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Abstract
In this study, subindex formulations for key water quality parameters were developed and
enhanced to incorporate water quality thresholds and criteria. The enhanced subindex formu-
lations were built into the Unweighted Multiplicative Water Quality Index (UMWQI) and
tested for suitability, with a focus on the Western Lake Erie Basin (WLEB). The modified
UMWQI model integrates water quality criteria and thresholds set forth by the United States
Environmental Protection Agency (USEPA) and state-level environmental agencies, to im-
prove the water quality status. Monthly average subindex values for total suspended solids
(TSS) ranged between 33 and 80 (ranking from Bpoor^ to Bvery good^), those for total
phosphorus ranged between 31 and 73 (ranking Bpoor^ to Bgood^), while those for soluble
reactive phosphorus ranged between 13 and 78 (ranking Bunsuitable for all uses^ to Bgood^).
Overall index values ranged from 35 to 80 throughout the basin, indicating that water quality
in the basin is generally Bpoor^ to Bgood^, consistent with existing literature and water quality
reports. Of the four sites that were being assessed, the River Raisin site tended to have the
highest annual overall water quality index (cleanest system), with the Tiffin and Blanchard
sites ranking the worst. All four sites had soluble reactive phosphorus as the worst ranking
determinant, indicating that this is the determinant of greatest concern, also consistent with
existing literature. Results indicated that UMWQI and associated subindices as developed
were suitable for use within the WLEB. Methodologies and approaches developed are
applicable in other areas experiencing similar concerns.
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1 Introduction

With increasing population growth and demand for surface water, it is crucial to be able to
assess water quality on a real-time basis. Today, a relatively large amount of water quality data
exists that can be harnessed along with much improved computational capacity to provide
indications of water quality status. This can be done both in real-time and in a predictive sense
to determine when and where issues are likely to arise. Water quality indices (WQIs) provide a
simple and reliable method by which water quality parameters can be expressed in common
units and aggregated into a composite value (Brown et al. 1972; CCME 2001; USEPA 2009;
Poonam et al. 2013; Gitau et al. 2016) without losing the scientific foundation of the
assessment of water quality (Sutadian et al. 2016). Existing data can therefore be analyzed
more efficiently. Several WQIs exist, each comprised of a manageable number of determinants
(5–9) that are reflective of key determinants of water quality status and intended use (Brown
et al. 1972; McClelland 1974; Dunnette 1979; Landwehr and Deininger 1976; Hallock 2002).

Water Quality Indices (WQIs) were first proposed in Germany in 1848 (Abbasi and Abbasi
2012); however, the first modern WQI was developed by Horton in 1965 (Horton 1965). Since
then, scientists and environmental organizations have been developing WQIs with many
proposing WQIs for specific purposes and eco-regions (Abbasi and Abbasi 2012; Gitau
et al. 2016; Sutadian et al. 2016). The United States Environmental Protection Agency
(USEPA) was amongst the first designers of the index framework that is still in use today
(USEPA 2009). Commonly used WQIs include the additive model (AWQI) (Brown et al.
1972; Lumb et al. 2011a, 2011b), the multiplicative model (MWQI) (McClelland 1974; Lumb
et al. 2011a, 2011b), the unweighted multiplicative model (UMWQI) (Landwehr and
Deininger 1976 l Gupta et al. 2003), and the minimum operator model (MOWQI) (Smith
1990; Swamee and Tyagi 2000) as detailed in Gitau et al. (2016). These authors compared the
indices to one another to determine their accuracy and suitability and found the multiplicative
models (UMWQI, MWQI) rating about the same and ranking the best in terms of consistency,
with the UMWQI being more flexible.

