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Abstract
Availability of regionalized design rainfall is crucial for flood modeling, particularly over
the regions with sparse raingauge networks. This study proposes a new comprehensive
framework for generating regionalized design rainfall time series for data-poor catchments
involving non-linear and non-parametric optimization approaches. A large set of paramet-
ric and non-parametric families of distribution were considered for multivariate rainfall
frequency analysis using at-site station data, while a unique design temporal pattern over
the region was derived by quantifying the flood causing potential of design hyetographs.
The regionalized design rainfall time series was used as one of the inputs to a two-
dimensional (2D) flood model. The accuracy and performance of the derived regionalized
design rainfall for flood inundation modeling were evaluated by comparing with those
derived from different spatial interpolation methods. There was a high consensus of the
former with those of widely used kriging and spline interpolation methods. A severely
flood-prone and data-poor (no raingauge available within study area) large coastal catch-
ment lying along the coast of the Bay of Bengal, India, was chosen for a demonstration of
the proposed framework. The study showed that the framework can be used for extreme
events arising due to floods, even under changing climatic scenarios. It further invokes the
necessity for incorporating the proposed framework into various commercially and freely
available flood models along with other existing interpolation techniques to support
improved flood management.

Keywords Flood management . Multivariate rainfall frequency analysis . Regionalized design
rainfall time series . Spatial interpolation methods . Two-dimensional flood model

1 Introduction

Spatial analysis of flood risk assessment can guide efficient and effective mitigation options
(Karmakar et al. 2010; Wang et al. 2015). However, a major hindrance is the lack of
availability of rainfall data at high spatial and temporal resolution for partially gauged or
ungauged regions. This is where regionalized design rainfall becomes necessary. The
method of regionalization can be accomplished in two ways: (i) spatial interpolation of
rainfall using available rainfall data from other locations and (ii) estimation of a single
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design curve from available rainfall data for an area located within a climatologically
homogeneous region using methods such as maximum likelihood method, station averag-
ing (Buishand 1991) or regional averaging (Overeem et al. 2009), index variable and
growth curve (Svensson and Jones 2010).

In the past, a wide range of spatial interpolation schemes have been used for generating
continuous rainfall patterns; these schemes range from simple methods to complex methods.
They can be categorised into four classes: deterministic methods, global methods, geostatistical
methods, and others which involve a combination of these. In rainfall analysis, the deterministic
methods include mainly Inverse Distance Weighting (IDW) and Thiessen polygons, whereas
spline and kriging fall under geostatistical methods (Vicente-serrano et al. 2003).

The second approach of regionalization derives design rainfall through depth-duration-
frequency (DDF) curves or intensity-duration-frequency (IDF) curves. Here, frequency
analysis is implemented either through: (i) univariate probability distribution where rainfall
depth is the sole parameter and (ii) bivariate joint probability distribution between rainfall
depth and duration, or intensity and duration (Vandenberghe et al. 2010). Although the
former is simple and easy to implement, bivariate analysis is a more realistic and compre-
hensive approach as it describes an association among these variables, which is an
important parameter in understanding extreme events such as floods. For simplicity, an
assumption that “the marginals from bivariate distributions are identical” is frequently
considered. In practice, however, this may not always be the case. In such situations, a
bivariate copula provides flexibility in choosing the marginal distributions and reveals the
dependence between the two variables (Grimaldi and Serinaldi 2006). The other important
parameter is the temporal pattern of rainfall which is essentially a non-dimensionalized
hyetograph plotted using rainfall depth versus elapsed time (Prodanovic and Simonovic
2004). Thus, regionalized design rainfall time series can be obtained by utilising the
bivariate model of DDF curves along with the design rainfall temporal pattern under an
optimization framework. Sarkar et al. (2010) used a combination of the L-moment ap-
proach and Thiessen polygon interpolation to derive a regionalised IDF curve for the Tehri-
Garwal Himalaya region, India using four rain gauging stations data. Haddad et al. (2011)
demonstrated rainfall frequency analysis for 203 rainfall stations in Australia by coupling
regression (generalised least squares) and L-moment-based index method. Design rainfall
depths were estimated and compared with the already available records from five stations
for a set of return periods.

