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Abstract
Tomake full use of inflow forecasts with different lead times, a new reservoir operationmodel that
considers the long-, medium- and short-term inflow forecasts (LMS-BSDP) for the real-time
operation of hydropower stations is presented in this paper. First, a hybrid model, including a
multiple linear regression model and the Xinanjiang model, is developed to obtain the 10-day
inflow forecasts, and ANN models with the circulation indexes as inputs are developed to obtain
the seasonal inflow forecasts. Then, the 10-day inflow forecast is divided into two segments, the
first 5 days and the second 5 days, and the seasonal inflow forecast is deemed as the long-term
forecast. Next, the three inflow forecasts are coupled using the Bayesian theory to develop LMS-
BSDP model and the operation policies are obtained. Finally, the decision processes for the first
5 days and the entire 10 days are made according to their operation policies and the three inflow
forecasts, respectively. The newly developedmodel is testedwith theHuanren hydropower station
located in China and compared with three other stochastic dynamic programming models. The
simulation results demonstrate that LMS-BSDP performs best with higher power generation due
to its employment of the long-term runoff forecast. The novelties of the present study lies in that it
develops a new reservoir operation model that can use the long-, medium- and short-term inflow
forecasts, which is a further study about the combined use of the inflow forecasts with different
lead times based on the existed achievements.
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1 Introduction

Inflow forecasts have been proved to be a promising tool for improving the efficiency of
reservoir operation (McCollor and Stull 2008). In recent years, many studies have identified the
value of inflow forecasts for reservoir decision-making. For example, Li et al. (2010) investi-
gated the use of short-term inflow forecasts in flood control. Xu et al. (2013) incorporated
medium-term inflow forecasts from the Quantitative Precipitation Forecasts (QPF) into the
operationmodels for cascaded hydropower reservoirs, and the results showed that the efficiency
and reliability of reservoir operation improved. Hamlet et al. (2002) illustrated that increased
hydropower revenue is directly attributed to use of long-lead forecast information. Kim and
Palmer (1997) investigated the value of seasonal flow forecasts in hydropower generation using
a Bayesian Stochastic Dynamic Programming (BSDP) model. Mujumdar and Nirmala (2007)
investigated the value of inflow forecasts for a multi-reservoir system using BSDPmodel. All of
these studies found that forecast-based decision-making yields more economic benefits than
conventional operating rules (Maurer and Lettenmaier 2004). However, these studies are
mainly focused on the application of inflow forecast with a single forecast horizon.

Inflow forecasts with different lead-times have their own merits and faults. For example,
short-term forecasts usually have a limited forecast horizon, but a high accuracy, which means
small uncertainties. While long- and medium-term usually have a long forecast horizon, but a
low accuracy, indicating large uncertainties. To take advantage of the long horizon of long- and
medium-term forecasts and the high accuracy of short-term forecasts, long-, medium- and
short-term inflow forecasts are usually used in combination in reservoir operations. The main
challenge of this method is how to develop operation models that consider the combined use of
forecasts with various forecast horizons (Eum et al. 2011). Yao and Georgakakos (2001)
developed an integrated forecast-decision system for Folsom Lake (California) to assess the
sensitivity of reservoir performance to inflow forecasts with different lead times. Their system
includes three models pertinent to turbine load dispatching, short-range energy generation
scheduling and long/mid-range reservoir management. The inflow forecasts are used in the
corresponding models. The results show that reliable inflow forecasts is beneficial to reservoir
performance. Tang et al. (2010a) presented two hybrid SDP models to investigate the potential
value of inflow forecasts with various lead times in hydropower generation. In their models,
the inflow forecasts of dry seasons and wet seasons are treated differently. The results shows
that including inflow forecasts with various lead times is beneficial to the hydropower
generation. Xu et al. (2014) presented a Two Stage Bayesian Stochastic Dynamic Program-
ming (TS-BSDP) model for real-time operation of cascaded hydropower systems to handle the
combined use of short-term forecasts (i.e., inflow forecast of 1–5 days) and medium-term
forecasts (i.e., inflow forecasts of 6–10 days). The results showed that the combined use of
forecasts with different forecast horizons can improve system performance in terms of power
generation and system reliability. However, long-term forecasts (i.e., seasonal inflow forecasts)
are not considered in the operation model. Therefore, when an operation decision to increase
release is made with this model, if the seasonal forecast for the remainder of the flood season
runoff is large, then there will be abandoned water and the release cannot be further increased.
In such cases, the system has low water utilization efficiency because water resources are
wasted. Meanwhile, if the seasonal forecast for the remainder of the flood season runoff is
small, then there will be a lower power generation because the water level would be
maintained at a low level. Therefore, long-term forecasts should be considered in the operation
model to potentially improve power generation.
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The main purpose of the present study is to develop an operation model that effectively couples
long-, medium- and short-term forecasts. First, a hybrid inflow models, including a multiple linear
regressionmodel and theXinanjiangmodel (Zhao 1992), is used to forecast the 10-day inflows, and
the ANN models with the circulation indexes as inputs are used to forecast the seasonal inflows.
Then the 10-day inflow forecast is partitioned into two periods, i.e., the first 5 days (i.e., the short-
term inflow forecast) and the second 5 days (i.e., themedium-term inflow forecast), according to the
TS-BSDP model proposed by Xu et al. (2014), and the seasonal inflow forecast is deemed as the
long-term forecast. Finally, using Bayesian theory, two different strategies are developed to
incorporate the three inflows, and a reservoir operation model that considers the long-, medium-
and short-term inflow forecasts (LMS-BSDP) is developed. The Huanren hydropower station,
located in China, is used to demonstrate the newly developedmodel. The novelties and advances of
the present study are that it conducts a further study about the combined use of the inflow forecasts
with different lead times based on the achievements of Xu et al. (2014) and develops a new reservoir
operation model that can use the long-, medium- and short-term inflow forecasts.