The concept of using an aggregated value as a composite indicator of status is common in
many disciplines, including economics and ecology (Abbasi and Abbasi 2012). The indices
are not meant to replace biological, chemical, or ecological data; rather, they provide an
accessible synthesis of compiled information. One example of a commonly used index for
environmental management is the Index for Biological Integrity (IBI). This index is used to
assess the integrity of the water through the monitoring of fish and other aquatic biological
communities and their tolerance and abundance (Karr 1981). Globally, the development and
use of biological indicators to communicate and assess the status and trends of aquatic
ecosystems has played a major role in environmental conservation and management practices
(Poonam et al. 2013).

The purpose of this study was to develop new subindex equations to improve the accuracy
and suitability of the Unweighted Multiplicative Water Quality Index (UMWQI). Specifically
to: (1) develop a methodology for calculating an improved WQI by redesigning and incorpo-
rating flexible, criteria-based subindex formulations; (2) evaluate the impacts of determinant
selection and data availability on composite water quality rating; and (3) demonstrate WQI
functionalities, including water quality assessment, communication, and prediction. The sub-
index formulations were designed to be representative of the region’s ecological characteris-
tics, considering the intended use of the streams and the determinants that have the largest
impacts on water quality. The new subindex equations accommodate ecoregional water quality
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thresholds specified based on representative thresholds for the area of interest. The Unweight-
ed Multiplicative Model (Brown et al. 1972; Mcclelland, 1974; Dunnette 1979) was adopted
because of its flexibility and ability to accurately represent water quality status of the area of
interest. Thus, in this study, new subindex formulations that incorporate water quality thresh-
olds based on existing standards and criteria were developed for the UMWQI. Index and
subindex ratings were also re-defined to more accurately represent water quality status and
account for the water’s intended use.

The pilot site for this project, the Western Lake Erie Basin (WLEB, Fig. 1), was selected for
several reasons: its value as a water resource to both society and the environment; the severity
of its water quality issues including re-eutrophication (Bridgeman et al. 2012; Kane et al.
2014) and poor water clarity (Daloglu et al. 2012); and, the relatively large amounts of water
quality data available in this region. Methods and approaches are generalizable and could
easily be adapted to other areas with similar water quality concerns.

2 Methodology

2.1 Pilot Study Site Description

The pilot site for this study is the WLEB (Fig. 1), with particular focus on the Maumee River
and its tributaries, as these contribute the largest nutrient inputs to Lake Erie due to agricultural
practices in the basin (Bridgeman et al. 2012; Daloglu et al. 2012; Kane et al. 2014; Stow et al.
2015; Keitzer et al. 2016). The WLEB spans an area of 2.83 million ha (7 million ac) in the
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states of Indiana, Michigan, and Ohio, and has ten sub-basins (NRCS 2015). Nonpoint source
pollution due to intense agricultural practices (70% of land usage) in this region is directly
linked to the harmful algal blooms in Lake Erie (Stow et al. 2015). The annual precipitation
within the WLEB varies from 838 mm to 940 mm (Mehan et al. 2017). Generally, the eastern
side of the WLEB receives greater amounts of annual precipitation than the northern and
western portions (Gitau et al. 2018).

Determinants that were representative of water quality concerns in the pilot site were Total
Suspended Solids (TSS), Total Phosphorus (TP), Soluble Reactive Phosphorus (SRP), and
Water Temperature. These are common determinants of concern in other regions within the
United States. Seasonal water temperatures have been found important for the tributaries in the
WLEB in relation to water quality and harmful algal blooms (HABs) (OEPA 2009a; b;
Richards et al. 2010; OEPA 2014; Stow et al. 2015). Thus, water temperature was included
as a determinant in this study, though it has been excluded in other WQI formulations (e.g.
USEPA 2009) due to concerns about double accounting for the determinant. Four water
quality sites from the Heidelberg Tributary Loading Program Dataset (Heidelberg University
2017) were selected for the analysis, as shown in Fig. 1.

2.2 Development of Water Quality Thresholds

Table 1 shows the water quality threshold for each of the determinants considered, their impact
on bodies of water, and the water quality standards and established thresholds that were
implemented in the water quality index model developed through this study. For this study,
0.1 mg/L of total phosphorus was used as the threshold for standardization purposes. For
soluble reactive phosphorus, a maximum level of 0.005 mg/L was adopted, consistent with the
Wawasee Area Conservancy Foundation recommendation for lake systems (IDEM 2014).

