 8.5 x12 x22 + (8.5 x1)/x2 + 17.0 x12 x2 +
(2.03e-20 x13 (2.39e15 x1–1.02e16))/x24+ 0.0148

In which: X1 = (B/H)0.5 , X2 = U* /U
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negative for all formulae except for POMGGP model. Negative NSE values mean the
application of model or formula was worse than no knowledge model in which the prediction
was simply the average of observed values. Based on RMSE and MAE values which show the
error in modeling, the POMGGP model performed better than all other formulae. Just for
MAE, the Alizadeh et al. (2017) equation reached a better value than POMGGP model,
although the difference was negligible and its R2 was lower. For the RAE criterion, the values

Fig. 5 Scatter Plot of Kx/HU* and POMGGP predictions and 95% confidence ellipse

Table 4 Empirical equations for estimation of longitudinal dispersion coefficient (Alizadeh et al. 2017)

Model Formula Category Number
of data set

Fischer (1975) K
HU* ¼ :011 U

U*

� �2
B
H

� �2 Mathematical –

Liu (1977) K
HU* ¼ :18 U

U*

� �0:05
B
H

� �2 Mathematical –

Seo and Cheong
(1998)

K
HU* ¼ 5:92 U

U*

� �1:43
B
H

� �:62 Statistical 59

Deng et al. (2001) K
HU* ¼ 0:15

8εt
U
U*

� �2
B
H

� �1:67
εt ¼ 0:145þ

U
U*

� �
B
Hð Þ1:38

3520

Mathematical –

Kashefipour and
Falconer (2002)

K
HU* ¼ 10:612 U

U*

� �2
For B

H > 50

K
HU* ¼ 7:428þ 1:775 B

H

� �:62 U
U*

� �:572
	 


U
U*

� �2
For B

H < 50

Statistical 81

Sattar and
Gharabaghi (2015)

K
HU* ¼ 8:45 U

U*

� �1:65
B
H

� �0:5−0:514F0:516
r þ U

U*0:42
U
U* Soft computing 150

Wang et al. (2017) K
HU* ¼ 0:718þ 47:9 H

B

� �
U
U*

� �
B
H

� � Soft computing 116

Alizadeh et al. (2017) K
HU* ¼ 5:319 U

U*

� �0:075
B
H

� �1:206
For B

H ≤28

K
HU* ¼ 9:931 U

U*

� �1:802
B
H

� �0:187
For B

H > 28

Soft computing 124
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oscillated between 0.81 and 5.5. Again POMGGP model and the Alizadeh et al. (2017)
formula showed the best performance and the Wang et al. (2017) formula was in the next
rank. Based on the RAE values, the Fischer et al. (1979), Liu (1977) and Seo and Cheong

Training
Tes�ng

All

Fig. 6 Taylor diagram, performance measures for a training, b testing phases and c all data: Fischer (1975), Liu
(1977), Seo and Cheng (1998), Deng et al. (2001), Kashefipour and Falconer (2002), Sattar and Gharabaghi
(2015), Alizadeh et al. (2017), Wang et al. (2017) and POMGGP
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(1998) formulae performed as estimation of the mean values. The performance of other
formulae was worse than forecasting the mean observed values. According to the PI and d
values, the POMGGP model performance is far better than other formulae. Finally, the CI
values as a product of NSE and d showed that the POMGGP model was superior to other
formulae. Only POMGGP model reached a positive value, while the others gained negative
values which showed worse forecasting than the mean observation.

Results showed that nearly all previous equations lost their applicability in the
independent data set that had not been used in their calibration, while the POMGGP
equation had an acceptable outcome in terms of statistical measures. The given assess-
ment metrics also indicate that all the previously empirical equations were not capable of
accurate prediction of Kx and were very inaccurate than was POMGGP equation. The
Taylor diagram (Fig. 6) was used to visually compare different performance indices and
which plots a series of points on a polar plot for the eight equations and POMGGP. The
Taylor diagram demonstrated the normalized Standard Deviation (SD) between estimated
and measured Kx values along the circular distances with normalized origins and R2

values used as the azimuth angles. The measured Kx values had a particular demonstra-
tion on the Taylor diagram and the implication is that whenever the closer model
accuracy indices to the measurements, the superior the model prediction. Figure 6
displays the Taylor diagram based on training, testing and all data sets, which indicates
that POMGGP had a major enhancement in the Kx estimation and the efficiencies of
previous equations can be graded as: POMGGP, Liu (1977), Alizadehet al. (2017), Sattar
and Gharabaghi (2015) and etc., cover all the data sets. The superiority of the POMGGP
method over the previous equations is clear from the Taylor diagram and its performance
measures.