2 Reservoir Operation Model that Considers the Long-, Medium-
and Short-Term Inflow Forecasts

2.1 Objective Function

The aim of the operation policy in this study is to maximize the expected total power
production, under the condition that the stability of the power supply is guaranteed. Thus,
the objective function can be shown as below.

f nopt St;Qtð Þ ¼ Max ∑
T

t¼1
E B St;Qt; Stþ1ð Þ½ �

� �
ð1Þ

B St;Qt; Stþ1ð Þ ¼ b St;Qt; Stþ1ð Þ−α Max e−b St;Qt; Stþ1ð Þ; 0ð Þf gβ
h i

⋅Δt ð2Þ

where, t is period index. t = 1, 2,⋯, T. n is the number of the time periods between the current
period t and the last period T. St and St + 1 are the storage at the beginning and end of period t,
respectively. Qt is the observed inflow during period t. B(⋅) is the power generation at period t
corresponding to an initial reservoir storage (St), an inflow (Qt) and a final storage volume (St +
1). b(⋅) is the output at period t, and e is the firm output. α and β are penalty factors, which are
used to punish the reservoir performance, i.e. let the value of B(⋅) decrease correspondingly,
when the value of b(⋅) is less than the firm capacity. Δt (h) is the time for decision interval.

2.2 Recursive Equations

In classical SDP models, the optimal releases for a specified time horizon can be determined
by solution of (Tejada-Guibert et al. 1995):

f nopt St;Htð Þ ¼ Max ∑
Qt

PQt jHt ⋅ Bt St;Qt; Stþ1ð Þ þ ∑
Htþ1

PHtþ1jHt ;Qt
⋅ f n−1opt Stþ1;Htþ1ð Þ
h i" #( )

ð3Þ

where f nopt ⋅ð Þ is the expected power generation from the current period t to T. f n‐1opt ⋅ð Þ is the
expected power generation from the next period t + 1 to T. PQt jHt is the conditional probability
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for a flow ofQt during period t, given a specific hydrologic state variable (Ht), i.e., the previous
inflows, the short-, medium- and long-term inflow forecasts.

All the models used in the present study, including the proposed LMS-BSDP model and
other alternative models, can be formulated from Eq. (3) by employing a different set of
hydrologic state variables. For example, in dynamic programming (DP) model, it is assumed
that the inflow can be forecasted perfectly. It can be deemed that DP model employs no
hydrologic state variables. SDP-Qt-1 employs the previous period’s inflow Qt-1 as a hydrologic
state variable, the current period’s inflowQt is used as a hydrologic state variable in the SDP- Qt

model, the TS-BSDP model employs the current period’s inflow Qt and the forecast of the next
period’s inflowFt + 1 as the hydrologic state variables, while the LMS-BSDPmodel employs the
current period’s inflowQt, the forecast of the next period’s inflow Ft + 1 and the seasonal inflow
forecasts FLt + 1 as the hydrologic state variables. The recursive equations of the four models,
i.e., DP model, SDP-Qt-1 model, SDP-Qt model and TS-BSDP model, are shown in SUPPLE-
MENTARY MATERIAL. The details of LMS-BSDP model are shown below.

Same as in the TS-BSDP model, the Short-term Forecast (SF, 1–5 days) is used directly as
the current period’s inflow with the assumption that it is accurate, and the Medium-term
Forecast (MF, 6–10 days) is deemed as the next period’s inflow. Due to the fact that in
Northern China, the inflow in the flood season (from May to October) is larger than that in the
non-flood season (from November to next April) and that the remainder of the flood season
inflow has an influence on the reservoir operation decisions, the seasonal flow forecast, which
is defined as the inflow from the next period (which should be in the flood season) through
October 31, is taken as a hydrologic state variable by the LMS-BSDP model. It should be
noted that the seasonal flow forecast is deemed as the long-term forecast, and it is only
available for the flood season and is updated for every period in the flood season. Therefore,
the recursive equations of the LMS-BSDP model are different in the flood and non-flood
seasons. Take T represents the final time step and the recursive equations for every time step
are shown below. As shown in Fig. 1a, the non-flood season include period 1 to period n, and
periodm + 1 to period T, while the flood season include period n + 1 to period m. Periods n and
m are the last period in April and October, respectively.

(1) When t = T
There is no MF and seasonal flow forecast at time step T. To calculate the power generation,

the storage at the end of the period is set to Smin, which is the minimum of the reservoir storage.