Table 1 Summary of potential key determinants, their ecological effects, and WQI concentration thresholds

Determinant Ecological Effects WQIThreshold References

Nitrate +Nitrite
(NO2–3)

• Excessive levels may deplete
dissolved oxygen supply,
Contribute to cyanobacteria
growth

10 mg/L Vitousek et al. (2002); Mueller and
Spahr (2006); Chaffin et al. (2013)

Soluble Reactive
Phosphorus
(SRP)

• 100% SRP from agricultural
lands contributes to HABs

• 86% increase from 1975 to
1995

0.005 mg/L Daloglu et al. (2012); Rucinski et al.
(2010); Richards et al. (2002)

Total Phosphorus
(TP)

• 25–50% particulate phosphorus
from agricultural lands
contribute to HABs

0.1 mg/L Kerr et al (2016); Richards (2006);
Richards et al. (2010); Kane et al.
(2014); Stow et al. (2015); Mueller
and Helsel 1996

Total
SuspendedSol-
ids (TSS)

• Aesthetic degradation
• Higher costs of treatment
• Release of toxic/heavy metals
• May accelerate nitrification

process

60 mg/L Owens et al. (2005); Bilotta et al
(Bilotta and Brazier 2008, Bilotta
et al. 2012); Mulligan et al. (2009);
Myers et al. (2000)

Water
Temperature

• Biological productivity
• Closely tied with to available

dissolved oxygen supply
• Controls rate of chemical

processes

N/A Cude (2001); Cluis (1972); Stefan and
Preud'homme (1993); Webb and
Nobilis (1997)
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Though most of the state standards were based on turbidity, a threshold of 60 mg/L for total
suspended sediment was chosen based on an average value from standards from North and
South Dakota, New Jersey, Hawaii, and Alaska (USEPA 2015). For nitrates-nitrite, the Clean
Water Act establishes a criterion of 10 mg/L (33 U.S.C. § 1251 et seq.), which was used as the
water quality threshold for the proposed WQI model.

2.3 Subindex Equations Development

Initial subindex formulations were developed based on modifications of the formulations
proposed by USEPA (2009), as well as the methodology developed by Dunnette (1979) and
Cude (2001). In this study, the development of the subindex transformation curves was based
on the statistical distribution of the key determinants to account for variability in natural
characteristics of streams.

In our subindex approach, data for TSS, TP, SRP, and NO2–3 were rated as follows. First,
observed historical data was filtered for each day i and determinant p (Qi,p) to a subset of only
the observations below the threshold (Pthreshold) for that determinant. Determinant values equal
to the 10th percentile (P10) value in the filtered dataset were given a rating of 80, and the 90th
percentile (P90) values were rated 50. Concentrations below the 10th percentile value were
scored between 80 and 89 on a linear scale, decreasing in rating with increased concentrations;
ratings of 90–100 were reserved for pristine waters that require no treatment. The lowest
concentration observation of data (Pmin) received a score of 89. Similarly, concentrations above
the 90th percentile of passing observations were rated from 40 to 49, also decreasing linearly.
Determinant values between the 10th and 90th percentile values in the observed historical data
were fitted to ratings from 50 to 79, using an exponential function based on USEPA (2009).

Observations from the unfiltered data set with concentrations above the maximum threshold
were rated 39 or below, with a rating of 0 assigned to the maximum failing observation in the
data (Pmax). This was done because a water body could potentially find alternative uses, up to a
point, even with one or more determinants failing to meet their respective water quality
thresholds. The index of 0 captures the point beyond which water was no longer suitable for
any uses. This method was used in the same way across determinants regardless of the
thresholds or measurement units, thus, allowing severity to be comparable across determinants.