In another study, Al Mamoon et al. (2014) used a similar approach to generate IDF
curves for Qatar using L-moment approach combined with regional frequency analysis.
Recently, self-organizing map clustering (SOM), that belongs to the group of Artificial
Neural Networks (ANN), has been used to analyse complex data through a series of feature
and density maps and to group them into clusters (Kohonen 2001). This methodology has
been used in deriving design hyetographs for ungauged sites in the form of percentage of
total rainfall depth (%) versus time (dimensionless) by assigning them to clusters of gauged
sites (Kalteh and Berndtsson 2007; Lin and Wu 2007; Lin et al. 2010). However, such a
method may be applicable only under the presence of dense raingauge network.

It is well known that India is severely affected by floods, and faces around 20% of the
global deaths due to floods (Guhathakurta et al. 2011). In such a context, the quantification
of parameters that indicate the damage potential, such as flood extent, maximum depth and
velocity and duration require the use of robust flood simulation tools and good quality data
set. The simulation-based flood inundation mapping is essentially a planning tool and it can
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be used across a wide spectrum for effective reduction of flood damage. Since a few years,
there has been increasing use of 2D models, mostly due to reduction in computational cost
(Horritt and Bates 2002).

Inspite of multiple past attempts of estimating regionalised design rainfall, numerous
complexities are involved in the existing methodologies. Several studies have tried to
formulate regional DDFs, based on numerous empirical equations, regression analyses
(Alila 2000; Madsen et al. 2002; Brath et al. 2003), weighted averaging of hyetographs at
gauged sites (Lin et al. 2005; Chen et al. 2011; Yeh et al. 2013), and reciprocal-distance-
squared method (Lin et al. 2010). While the empirical formulations are site specific, rest of
the approaches have been found to be computationally rigorous as several parameters need
to be estimated (Borga et al. 2005). While it might be argued that spatial interpolation
schemes may solve the purpose, the sole dependence on them might not always be a good
idea, as they suffer from large uncertainties due to random nature of rainfall variability
(Diaconis and Efron 1983). At the same time, there are very scanty studies which have tried
to quantify the flood causing potential of temporal pattern of regionalised design
hyetograph. Alfieri et al. (2008) compared a few of commonly used methods for deriving
synthetic temporal patterns such as the rational method, the variational method, the
Chicago hyetograph, and the best linear unbiased estimation (BLUE). In their analysis
they found, that in most of the cases BLUE hyetograph produces better results than other
methods, however producing biased flood peak estimates in most of the climatic and
hydrologic conditions considered.

It is imperative to mention that non-availability of fine resolution long-term rainfall data
is a serious issue for many underdeveloped and developing regions, such as India, that are
prone to frequent floods. Under such circumstances, it is critical to formulate reliable
methods to estimate regionalized design rainfall for data poor regions to support in a better
understanding and modeling such incidences. Unfortunately, the studies on regionalized
design rainfall hyetographs for hydrologic events, especially for flood inundation is limited
in the literature. The generation of flood inundation maps for various durations and return
periods can serve as a vital tool for flood modellers and practitioners by demarcating areas
of data poor regions with different levels of risk.

Considering the limitations and future research directions as envisaged previously, this
research is twofold (I) a comprehensive framework for regionalization of design rainfall
using a non-linear optimization approach, which is first of its new kind in regionalization
approach of design rainfall and, (II) its appraisal to modelling flood inundation. In phase I,
the proposed framework uses a multivariate analysis of rainfall by considering both depth
and duration together with the design temporal pattern. A set of parametric and non-
parametric models and extreme value distributions were used to derive at-site DDF curves
for three raingauge stations. The regionalization of the design rainfall was obtained by
using the parameters obtained from the extreme value distribution and the best fitting
parametric/non-parametric model under a non-linear optimization framework. In phase 2, a
comparative study of the flood inundation statistics, derived by using regionalized design
rainfall and spatially interpolated areal rainfall from geostatistical and deterministic spatial
interpolation techniques, is presented. The regionalised flood inundation maps were de-
rived using the regionalized design rainfall together with other geospatial data sets such as
fine resolution topography, distributed Manning’s roughness coefficients and built-up land
in the MIKE 21 2D hydrodynamic model. The proposed framework was applied to
Jagatsinghpur District, a large catchment situated in the lower deltaic part of the Mahanadi
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River basin in Odisha, India. This region frequently experiences severe flooding, and there
is an absence of a well-maintained raingauge network.