Fig. 1 Description of inflow processes (a) and decision-making strategies (b-c) for LMS-BSDP
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Due to that the iteration stops only when it reaches a steady state, so the value of the Smin

doesn’t affect the optimization results. So the recursive equation of MF is equal to that of SF.

SF f nopt St;Qtð Þ ¼ Max Bt St;Qt; Sminð Þf g

MF f
n
opt St;Qtð Þ ¼ Max Bt St;Qt; Sminð Þf g

8<
: ð4Þ

Where SF f
n
opt ⋅ð Þ and MF f

n
opt ⋅ð Þ represent the maximum expected generation of hydropower for

the SF, the MF, respectively.
(2) When t = T − 1
There are two periods T-1 and T to calculate, and there is MF for period T-1 but no seasonal

flow forecast. The expected power generation for the SF at period T-1 is determined by the
power generation at period T-1, the expected power generation for SF at period T and the

inflow posterior flow transition probability Ptþ1
jmk , i.e., PQtþ1jQt ;Ftþ1

, which is the probability that

the flow Qt + 1 in time period t + 1 belongs to the class interval k, given that the flow Qt in time
period t belongs to the class interval j and the flow forecast Ft + 1 in time period t + 1 belongs to
the class interval m. The expected power generation for MF at T-1 is determined by the
expected power generation for SF at period T and the inflow posterior flow transition

probability Ptþ1
jmk . The expected power generation for the forecast horizon (FH) is determined

by the power generation and inflow forecast of SF and MF. The relative recursive equation of
SF, MF and FH are shown below.

SF f nopt St;Qt; Ftþ1ð Þ ¼ Max Bt St;Qt; Stþ1ð Þ þ ∑
k
Ptþ1
jmk ⋅SF f

n−1
opt Stþ1;Qtþ1

� �� �

MF f
n
opt St;Qt; Ftþ1ð Þ ¼ Max Ptþ1

jmk ⋅SF f
n−1
opt Stþ1;Qtþ1

� �n o

FH f
n
opt St;Qt; Ftþ1ð Þ ¼ Qt

Qt þ Ftþ1
SF f

n
opt St;Qt; Ftþ1ð Þ þ Ftþ1

Qt þ Ftþ1
MF f

n
opt St;Qt; Ftþ1ð Þ

8>>>>>><
>>>>>>:

ð5Þ

Where, FH f nopt ⋅ð Þ represents the maximum expected generation of hydropower for the entire FH.

(3) When m ≤ t ≤ T − 2 and 1 ≤ t < n − 1
The period is in non-flood season. There are at least two periods that should be

considered for calculation, and there is MF for period t but no seasonal flow forecast.
The proposed LMS-BSDP model employs the current period’s inflow Qt and the
forecast of the next period’s inflow Ft + 1 as the hydrologic state variables in the
non-flood season, which is the same as TS-BSDP model. Replacing Ht in Eq. (3) with
Qt and Ft + 1, and replacing Ht + 1 with Qt + 1 and Ft + 2, respectively, the recursive
equations for the first 1–5 days (SF) can be written as:

SF f nopt St;Qt; Ftþ1ð Þ

¼ Max ∑
Qt

PQt jQt ;Ftþ1
⋅ Bt St;Qt; Stþ1ð Þ þ ∑

Qtþ1;Ftþ2

PQtþ1;Ftþ2jQt ;Ftþ1;Qt
⋅ f n−1opt Stþ1;Qtþ1; Ftþ2

� �h i" #( )

¼ Max Bt St;Qt; Stþ1ð Þ þ ∑
Qtþ1;Ftþ2

PQtþ1;Ftþ2jQt ;Ftþ1
⋅ f n−1opt Stþ1;Qtþ1; Ftþ2

� �h i( )

ð6Þ

Same as the study of Karamouz and Vasiliadis (1992), two assumptions are adopted here: the
forecasts for different periods are stochastically independent of each other and the forecast is
stochastically dependent on the inflow of the current period and the inflow of the previous
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period. Therefore, according to the condition probability formula, the above equation can be
reduced to:

SF f nopt St;Qt; Ftþ1ð Þ ¼ Max Bt St;Qt; Stþ1ð Þ þ ∑
Qtþ1

∑
Ftþ2

PQtþ1;Ftþ2jQt ;Ftþ1
⋅ f n−1opt Stþ1;Qtþ1; Ftþ2

� �h i( )

¼ Max Bt St;Qt; Stþ1ð Þ þ ∑
Qtþ1

PQtþ1jQt ;Ftþ1
⋅ ∑
Ftþ2

PFtþ2jQtþ1;Ftþ1;Qt
⋅ f n−1opt Stþ1;Qtþ1; Ftþ2

� �h i( )

¼ Max Bt St;Qt; Stþ1ð Þ þ ∑
Qtþ1

PQtþ1jQt ;Ftþ1
⋅ ∑
Ftþ2

PFtþ2jQtþ1
⋅ f n−1opt Stþ1;Qtþ1; Ftþ2

� �h i( )