2.4 Water Temperature Subindex Equation

Water temperature, being the only potential key determinant that is not a contaminant, required
a different set of subindex equations. Unlike TSS, TP, SRP, and NO2–3, this potential key
determinant is directly tied to the bioproductivity of a water body. As available water
temperature data at individual stations were insufficient for subindex development, the data
from eight United States Geological Survey (USGS) gauges and twenty weather stations from
the National Oceanic and Atmospheric Administration (NOAA) Climate Data Online were
aggregated to assess the data availability of observed water temperature. Since air temperature
data are generally more accessible and available than water temperature, a linear relationship
between the aggregated air and the aggregated water temperatures based on Cluis (1972),
Stefan and Preud’homme (Stefan and Preud'homme 1993), and Webb and Nobilis (Webb and
Nobilis 1997) was developed:

Tw tð Þ ¼ 17:532þ 0:8264∙Ta tð Þ ð1Þ
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where Tw is the water temperature in Celsius (°C), and Ta is the air temperature in Celsius (°C)
for day t. According to the distribution of the temperature data, water temperature varied from
0 °C to 20 °C. The lower limit was potentially due to the difficulty in assessing water
temperature when approaching the triple point of water (the air temperature at which water
can exist as liquid, solid, and gas), which could cause difficulty with measuring the temper-
ature if some water was frozen. Performance analysis gave values of R2 = 0.84, NSE = 0.83,
and p-bias = −2.04. Through trial and error, it was found that the optimal value for the R2 and
NSE value could be obtained by removing air temperature values less than −24.2 °C. This
removal resulted in relatively small changes in performance statistics, though the p-bias value
dropped below zero (taking on a value that was worse than before). Based on criteria in
Moriasi et al. (2015), this method of estimating water temperatures was suitable for use in the
pilot site since both R2 and NSE were above 0.75. Once a means of estimating water
temperatures had been developed, the temperature subindex equation (Eq. 2) from Cude
(2001) was adopted for use. The equation was evaluated using back-calculations and existing
literature to determine its suitability for use in the WLEB.

Qtemp;t ¼
Temp≤11°C 100

11°C < Temp≤29°C 76:54þ 4:172∙T−0:1623T2−2:0557∙10−3∙T 3

29°C < T 10

8
<

:
ð2Þ

where Qtemp,t is the subindex value for water temperature of day t, and T is temperature in
degrees Celsius.

2.5 Water Quality Index Computation

The overall water quality index used in this study (Eq. 3) is an adaptation of the works by
Harkins (1974) and Hallock (2002), which utilize an unweighted multiplicative model and
implement a nonparametric multivariate ranking procedure (Kendall 1957; Harkins 1974;
Landwehr and Deininger 1976; Hallock 2002):

UMWQIi ¼ ∏
p

i¼1
Qi;p

� �1
p

ð3Þ

Where Qi is the subindex value from 0 to 100, p is the number of key determinants within the
WQI, all with data availability on day i, and UMWQI is the geometric mean of the subindex
values.

The UMWQI model minimizes ambiguity between the overall index and the subindex values
and provides flexibility by allowing removal and addition of determinants (Gitau et al. 2016). As
configured in this study, the UMWQI does not calculate the overall index for any one day unless
all the key determinants have data points available for that given day. To ensure the accuracy of
development of the subindex equations for TSS, TP, SRP, and NO2–3, it was necessary to verify
that excluding a portion of the data would not cause the piecewise subindex equation to be
substantially different than when an entire dataset was used. The Maumee River dataset (USGS
04193500) was used to validate the subindex equations. It had the longest and most consistent
data, hence the most appropriate dataset to validate the equations. For this assessment, the dataset
(1975–2015) was broken up into two portions: data from the years 1975 to 2005 and data from
the years 2006 to 2015. The earlier dataset was used to calculate the subindex curve parameters,
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while the second portion was used to verify the subindex curve parameters, checking that they did
not change drastically when this latter section of the data was removed.