The article has been organised into six sections. The Section 1 “Introduction” considers
the past literature used for estimation of regionalized design rainfall for flood inundation
and establishes the “objectives of the study”, by defining the specific tasks addressed in this
study. The Section 2 on “Site description and data scarcity” explains the study area and its
relevance for the demonstration of the proposed framework. The Section 3 on “Proposed
framework for regionalization of design rainfall” addresses briefly the various steps
involved in the study. It is followed by Section 4, “Demonstration of the proposed
framework” with a detailed description of the methodology used for regionalized design
rainfall and flood inundation assessment. The Section 5, “Results and Discussion” dis-
cusses the representative findings of rainfall analysis and flood inundation. The article ends
with “Concluding remarks” regarding the proposed framework, its application to flood
modelling, along with future research prospects.

2 Site Description and Data Scarcity

Jagatsinghpur District (geographical area: 1759 km2) is situated in Odisha, an eastern
Indian state, between 19° 58’ N to 20° 23’ N latitude and 86° 3′ E to 86° 45′ E longitude.
The region falls in the downstream reaches of Mahanadi river basin within the deltaic zones
of two major rivers, namely, River Mahanadi and Devi, as given in Fig. 1. The district
comprises of 8 blocks, 2 municipalities, 8 tehsils and 1320 villages. Ghosh et al. (2016)

Bhubaneswar

Puri

Paradeep

Raingauge station

District and Taluk boundary

River network 

Mahanadi river

Nuna river

Chitrapola river
Paika river

Kujang

Ersama
Balikuda

Nuagaon

Jagatsinghpur
Tirtol

Raghunathpur
Biridi

Fig. 1 Geographical location of Jagatsinghpur District in the lower Mahanadi River Basin, Odisha, showing
IMD operated raingauge stations installed at Paradeep, Bhubaneswar and Puri (The base map is an FCC
composite image derived from the Resourcesat2-AwiFS on 22 February 2015)
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observed that there is a positive trend in the extreme rainfall over the Mahanadi region
during monsoon season (June, July, August and September), which can result in in frequent
disastrous floods. During the monsoon season, the heavy rainfall in the upper and lower
reaches of the study area, along with heavy discharge cause floods in the region. Blocks
such as Ersama, Kujanga and Balikuda are highly prone to floods on an almost annual basis
(District Emergency Operation Center 2016). The severity of floods is further aggravated
by the tidal disturbances along the Bay of Bengal. During the last four decades, multiple
major flood disasters have occurred in the region. The major floods in 1982, 1999, 2001,
2008 and 2011 are some of the events that incurred huge socio-economic and agricultural
losses for the region. The demonstration of the regionalized design rainfall framework in
this region is highly relevant because the district does not have a raingauge station that can
provide hourly rainfall data to aid in flood management. The next section explains the
proposed framework of the regional design rainfall and its application.

Rain gauge network data 
Data conditioning:                                                                                                           

Filling in missing data values through multiple
imputation (Yuan 2002;Rubin 2009;Mazlan et al.
2015;Roslinazairimah et al. 2015)

Delineation of rainfall events:                                                                                              
Delineation by specified dry period  and  

threshold intensity to ensure independence of 
events

Selection of extreme events
(Peak over threshold analysis)                                                                               

Temporal pattern analysis
Selection of design temporal pattern for each
duration based on multimodality measure,
skew and kurtosis (Sherly et al. 2016)

Multivariate frequency analysis

Selection of marginals
• Marginal Depth Frequency curve (General 

Pareto distribution)
• Marginal duration frequency curve 

(parametric/nonparametric approaches) 

• Bivariate copula analysis

At site design rainfall 
- At-site DDF curves
-Design rainfall time series for each rain 
gauge station

Regionalised  design  rainfall

Combined 
optimisation (CO)

Combined averaged 
optimisation (CAO)

Design rainfall time series
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Input data layers 2-D Hydrodynamic 
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(MIKE 21)
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Fig. 2 Proposed framework of the regionalization of design rainfall and flood inundation mapping
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3 Proposed Framework for Regionalization of Design Rainfall

The proposed framework is illustrated in Fig. 2. The outline of the procedure is given here:
To estimate the design rainfall, hourly information was obtained from India Meteorological
Department (IMD) for 3 neighbouring rain gauge stations located at Paradeep (1969–
2013), Bhubaneswar (1969–2013) and Puri (1970–2013). Firstly, to ensure consistency
and continuity of the data, data conditioning was performed. The Multiple imputation
technique through fully conditional specification (FCS) method implemented through the
Markov Chain Monte Carlo (MCMC) was used to replace the missing values in the
continuous rainfall time series. Using this technique, rainfall time series was obtained for
each raingauge station.