¼ Max Bt St;Qt; Stþ1ð Þ þ ∑
k
Ptþ1
jmk ⋅ ∑

n
Ptþ2
kn ⋅ f n−1opt Stþ1;Qtþ1; Ftþ2

� �h i� �

ð7Þ

Equation (7) shows that the expected performance for SF at period t is determined by
the performance of SF at time step t Bt(St,Qt, St + 1), the expected performance for SF

at time step t + 1, the posterior flow transition probability Ptþ1
jmk and the predictive

probability of forecasts Ptþ2
kn , i.e., PFtþ2jQtþ1

, is the probability that the flow forecast

Ft + 2 in time period t + 2 belongs to the class interval n, given that the flow Qt + 1 in
time period t + 1 belongs to k. The expected performance for MF at period t is
determined by the last three factors. The performance of the entire FH at period t
is determined by the system performance and inflow forecast of SF and MF. Thus, the
recursive equation can be shown as below.

SF f nopt St;Qt; Ftþ1ð Þ ¼ Max Bt St;Qt; Stþ1ð Þ þ ∑
k
Ptþ1
jmk ⋅ ∑

n
Ptþ2
kn ⋅SF f

n−1
opt Stþ1;Qtþ1; Ftþ2

� �� �

MF f
n
opt St;Qt; Ftþ1ð Þ ¼ Max Ptþ1

jmk ⋅ ∑
n
Ptþ2
kn ⋅SF f

n−1
opt Stþ1;Qtþ1; Ftþ2

� �� �

FH f nopt St;Qt; Ftþ1ð Þ ¼ Qt

Qt þ Ftþ1
SF f

n
opt St;Qt; Ftþ1ð Þ þ Ftþ1

Qt þ Ftþ1
MF f

n
opt St;Qt; Ftþ1ð Þ

8>>>>>>>><
>>>>>>>>:

ð8Þ

(4) When n ≤ t <m − 1
The period is in flood season. There are also at least two periods that should be

considered for calculation, and there are both MF and seasonal flow forecast for
period t. So the current period’s inflow Qt, the forecast of the next period’s inflow
Ft + 1 and the seasonal inflow forecasts FLt + 1 are employed as the hydrologic state
variables. Replacing Ht in Eq. (3) with Qt, Ft + 1 and FLt + 1, and replacing Ht + 1 with
Qt + 1, Ft + 2 and FLt + 2, respectively, the recursive equations for the first 1–5 days (SF)
can be written as:

SF f nopt St;Qt; Ftþ1;FLtþ1ð Þ

¼ Max ∑
Qt

PQt jQt ;Ftþ1;FLtþ1
⋅ Bt St;Qt; Stþ1ð Þ þ ∑

Qtþ1 ;Ftþ2 ;FLtþ2

PQtþ1 ;Ftþ2 ;FLtþ2jQt ;Ftþ1;FLtþ1;Qt
⋅ f n−1opt Stþ1;Qtþ1; Ftþ2;FLtþ2

� �h i" #( )

¼ Max Bt St;Qt; Stþ1ð Þ þ ∑
Qtþ1 ;Ftþ2 ;FLtþ2

PQtþ1 ;Ftþ2 ;FLtþ2jQt ;Ftþ1;FLtþ1
⋅ f n−1opt Stþ1;Qtþ1; Ftþ2;FLtþ2

� �h i( )

ð9Þ

The two assumptions used in the non-flood season are also adopted here. And it is
assumed in the present study that the medium-term forecast for next period is

178 Zhang X. et al.



dependent on the inflow of the next period, the inflow of the current period and the
long-term forecast. Therefore, according to the conditional probability formula, the
above equation can be reduced to:

SF f nopt St;Qt; Ftþ1;FLtþ1ð Þ

¼ Max Bt St;Qt; Stþ1ð Þ þ ∑
Qtþ1 ;Ftþ2 ;FLtþ2

PQtþ1 ;Ftþ2 ;FLtþ2jQt ;Ftþ1;FLtþ1
⋅ f n−1opt Stþ1;Qtþ1; Ftþ2;FLtþ2

� �h i( )

¼ Max Bt St;Qt; Stþ1ð Þ þ ∑
Qtþ1

PQtþ1 jQt ;Ftþ1;FLtþ1
⋅

(
∑

FLtþ2

PFLtþ2jQtþ1 ;Qt ;Ftþ1;FLtþ1
⋅ ∑
Ftþ2

PFtþ2j;FLtþ2;Qt ;Qtþ1;Ftþ1;FLtþ1
⋅

f n−1opt Stþ1;Qtþ1; Ftþ2;FLtþ2

� �h i
g ¼ Max Bt St;Qt; Stþ1ð Þ þ ∑

Qtþ1

PQtþ1jQt ;Ftþ1;FLtþ1
⋅

(
∑

FLtþ2

PFLtþ2 jQtþ1
⋅ ∑
Ftþ2

PFtþ2j;FLtþ2;Qtþ1
⋅

f n−1opt Stþ1;Qtþ1; Ftþ2;FLtþ2

� �h i
g ¼ Max Bt St;Qt; Stþ1ð Þ þ ∑

k
Ptþ1
jmqk ⋅ ∑

r
Ptþ2
kr ⋅ ∑

n
Ptþ2
krn ⋅SF f

n−1
opt Stþ1;Qtþ1; Ftþ2;FLtþ2

� �� �

ð10Þ
Equation (10) shows that the expected performance for SF at period t is determined
by the performance of SF at period t Bt(St,Qt, St + 1), the expected performance for SF

at period t + 1, the posterior flow transition probability Ptþ1
jmqk, P

tþ2
krn and the predictive

probability of forecasts Ptþ2
kr . The expected performance for MF at period t is

determined by the last four factors. The performance of the entire FH at period t is
determined by the performance and inflow forecast of SF and MF. Thus, in the flood
season, the recursive equations can be shown as below.