3 Results

3.1 Subindex Formulations and Verification

Figure 2 shows the subindex equations and associated classifications and ranges as developed
through this study and in relation to ecological associations based on Dinius (1972). Associ-
ated water quality ratings as derived through this study are shown in the footnote for Fig. 2.
Based on the analysis, the only substantially different curve parameters once the data were
separated into two portions (1975–2005 and 2006–2015) were the subindex curve parameters
describing the data that would be ranked 40–49 — f and g (Fig. 2) — for the TP subindex
curve. This was because there was only a small difference between the Pthreshold and P90 values,
yet the corresponding index values covered the range between 40 and 49. The percent change
is the difference between Pthreshold and the maximum filtered value, Pmax,f, and P90, Pmin, and
P10, which play crucial roles in the linear portion of the subindex pairwise equations for each of
the potential key determinants. It should be noted that for this portion of the analysis, Pmax,f

was given a value of 40 (rather than the Pthreshold) which, in the final formulations, represents
the lower limit for Bpassing^ values. This was because the verification was conducted during
the development process before the subindex equations were finalized.

3.2 Temperature Subindex

Because the WLEB is more susceptible to algal blooms in the summer when the air temper-
ature is higher, it was expected that the Cude (2001) equation (Eq. 2) would give an accurate
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representation of the water quality status in the basin with respect to water temperature.
According to the Michigan Department of Environmental Quality (MDEQ 2009; 2015),
warm-water habitats (WWH) should have summer water temperatures of 60-70 °F (15.6-
21 °C). Though it was originally developed for cold-water habitats, Eq. 2—with a warm water
temperature threshold of 29 °C — could be considered conservative with respect to the range
of values provided by the MDEQ. This is because it would rank values about 21 °C at about
the maximum value of the acceptable range for summer water temperatures based on the
exponential equation, rather than assigning them a flat value of 10. The water temperature
threshold obtained by back-calculating from Eq. 2 and finding the water temperature at which
the subindex equation gave a ranking of 40 (consistent with the lower limit for Bpassing^
values for the other key determinants) was 25.9 °C (78.6 °F). Based on values for climate
conditions and maximum water temperature tolerance of 57 different American fish species
(Eaton and Scheller 1996) sampled throughout the U.S., the 29 °C water temperature threshold
in Eq. 2 was indicative of fish species living under extreme stress and was, thus, considered a
suitable threshold for maximum tolerance of water temperature. Consequently, Eq. 2 was
adopted without change for this study.

3.3 Western Lake Erie Basin Case Study

To determine which water quality determinants were most crucial with respect to the water
quality status of the WLEB, the concentrations of total suspended solids (TSS), total phospho-
rus (TP), soluble reactive phosphorus (SRP), and nitrate-nitrite (NO2–3) were assessed based on
the thresholds listed in Table 1. Out of the four determinants, nitrate-nitrite (NO2–3) was the only
determinant for which >90% of the data met its respective threshold. In comparison to the rest
of the determinants across all four sites (SRP ranged from 0.3–19.8%, TP from 6 to 51%, and
TSS from 62.9–84.9%), nitrate-nitrite concentrations in theWLEB tributaries were consistently
lower, and the majority of the NO2–3 subindex values were thus ranked above 39.

Subindices for Soluble Reactive Phosphorus (SRP), Total Phosphorus (TP), Total Suspended
Solids (TSS), andWater Temperature (°C), and the overall water quality indexwere calculated for
all four selected sites in the WLEB. Figure 3 shows the monthly and annual averages of the
overall daily WQIs, respectively. Monthly average subindex values for total suspended solids
(TSS) ranged between 33 and 80 (ranking from Bpoor^ to Bgood^). Those for total phosphorus
ranged between 31 and 73 (Bpoor^ to Bgood^). Soluble reactive phosphorus had the largest range,
between 13 and 78 (ranking Bunsuitable for all uses^ to Bgood^). Overall index values ranged
from 35 to 80 throughout the basin, indicating that water quality in the basin is generally Bpoor^
to Bgood^, consistent with results from Sekaluvu et al. (2017) and USEPA (2017).