In the next step, using the criterion of minimum threshold, events series were generated
from the rainfall events. Marginal depth frequency analysis was performed using a series of
extreme value distributions while, marginal duration frequency analysis involved various
parametric and nonparametric distributions. An optimal threshold depth was selected by
plotting the various parameters from the series of extreme value distribution with varying
thresholds. Bivariate joint probability was calculated using copula from marginal distribu-
tions of depth and duration. Following this, inverse of the conditional probabilities was
used to estimate the design rainfall depths to plot at-site DDF curves. The other important
component, i.e. design rainfall temporal pattern was obtained for all selected durations from
the observed ones by identifying the pattern showing the highest flood causing potential.
For each station, at-site design rainfall time series was generated by combining design
rainfall depth corresponding to a design return period and duration obtained from the DDF
curves, along with design temporal pattern.

For regionalization of design rainfall, a new concept of non-linear optimization tech-
nique using two approaches, namely (i) Complete Optimization (CO), and (ii) Combined
Averaging Optimization (CAO) were used. Regionalized DDF curves were generated for
different durations and return periods. The regionalized design rainfall time series was
obtained for different combinations of return periods and durations. In the second phase,
flood inundation modelling using 2D MIKE 21 model is demonstrated. In this model, a
10 m grid resolution LiDAR DEM and land use land class (LULC) map obtained from
National Remote Sensing Centre (NRSC), Hyderabad was used. Following this, a series of
spatial interpolation techniques were chosen for areal estimation of rainfall using the at-site
design rainfall. Then, the regionalized and the spatially interpolated design rainfall time
series were given as inputs to 2D flood model. A comparison of the inundation statistics for
all cases was performed for a critical evaluation of their performance.

4 Demonstration of the Proposed Framework

This section elucidates the proposed framework, given in Section 3. The details of the
various steps involved is described in the following subsections.

4.1 Multivariate Frequency Analysis

To explore the relationship between rainfall depth and the duration, insight into the two
components, namely, marginal depth frequency and marginal duration frequency, is
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necessary. Various extreme value-type models such as the general extreme value (GEV),
Pearson type-III, and log Pearson type-III, normal and log normal models have been used
for rainfall-depth frequency analysis. Although there are no general guidelines, the General
Pareto distribution (GPD) is widely used (Van de Vyver and Demarée 2010; Meylan et al.
2012; Esteves 2013; Li et al. 2014). For duration frequency analysis, durations shorter than
the time of concentration of the catchment play a major role in flood causing potential.
Hence, both families of parametric and non-parametric distributions should be used to
model rainfall duration. In this study, a multivariate rainfall frequency analysis using a
copula-based method (Karmakar and Simonovic 2009; Vittal et al. 2015) has been adopted.
The proposed methodology is summarized using the pseudo-code format in Algorithm 1.

4.2 Design Rainfall Temporal Pattern

Unique design temporal pattern of rainfall indicates that pattern, which can cause the most
disastrous flood event among all the observed patterns for a particular duration. Such a
pattern can be quantified using various statistical measures such as skew, kurtosis and
multimodality measure. It is chosen as the one which shows the highest skew and kurtosis
along with the lowest bimodality (Sherly et al. 2015). A unimodal pattern will have more
flood causing potential than a bimodal pattern as it continuously peaks up intensity unlike
the latter. Similarly, kurtosis identified by the peakedness along with a thick and heavy tail,
has a higher flood causing potential as a higher intensity of rainfall contributes to a more
severe flood event. As such a leptokurtic pattern (highest kurtosis) shall lead to more
severe event than compared to mesokurtic and platykurtic patterns (lower kurtosis). Lastly,

Algorithm 1 Steps followed for multivariate frequency distribution in pseudo-code format 

1: Marginal Frequency Analysis

i. Marginal depth frequency curve (using GPD)