SF f nopt St;Qt; Ftþ1;FLtþ1ð Þ ¼ Max Bt St;Qt; Stþ1ð Þ þ ∑
k
Ptþ1
jmqk ⋅ ∑

r
Ptþ2
kr ⋅ ∑

n
Ptþ2
krn ⋅SF f

n−1
opt Stþ1;Qtþ1; Ftþ2;FLtþ2

� �� �

MF f
n
opt St;Qt; Ftþ1;FLtþ1ð Þ ¼ Max Ptþ1

jmqk ⋅ ∑
r
Ptþ2
kr ⋅ ∑

n
Ptþ2
krn ⋅SF f

n−1
opt Stþ1;Qtþ1; Ftþ2;FLtþ2

� �� �

FH f nopt St;Qt; Ftþ1;FLtþ1ð Þ ¼ Qt

Qt þ Ftþ1
SF f

n
opt St;Qt; Ftþ1;FLtþ1ð Þ þ Ftþ1

Qt þ Ftþ1
MF f

n
opt St;Qt; Ftþ1;FLtþ1ð Þ

8>>>>>>><
>>>>>>>:

ð11Þ

where, Ptþ1
jmqk , i.e., PQtþ1jQt ;Ftþ1;FLtþ1

, is the probability that the flow Qt + 1 in time period

t + 1 belongs to class interval k, given that the flow Qt in time period t belongs to
class interval j, the flow forecast Ft + 1 in time period t + 1 belongs to class interval m
and the seasonal flow forecast FLt + 1 in time period t + 1 belongs to class interval q.
Ptþ2
kr , i.e., PFLtþ2jQtþ1

, is the probability that the seasonal flow forecast FLt + 2 in time

period t + 2 belongs to class interval r, given that the flow Qt + 1 in time period t + 1

belongs to class interval k. Ptþ2
krn , i.e., PFtþ2jQtþ1;FLtþ2

, is the probability that the flow

forecast F in time period t + 2 belongs to class interval n, given that the flow Qt + 1 in
time period t + 1 belongs to class interval k and the seasonal flow forecast FLt + 2 in
time period t + 2 belongs to class interval r.

(4) When t =m − 1
The period is in flood season. The periods from m-1 to T should be considered for

calculation. However, there are no seasonal flow forecast for periods m + 1 to T.
Therefore, compared to Eq. (11), the expected performance for SF at period t is
determined by the performance of SF at period t Bt(St,Qt, St + 1), the expected perfor-

mance for SF at period t + 1, the posterior flow transition probability Ptþ1
jmqk and the

predictive probability of forecasts Ptþ2
kn . The expected performance for MF at period t

is determined by the last three factors. The performance of the entire FH at period t is
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determined by the performance and inflow forecast of SF and MF. Thus, the recursive
equations can be shown as below.

SF f nopt St;Qt; Ftþ1;FLtþ1ð Þ ¼ Max Bt St;Qt; Stþ1ð Þ þ ∑
k
Ptþ1
jmqk ⋅ ∑

n
Ptþ2
kn ⋅SF f

n−1
opt Stþ1;Qtþ1; Ftþ2

� �� �

MF f
n
opt St;Qt; Ftþ1;FLtþ1ð Þ ¼ Max Ptþ1

jmqk ⋅ ∑
n
Ptþ2
kn ⋅SF f

n−1
opt Stþ1;Qtþ1; Ftþ2

� �� �

FH f nopt St;Qt; Ftþ1;FLtþ1ð Þ ¼ Qt

Qt þ Ftþ1
SF f

n
opt St;Qt; Ftþ1;FLtþ1ð Þ þ Ftþ1

Qt þ Ftþ1
MF f

n
opt St;Qt; Ftþ1;FLtþ1ð Þ

8>>>>>>>><
>>>>>>>>:

ð12Þ
(4) When t = n − 1

The period is in non-flood season. The periods from n-1 to T should be considered for
calculation. However, there are seasonal flow forecast for periods n + 1 to T. Therefore,
compared to Eq. (8), the expected performance for SF at period t is determined by the
performance of SF at period t Bt(St,Qt, St + 1), the expected performance for SF at period t +
1, the posterior flow transition probability Ptþ1

jmk , P
tþ2
krn and the predictive probability of forecasts

Ptþ2
kr . The expected performance for MF at period t is determined by the last four factors. The

performance of the entire FH at period t is determined by the performance and inflow forecast
of SF and MF. Thus, in the flood season, the recursive equations can be shown as below.