To provide a more accurate assessment of the trends, a nonparametric trend analysis using
Kendall’s τ was conducted. All four sites had an increase in the monthly mean subindex for
TSS with significant increases seen at Maumee River (τ = 0.2138; p = <.0001), River Raisin
(τ = 0.0968; p = 0.0051), and Tiffin River (τ = 0.1843; p = 0.0061). For the River Raisin,
Maumee River, and Tiffin River sites, there were increases in monthly mean TP subindex
values, although trends in the Tiffin River were not significant. Monthly TP subindex values
declined significantly at the Blanchard River site (τ = −0.1586; p = 0.0165). Significant neg-
ative trends in SRP subindex values for the River Raisin (τ = −0.0889; p = 0.0102) were
consistent with results in Sekaluvu et al. (2017). The positive trends in TP subindex values at
the Maumee River site (τ = 0.2257; p = <.0001) were contrary to results in Sekaluvu et al.
(2017) which showed that TP levels remained mostly stable but high. The Maumee River SRP
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subindex trends implied improvement in associated water quality status, contrary to the
findings of Sekaluvu et al. (2017) of increasing SRP concentrations.

4 Discussion

Water quality thresholds and criteria were incorporated in subindex formulations developed for
key water quality determinants. The enhanced subindex formulations were built into the
UMWQI and tested for suitability, with the WLEB serving as a pilot site. Based on the
modified WQI, the River Raisin andMaumee River sites showed statistically significant trends
of increasing overall WQI values, while the Blanchard River site showed a trend of declining
WQIs. The Tiffin River showed no significant trends in overall WQI. For all four sites, there
was a positive trend for monthly mean subindex values for TSS. All but the Blanchard site
showed a positive trend for the monthly mean TP subindices. The Maumee River site was the
only one that showed a positive, albeit not statistically significant, trend in SRP monthly mean
subindices. This result was contrary to findings in Sekaluvu et al. (2017) and was potentially
reflective of periods of improvements than of current trends.

The Western Lake Erie Basin is a warm-water habitat, and rising air temperatures due to
climate change play a role in the prevalence of HABs (Paerl and Huisman 2008, 2009; Paerl
et al. 2011). The statistically-estimated water temperature dataset developed in this study did
not necessarily capture the extremes that could occur; since the dataset was based upon median
values of the daily averages for the USGS gauge sites and the NOAAweather stations, it could
underestimate water temperatures during warmer periods. Furthermore, the equation does not
account for temperature effects of industrial discharges and reduced tree canopy, both of which
present water temperature-related concerns. It would be ideal if more water temperature data
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were collected. Dissolved oxygen may be an appropriate substitute to water temperature in the
UMWQI model when water temperature measurements are not feasible, given its ties to the
well-being of aquatic life (USGS 2017) and that it is amongst the most common key
determinants in other WQIs (Gitau et al. 2016; Sutadian et al. 2016; Lumb et al. 2011a).

The most challenging part of developing the WQI was accurately representing the water
quality status in terms of thresholds or water quality targets—some of which are regulatory,
while some may be deemed arbitrary as they may not necessarily indicate the ecological
threshold of a contaminant. Because ecological thresholds of contaminants generally differ by
location, regulatory thresholds may not be the most accurate for assessing water quality status.
In this study, nitrate-nitrite, or more commonly nitrate-N data, were removed from the
assessment due to the indication that the associated water quality status was at least fair based
on the 10 mg/L threshold set for drinking water through the Clean Water Act. However, this
threshold may be too high, considering that nitrogen could affect the prevalence and toxicity of
harmful algal blooms (Gobler et al. 2016; Anderson et al. 2002), implying a need for more
stringent environmental thresholds. Further research is necessary to better determine more
appropriate environmental thresholds that may be incorporated in subindex equation
development.