( ) = 1 − 1 +
( )

,  = + ( ⁄ ){1 − [1 − ( )]

(μ> 0, α> 0 and -½<κ< ½ are the location, scale, and shape parameters respectively)

ii. Marginal duration frequency curve, ( )
a. Parametric family (out of 17 models tested): Gamma, lognormal, 

Loglogistic

b. Nonparametric family (out of 4 models tested): Gaussian, Triangle, 

Epanechnikov

iii. Goodness of fit for (i) and (ii) using RMSE, AIC and BIC

2: Bivariate Copula Analysis

i. Joint return period of rainfall depth (H) and duration (D),  TH,D= m
N(1-FH,D)

FH,D(h,d)=C[FH(h),FD(d)]=Cv1,v2(v1,v2)
(m: rainfall time series (years), N: sampled extremes, and FH,D is the bivariate joint 

probability of ‘H’ and ‘D’, v1 = FH(h), v2 = FD(d)). 

ii. Gumbel-Hougaard copula, ( , ) = {−[(− ) + (− ) },
C( | )= × [ − ) × − ) × − )

( )⁄
( [1, ∞], 

( ) = ( )) 
iii. Goodness of fit for (ii) using RMSE, AIC and BIC
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skewness which describes the shape of the hyetograph, constitutes a more severe flood event if
the hyetograph is positively skewed in the initial time periods, as there is chance of flash
flooding with limited response time to effectively drain the flood water. By combining the
design temporal pattern of a specified duration with its corresponding design rainfall depths,
design rainfall time series can be generated for various return periods. The Algorithm 2 in
pseudo-code format shows the methodology for design rainfall temporal pattern analysis.

4.3 Regionalization of Design Rainfall

The pre-requisite for regionalization of design rainfall is climatological homogeneity of the
raingauge stations. This will facilitate the construction of regionalized DDF curves by averag-
ing the parameters of the at-site DDF curves (Overeem et al. 2009). In this study, a non-linear
optimization based framework was used to derive the regional bandwidth of the non-parametric
kernel function, based on Sherly et al. (2013). This study adopts two approaches of optimization
as follows: (i) CO, wherein all parameters of GPD andmarginal duration frequency are obtained
using optimization; and (ii) CAO, in which a non-linear optimization is used to calculate the
regional bandwidth (w) of non-parametric kernel and the remaining three GPD parameters are
averaged. The proposed methodology is given in the pseudo-code format in Algorithm 3.

Algorithm 2 Steps followed for design rainfall temporal pattern in pseudo-code format

1: Calculation of skew (m3) and excess kurtosis (m4)

= =
∑ ( )

∑ ( )

,  m = =
∑ ( )

∑ ( )
− 3

2: Calculation of Hartigan’s dip statistic (HDS)

Null hypothesis logic p-statistic, p < 0.05 indicates bimodal or multimodal

3: Calculation of bimodality coefficient (BC)

BC = (0 ≤ BC ≤ 0.555)                                          

4: Selection of design temporal pattern as {( ) ( ) ( )

Algorithm 3 Steps followed for regional design rainfall analysis in pseudo-code format

Two different optimization approaches to minimise the combined RMSE of all N stations 

1: Complete Optimization or CO

( ) = ( )

= ( | )
subjected to:

> 0,

= [ , , , ] ,
(w: nonparametric kernel bandwidth)

2: Combined Averaging Optimization or CAO

( ) = ( )

subjected to:

> 0,

= [ ] ,
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4.4 Flood Inundation Mapping Using the MIKE 21 Model

MIKE 21 model is a widely used robust flood simulation tool for fluvial, pluvial and coastal
flood modeling (Kadam and Sen 2012; DHI 2014; Timbadiya et al. 2014). The model in this
study utilizes a finite difference method (FDM) and solves the fully dynamic shallow water
equations as presented in Eqs. (1), (2) and (3), with a constant grid spacing.

∂z
∂t

þ ∂p
∂x

þ ∂q
∂y

¼ ∂d
∂t

ð1Þ

∂p
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þ ∂
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p2

h

� �
þ ∂

∂y
pq
h

� �
þ gh

∂z
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ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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C2h2

−
1
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∂
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¼ 0 ð3Þ
where, z is surface elevation (m); p is flux density in the x direction (m3/s/m); q is the lateral
inflow (m3/s); h is water depth (m); t is time (sec); x and y are space coordinates (m); C is the
Chezy resistance; φw is the density of water (kg/m3); τxx, τxy and τyy are the components of
effective shear stress (N/m2); and g is acceleration due to gravity (m/s2).