SF f nopt St;Qt; Ftþ1;FLtþ1ð Þ ¼ Max Bt St;Qt; Stþ1ð Þ þ ∑
k
Ptþ1
jmk ⋅ ∑

r
Ptþ2
kr ⋅ ∑

n
Ptþ2
krn ⋅SF f

n−1
opt Stþ1;Qtþ1; Ftþ2;FLtþ2

� �� �

MF f
n
opt St;Qt; Ftþ1;FLtþ1ð Þ ¼ Max Ptþ1

jmk ⋅ ∑
r
Ptþ2
kr ⋅ ∑

n
Ptþ2
krn ⋅SF f

n−1
opt Stþ1;Qtþ1; Ftþ2;FLtþ2

� �� �

FH f nopt St;Qt; Ftþ1;FLtþ1ð Þ ¼ Qt

Qt þ Ftþ1
SF f

n
opt St;Qt; Ftþ1;FLtþ1ð Þ þ Ftþ1

Qt þ Ftþ1
MF f

n
opt St;Qt; Ftþ1;FLtþ1ð Þ

8>>>>>>><
>>>>>>>:

ð13Þ

2.3 Decision Strategies

The decision-making strategies is determined according to the relationship between the
decision horizon (DH) and the forecast horizon (FH). The inflow forecast used in the
LMS-BSDP model are the Short-term Forecast (SF, 1–5 days) and the Medium-term
Forecast (MF, 6–10 days) and the long-term forecast (LF) for the runoff from time
step t + 1 through October 31. The SF and MF are the two periods partitioned from
the entire FH inflow (10 days) (Xu et al. 2014). So the time step t of LMS-BSDP is
5 days and two decision-making strategies are developed. The first one, shown in
Fig. 1b, is defined as Strategy D, in which the SF at time step t and the MF and LF
at time step t + 1 are used to determine the operation policies for time step t.
Figure 1c presents the latter, termed Strategy E, in which the SF at time step t, the
MF and LF at time step t + 1 are used to determine the operation policies for time
steps t and t + 1. The decision-making strategies adopted by DP, SDP-Qt-1, SDP-Qt,
TS-BSDP are shown in SUPPLEMENTARY MATERIAL.

2.4 Performance Metrics

To compare the performance of DP, SDP-Qt-1, SDP-Qt, TS-BSDP and SML-BSDP, two
commonly used metrics are adopted here: Annual hydropower generation (AHG) and

180 Zhang X. et al.



reliability. Annual hydropower generation is the most important performance indicator of the
hydropower system. Reliability is the ratio of the periods that the output is not lower than the
firm capacity and the all operation periods. They are listed below.

AHG ¼ 1

N
∑
N

i¼1
∑
M

j¼1
Bij ð14Þ

Reliability ¼ n
N �M

� 100% ð15Þ

where, N is the total number of years, M is the total number of the periods in a year, Bij is the
power generation at the period j of year i, n is the total number of the periods whose output is
lower than the firm capacity.

3 Case Study

3.1 Study Area

The Hun River cascaded hydropower reservoirs system, located on the Hun River, is
one of the most important water resource systems in northeast China. This hydro-
power reservoirs system consists of three reservoirs: the Huanren reservoir, the
Huilong reservoir and the Taipingshao reservoir, the locations and characteristics of
which are referred to the Fig. 3 and Table 1 in the paper of Xu et al. (2014),
respectively. Among these three reservoirs, the Huanren reservoir is the upstream
reservoir, providing the main water for hydroelectric production, and thus is respon-
sible for the total hydropower generation of the system. Huilong and Taipingshao are
the downstream reservoirs, and daily regulation reservoirs. Therefore, the Huanren
reservoir is selected as a case study to verify the newly developed model in this
study. The Huanren reservoir covers a total drainage area of approximately
10,400 km2. The basin has two distinct seasons: non-flood and flood. Precipitation
varies significantly between these two seasons, with about 70 to 80% of the precip-
itation occurring in the flood seasons (from May to October).

Table 1 Simulation results of the optimization models (a) when the decision horizon is 5 days and (b) when the
decision horizon is 10 days

Models Variables Inflow
for decision

(a) (b)

AHG (MWH) Reliability (%) AHG (MWH) Reliability (%)

DP 513.61 94.44 517.38 97.22
SDP-Qt Qt Observed 480.03 88.66 482.34 95.83
TS-BSDP Qt, Ft + 1 Observed 483.07 93.29 483.96 93.06
LMS-BSDP Qt, Ft + 1, FLt + 1 Observed 485.32 92.13 486.69 91.2
SDP-Qt-1 Qt-1 Observed 472.8 82.18 467.4 83.33
SDP-Qt Qt Simulated 473.42 88.43 468.47 91.2
TS-BSDP Qt, Ft + 1 Simulated 477.49 90.97 472.89 88.43
LMS-BSDP Qt, Ft + 1, FLt + 1 Simulated 478.46 90.05 476.35 86.11
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3.2 Inflow Forecasts

In the present study, to implement all the models in cases when decision horizons are
5 days and 10 days, the short-term inflow forecast (SF, 1–5 days), the medium-term
inflow forecast (MF, 6–10 days), the entire forecast horizon inflow (FH, 1–10 days)
and the long-term inflow forecast (LF, seasonal inflow forecast) are needed. To obtain
these inflow forecasts, different models are developed. The details are shown below.