An important consideration pertaining to the water quality index is the use of concentration
levels of key determinants rather than their loads. Surface water quality guidelines are
developed based on concentrations considering the need to protect aquatic life and agricultural
uses, as well as recreation and aesthetics (El-Sadek et al. 2005; Koltun, 2012). For Lake Erie
(USEPA 2017), spring seasonal thresholds were developed both in terms of loads and flow-
weighted mean concentrations (FWMC). The FWMC are a form of flow-adjusted concentra-
tions. Concentrations are useful measures based on which to assess water quality, as they play
a critical role in biological productivity (Cahn and Hartz 2010). Loads are typically related to
the accumulation of mass or volume, and/or gauging the effect of Best Management Practices
(BMPs) on reducing pollutant delivery (Koltun, 2012). Both measures are important when
assessing the effects of contaminants in a watershed; the choice of data depends on the
framework of the study.

The subindex computations for this study were based on statistical distributions. Because
the overall index was based upon the distribution of the data, one concern is that the WQI may
change as new data are added, depending on their impact on the statistical distribution. To
prevent this from occurring and from favoring poor performing streams in the Bfailing^ portion
of the subindex, a Bmaximum^ threshold could be created such that anything surpassing this
would receive a value of 0. In the case of TP and SRP, for example, the Bmaximum^ threshold
for the data could be concentrations associated with hypereutrophic states for streams.
However, most of the science and literature around hypereutrophic water bodies is for lakes;
the concentrations that could be found in literature would be for lakes and not for streams.

Another option to consider is the possibility of bounding a Bfailing^ standard using an
exponential decay. This would standardize the bottom portion of the subindex equation and not
favor lower-performing systems due to the distribution of the data being more concentrated in
the Bfailing region.^ This would keep the subindices from reaching zero and shift the focus to
how quickly the decay would occur and how this could be assessed based on site-specific data.
Though the ranking did not differ as greatly for the Bpassing^ data, it is possible to set an
optimal value which gets ranked at 100. As developed, the WQI in this study does not rank
anything higher than 89 based on the assumption that there are very few water sources that
would qualify as pristine.
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The WQI that was developed in this study has great potential throughout the water quality
decision-making process and offers several functionalities. Because varying concentrations of
contaminants can indicate different water quality status, the WQI provides the ability to
standardize how determinants affect the water quality status. Furthermore, WQIs can provide
a method with which to efficiently communicate water quality concerns based on the common
ranking system proposed. Finally, WQI can be used for predictive purposes based on short-
and long-term trend analysis to establish overall water quality status and to pinpoint key
determinants that need to be addressed in management initiatives.

5 Conclusion

This study was aimed at creating criteria-based and flexible subindex equations for the
UMWQI, using the WLEB as a pilot site. The UMWQI was selected due to its flexibility
and applicability beyond the WLEB. The subindex equations were developed by incorporating
water quality thresholds based primarily on criteria and targets for Indiana, Ohio, and
Michigan, and using statistical distributions to assign specific subindex values. The overall
WQI values were calculated by taking the geometric mean from the subindex values for the
Soluble Reactive Phosphorus (SRP), Total Phosphorus (TP), Total Suspended Solids (TSS),
and Water Temperature (T,°C). Subindex equations developed for the respective determinant
were found suitable based on the results from the River Raisin, Tiffin River, Blanchard River,
and Maumee River stations. Water quality indices provide a way to report and assess large
amounts of water quality data in an efficient manner. They have been tested and verified for
their usefulness and effectiveness. The UMWQI provides flexibility, so that it can be applied to
different sites with water quality data. Though the WQIs provide a Bsnapshot^ of the water
quality status by summarizing large amounts of water quality data, by no means do they
replace water quality and environmental data. This study was conducted considering WLEB
tributaries and results might not be directly applicable elsewhere. The methodology as
developed is, nonetheless, applicable to other sites with similar water quality challenges.
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