The advance and recession of a flood wave can be predicted through flood simulation, and
outputs include maximum flood extent, flood velocity, and flood duration. In this study,
simulations were performed to define flood inundation zones by inputting rainfall from the
proposed regionalized design rainfall analysis followed by various spatial interpolation
methods (SIM).

4.4.1 Hydrodynamic Model Setup

In this study, the parent LiDAR DEM of 2 m resolution for the entire study area was resampled
to 10 m using the nearest neighbouring technique in Arc GIS 10.1, to compromise with the
complexity in simulation time and cost. The DEM was pre-processed to include the built-up
area residing in the study area. The raster DEM was later converted to ASCII format and
imported into MIKE 21 domain (*.dfs2 MIKE 21 format) using the Grid to MIKE toolbox. A
model resolution of 10 m × 10 m grid size consisting of 2.64 × 109 [67,250 (j) × 39,375 (k)]
grid cells was created as shown in Fig. 3. The values at the end rows and columns of the model
domain were closed by providing a land value of 60. This ensured that any grid having
elevation more than 60 m in the model domain was not utilised in the simulation. The
resistance from various land use classes to the flood water flow were compiled using the
Manning’s N values as represented in Table 1. A smaller time step of 1 s was chosen to run the
model, as it is well known that lower time step enhances model stability. The courant number,
which is given by cr ¼ Umax

Δt
Δx, where, Umax is the wave celerity, Δt is the time step and Δx is

the grid size was fixed at a value of 0.7. The flooding depth and drying depth were fixed at 0.2
and 0.1 m respectively.
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Fig. 3 DEM used as input to the MIKE 21 model

Table 1 Description of different land use classes with Manning’s resistance number

Land Use class Mannings n (s/m1/3) Manning’s Resistance
number (N = 1/n)

Agricultural land
Agricultural land: aquaculture 0.037 27.03
Agricultural land: crop land kharif 0.12 8.33
Agricultural land: crop land rabi 0.11 9.09
Agricultural land: crop land: two crop area 0.1 10.00
Agricultural land: crop land: zaid crop 0.037 27.03
Agricultural land: fallow land: current fallow 0.025 40.00
Crop Land: Summer crop 0.048 20.83
Agricultural land: plantation 0.07 14.29

Built up
Built up: rural 0.05 20.00
Built up: Urban 0.1 10.00
Built up: Mining 0.08 12.50

Forest
Forest: Deciduous: dense 0.1 10.00
Forest: Deciduous: open 0.15 6.67
Forest: forest plantation 0.07 14.29
Forest: Littoral Mangrove 0.1 10.00
Forest: Scrub Forest 0.05 20.00

Tree
Tree clade area 0.06 16.67
Wastelands
Wastelands: sandy area: coastal 0.025 40.00

Waterbodies
Waterbodies: river stream 0.02 50.00

Wetlands
Wetlands: coastal natural 0.06 16.67
Wetlands: Inland natural 0.05 20.00
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4.4.2 Rainfall Data

In this study, the performance of the regionalized design rainfall was compared with rainfall
obtained from various SIMs through flood inundation analysis. Some of the commonly
used deterministic and geostatistical methods: Inverse Distance Weighting (IDW), nearest
neighbor (NN), kriging (KR) and spline (SP) interpolation (available within the spatial
analyst toolbox of Arc GIS 10.1) were considered. The at-site design rainfall for 3 stations
of 24 h duration and various return periods were interpolated to form a single representative
time series (*.dfs0 MIKE format). The 24 h rainfall time series of 50, 100 and 200-year
derived from regionalisation and interpolation were used as the rainfall inputs into the
MIKE 21 model.

4.4.3 Flood Inundation Modelling

The flood inundation was quantified based on the flood depth, which were decided based on
the experimental results of studies on instability criteria under flooding as reported earlier by
Jonkman and Penning-Rowsell (2008). Generally, flood depths upto 0.6 m, is identified as
hazardous to children although it is in the moderate self-help range for adults, however the
depths beyond 1.5 m can be treated as life threatening. Likewise, 4 different classes of flood
inundation representing different degrees of hazard based on flood depth (h) from low to very
high were quantified in the flood simulation outputs (Table 2).