Two models, a multiple linear regression model for the non-flood seasons and the Xinangjiang
model for the flood seasons, which were proposed by Xu et al. (2014), are used to predict the
average inflow for SF (1–5 days), MF (6–10 days) and FH (1–10 days). It should be noted that the
parameters of the twomodels are recalibrated in the present study. The data series from 1968 to 2000
is treated as the calibration dataset to train the models, and the series from 2001 to 2015 is treated as
the validation dataset to evaluate model performance. According to the calibrated models, the
medium-term QPFs from 2001 to 2015 in the global forecast system (GFS), which were developed
by the U.S. National Center for Environmental Prediction, are applied to forecast the inflows.

Similar to the study of Xu et al. (2014), the simulation results of SF, MF and FH
are shown in Fig. 2. It can be seen that the forecast models perform well during the
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Fig. 2 A comparison of simulated and observed inflows with different lead-times
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calibration and verification periods, with the Nash-Sutcliffe efficiency coefficients
(NSEs) being equal to or greater than 0.9. During the forecast periods, all the NSEs
show a decrease because of the uncertainty of GFS. The NSEs for SF, MF and FH
are 0.83, 0.55, and 0.78, respectively. This shows that MF inflow forecasts are most
uncertain. The forecasted inflows of calibration and validation periods will be used to
develop operation models and to derive the operation policies and those of forecasting
periods are used to test the performances of the operation models.

To obtain the seasonal inflow forecast, the flood season (from May to October) is divided
into 5-day periods, and ANNs are developed for every period, with the 74 circulation indexes
and the previous inflow as inputs. The 74 circulation indexes are downloaded freely from the
website of China National Climate Center (http://ncc.cma.gov.cn). To develop the ANNs
models, first candidate inputs are selected from the previous inflow and the 74 circulation
indexes in the period from January in previous year to 2 month before the forecast time, using
the linear correlation analysis (LCA) (Sudheer et al. 2002), and then the candidate inputs are
added one by one according to their orders until the performance of the model shows no
significant improvements. The data series is partitioned into the training dataset (1968–1991),
the cross-validation dataset (1991–2000) and the validation dataset (2001–2015) to train and
evaluate the models, respectively. According to the national criteria for inflow forecasts in
China, if the absolute value of the relative error is no more than 20% of the mean annual
deviation, or the grade difference is no more than 1, then the seasonal inflow forecast is
deemed as qualified. The qualified rate of deviation and grade for every period (i.e., every
ANN model) are shown in Fig. 3. It can be seen that for periods in training dataset, the
qualified rate of deviation varies from 82.14 to 100%, the qualified rate of grade varies from
82.14 to 96.43%, and for periods in cross-validation dataset, the qualified rate of deviation is
100%, the qualified rate of grade varies from 81.82 to 100%. All these results indicate that
these ANN models can be used in the validation dataset. In validation dataset, the number of
periods whose qualified rate of deviation is more than 80% is 28, which is 82.35% of the total
periods, and the number of periods whose qualified rate of grade is more than 80% is 30,
which is 88.23% of the total periods. The results of validation dataset also reveal that the ANN
models show a satisfactory performance.
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4 Results

4.1 Operation Policies

To obtain the operation polices, all the developed models iterate, using the backward recursive
equations, until the ending storage reaches a steady state. During the iterations, the penalty
factors α and β are set to 1 and 2 respectively, same as the study of Tang et al. (2010b).

To calculate the probability used in the SDP models, the inflow forecasts should be
discretized. The SF, MF and the seasonal inflow forecast of the same period in
different years are first collected, then a heuristic procedure, i.e., different intervals
are tested, is used to determine the intervals of the three inflow. Finally, due to the
better performance, the intervals for SF, MF, and LF are determined as 6, 6, and 3,
respectively. That is, for each period, the inflows of SF and MF are discretized into 6
intervals, 15%, 30%, 45%, 60%, 75%, and 90%, denoted as m = 1,2,…,6 and n =
1,2,…,6, respectively, the seasonal inflow forecast is discretized into 3 intervals,
denoted as k = 1,2,3. Besides, storage is discretized into 29 intervals with an increment
of 30 Mm3.