Fig. 7 Standardized normal distribution graph of the DR values for the PO-MGGP and other formulae in testing
step
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Finally, for comparison of errors of all formulae, the discrepancy ratio (DR) was utilized.
The standardized normal DR is capable of showing the error distribution. The formulation of
DR is as follows:

DR ¼ log abs
EstimatedValue
ObservedValue

Þ
� ��

ð6Þ

In the case of DR = 0.0, there is a correct estimation while in the case of DR> 0.0 there is an
overestimation; or underestimation when DR< 0. The standardized normal DR was calculated
and plotted for all formulas (Fig. 7). From Fig. 7, all formulas had wider error distribution than
the POMGGP. It should be noted that the figure was plotted between −4 and 5 on horizontal
axis, while the error distribution in some formulae reached over 1000. Thus, the POMGGP
model outperformed the next ranking Alizadeh et al. (2017) and Liu (1977) models.

4 Conclusions

Estimation of the longitudinal dispersion coefficient (Kx) is important for modeling pollutant
and suspended sediment transport in streams and there are significant contributions in the
literature on this topic. The emphasis in this paper is on the automatic equation finding of the
Kx by POMGGP by a large database than the previous studies. It is notable that by using the
SSMD resulted in fairly well distribution of data in train and test stages. The data cannot depict
the entire of process if they are too few because uncertainties will result in wrong equation
outcomes. Also too much data increase the burden on model optimization and produce a too
complex equation but in this study it is eliminated by preprocessing of database with SSMD
algorithm. The benefit of applying a robust subset selection in the training of predictive models
is twofold and it is possible to use SSMD in training all predictive models.

One advantage of POMGGP is that with using only a few hormonal parameters as input
vector, it will result in superior outcomes without the necessity for further data processing or
expression findings. Unlike previous equations in Table 4, whose are single expression
equations and their exponents are not integers, the new equation shows a linear combination
of nonlinear expressions with a concise form, in which all exponents are integers or 3/2. In
point of error classification mean absolute error (MAE) of eq. 9 varies with Kx/HU*
drastically. For Kx/HU* values ranges from 1 to 100 the MAE of equation are 385.6 and
146.6 in train and test, for Kx/HU* values of 100–1000 the MAE values are 552 and 389.1 in
train and test and for Kx/HU* values of 1000–6400 the MAE values are 2850.9 and 1544.4 in
train and test respectively. The NSE for the present model is about 0.39 and as provided in
Table 5, eq. 9 gives a relatively high value of NSE and proves the superiority of it than all the
existing equations in terms of accuracy and NSE significantly. The new derived equation
outperformed the previous equations because it use the gene expression based models by using
Pareto optimality, employing a large number of datasets to train the model, dividing the
datasets to train and test automatically by SSMD to overcome the over fitting problem in
training. Despite the improvements in new equation, the performance and accuracy of the
equation is not as much reliable as expected. Consequently, more studies are required in order
to improve the efficiency of the models against concentration profiles.

The Kx in open channel flow is influenced by the velocity gradients in the width direction
and requires information about the velocity distribution over the width of channel for turbulent
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flow and mixing coefficient in the transverse direction of flow. These two matters are not
considered in the present study and require further studies over velocity profile and turbulence characters
and should putmore effort on kinematic viscosity andvelocitymeasurements in future studies to refine the
equations. Future studies are required to focus on evaluating other types of POMGGP optimization and
other training algorithms. Also further tracer studies are required to verify the applicability of Kx equation
for concentration profile modeling. The tracer studies over Kx are more accurate than the rigid values of
Kx because they account for the conditions for the specific reach of the river being investigated, including
the geometry, flow, and weather.
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