Figure 4 shows the operation polices of LMS-BSDP for different decision styles
and periods, in the cases when the interval of the seasonal inflow forecast k is 3 and
the interval of MF n is 5. Figure 4a and c are the operation policies derived using
Strategy D for 5 days, August 11–15 and September 1–5, respectively. Figure 4b and
d are derived using Strategy E for 10 days, August 11–20, and September 1–10,
respectively.
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Fig. 4 The operation policy of LMS-BSDP for different decision styles and periods. a for August 11-15 using
Strategy D, b for August 11-20 using Strategy E, c for September 1-5 using Strategy D, d for September 1-10
using Strategy E
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4.2 Simulation Results

To test the performance of the models used in this study, their operation policies are
used to make operation decision of the period from 2001 to 2015 for Huarnren
reservoir in cases when decision horizons are 5 days and 10 days. In the test, both
the observed and simulated inflows to the Huanren reservoir from 2001 to 2015 are
used. It should be known that the observed inflow case is used as a reference to the
simulated inflow case and it assumes that inflows can be perfectly forecasted. The
results of the observed inflow case is expected to reveal the maximum efficiency and
reliability that could be achieved based on accurate information. The results are
shown in Table 1. It can be seen that, for the same model, the results obtained using
the observed inflow are better than those obtained using the simulated inflow. This is
because the inflow forecast obtained using GFS is uncertain and cannot match the
observed inflow accurately, thus leads to the worse results. For the same model, when
the observed inflow is used to make decision, the power generation obtained when the
decision horizon is 5 days is larger than that obtained when the decision horizon is
10 days. On the other hand, when simulated inflow is used to make decisions, power
generation in cases when the decision horizon is 5 days is smaller than in the cases
when it is 10 days. The reason is that when the observed inflows are used, the perfect
inflow forecast is used, so the 10 days lead-time can provide more time to increase
the output and reduce the release, while when the simulated inflows are used, the
10 days inflow forecast is more uncertain, which leads to smaller power generation.

Table 1 also show that SDP-Qt-1 performs worst in all cases and has the lowest
AHG and reliability. SDP-Qt performs better than SDP-Qt-1, which implies that
applying the inflow forecast to power station operation can improve the AHG and
reliability of the power station. Compared to SDP-Qt, TS-BSDP achieves a better
AHG and reliability, indicating that the combined use of medium- and short-term
inflow forecasts can further improve the performance of the power station because
forecast uncertainties are dealt with differently. Due to the employment of the long-
term inflow forecast, LMS-BSDP performs better than TS-BSDP with a better AHG,
which shows that the combined use of inflow forecasts with different lead-times can
enhance power station performance.

As shown above, the overall performance of LMS-BSDP is better than that of TS-
BSDP. LMS-BSDP uses the SF, MF inflows and seasonal inflow to determine the
operation policy of the SF, while TS-BSDP only uses the SF and MF inflows. To
illustrate the influence of the seasonal inflow forecast, the operation processes from
period 23 to 48 of 2010 are shown as an example in Fig. 5. Figure 5a shows the
inflows and releases for hydroelectric generation, and Fig. 5b shows water levels and
spillage. It can be seen that there is a significant difference in the release at period 25
between LMS-BSDP and TS-BSDP. The LMS-BSDP model increases release to
reduce storage due to the high seasonal inflow forecasted at period 26. It is the same
case for period 41.

When the simulated inflow is used, the power generation of LMS-BSDP is smaller
than that of DP by 35.15 MWH and 41.03 MWH when decision horizons are 5 days
and 10 days, respectively. The reason is that in the DP model, the observed inflows
are used to make decisions, and thus the conditional probability matrix in Eq. (3) is
the unit matrix composed of 0 and 1. While in LMS-BSDP model, the simulated
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inflows are used to make decisions, i.e., the simulated 10-day inflow and the
simulated seasonal inflow for the flood seasons. All the simulated inflows have
uncertainty, and thus the conditional probability matrix in Eq. (3) is not the unit
matrix. The results indicate that accurate inflow forecasts can help to improve the
conditional probability matrix and achieve more power generation.

5 Conclusions

This paper investigates the combined use of inflow forecasts with different lead-times to improve the
overall systemperformance of hydropower station in terms of hydropower generation and reliability.
Based on the TS-BSDP model, which can quantify the uncertainties of medium- and short-term
inflow forecasts, a new reservoir operation model that considers the long-, medium- and short-term
inflow forecasts (LMS-BSDP) is developed for real-time hydropower station operation. The newly
developed LMS-BSDP is tested on the Huanren hydropower station in China and is compared with
four other models. The main findings are summarized below.

(1) In both cases when the decision horizons are 5 and 10 days, SDP-Qt, TS-BSDP and
LMS-BSDP perform better than SDP-Qt-1 with higher hydropower generation and
reliability, the reason is that the uncertainty of inflow forecasts are better considered in
the former three models than in SDP- Qt-1.

(2) When the decision horizon is 5 days, all the reliabilities of LMS-BSDP are more
than 90%, and the hydropower generation is 2.25 MWH and 0.97 MWH more
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than that obtained using TS-BSDP, when the observed inflow and simulated
inflow are used, respectively. And when the decision horizon is 10 days, all
the reliabilities of LMS-BSDP are more than 86% and the hydropower generation
is increased by 2.73 MWH and 3.46 MWH, respectively. All these demonstrate
that LMS-BSDP can achieve a better performance with less abandoned water and
more hydropower generation due to the employment of the long-term inflow
forecast.

(3) Among all the models used in the present study, DP performs best with the highest
hydropower generation and reliabilities. The reason is that in this model, it is assumed
that the inflows are known previously, although this is impossible in real reservoir
operations. This reveals that further studies are needed to get more accurate inflow
forecast for achieving more power generation.
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