5 Results and Discussion

Figure 4 shows the results of the graphical method of POT analysis, in which the modified
scale (α’) and shape (κ) parameters of GPD have been plotted against the location
parameter (threshold), μ. Accordingly, the optimal thresholds for the three stations were
found to be 29 mm.

To generate marginal duration frequency, a set of paramateric and non-parametric distribu-
tions were tested. Among these, Gaussian, triangle and Epanechnikov kernels from the
nonparametric family of kernels, and Gamma, log-logistic, and lognormal models from the
parametric family showed the best fit based on the RMSE values, as shown in Fig. 5.

The three sites exhibit a similar temporal pattern which indicates the climatological
homogeneity of the region. This result also supports the fact that Paradeep, Bhubaneswar
and Puri fall under homogeneous monsoon regions, as per the classification by IITM (2005).
Moreover, there are other studies which consider the three sites under a homogeneous region
(Shashikanth et al. 2014; Subash and Sikka 2014; Patwardhan et al. 2016). To ensure the
approach was generic, four distributions (three best fitting among non-parametric methods and
one best fitting among parametric models) were considered to obtain the DDF curves.

Table 2 Description of hazard in-
dices based on flood depth (h) Hazard category Depth of flooding (m)

Low 0 to 0.6
Medium 0.6 to 1.25
High 1.25 to 3.5
Very high >3.5
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Model RMSE AIC BIC
Gaussian kernel 0.0169 -202.12 -200.90
Triangle kernel 0.0172 -201.16 -199.15
Epanechiknov kernel 0.0175 -200.37 -199.15
Gamma 0.0226 -186.20 -185.42

Model RMSE AIC BIC
Gaussian kernel 0.0085 -236.16 -234.94
Triangle kernel 0.0086 -235.81 -234.59
Epanechiknov kernel 0.0087 -235.35 -234.13
Gamma 0.0110 -222.11 -221.33

Model RMSE AIC BIC
Gaussian kernel 0.0097 -229.68 -226.25
Triangle kernel 0.0098 -229.11 -228.46
Epanechiknov kernel 0.0098 -229.01 -227.79
Gamma 0.0091 -231.90 -228.54

ytisne
D

ytisne
D

ytisne
D

Duration (mm)

(a) PRDP

(b) BBS

(c) PURI

Fig. 5 Marginal duration-frequency curves for (a) Paradeep (PRDP) (b) Bhubaneswar (BBS) and (c) Puri (PURI)
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5.1 At-Site Design Rainfall

Figure 6 shows the bivariate joint probability distributions for all the best fit models. It can be
noticed that all models resembled to their corresponding empirical models.

The DDF curves obtained from the 4 best fit models for return periods of 5, 10, 25, 50, 100,
200 and 300-year return periods for durations 1–72 h are represented in Fig. 7. The extreme
events for individual stations characterised by 1-day rainfall depth > 244.5 mm (as mentioned
by IMD in http://imd.gov.in/section/nhac/termglossary.pdf), are represented as separate scatter
plots inside the DDF curves. In all the DDF curves, a smooth representation of the curves from
5 to 300-year return periods proves the numerical consistency of the models for extrapolation
to longer durations. A unique observation showed that Paradeep station recorded a higher
amount of rainfall depth (for all periods in all the best fit models), followed by Bhubaneswar
and Puri. This observation is evident in all the copula models as well.

Following the generation of DDF curves, the next step was performing design rainfall
temporal pattern analysis for selective durations of 6, 12, 18, and 24 h. From the analysis of
HDS and BC, it was found that only few of the events were unimodal at a 95 percentile
confidence interval. It was observed that the skew values ranged from −5 to +5. Among the
temporal patterns, most of them showed a higher kurtosis (leptokurtic), which implies severe
flood-causing potential. Based on these statistical measures, the unique temporal pattern having
the least bimodality, and the highest skew and kurtosis was selected as the unique design
temporal pattern for the chosen durations of 6, 12, 18 and 24-h respectively. By combining the
design rainfall depths obtained from the DDF curves with the unique design rainfall temporal
pattern for each specified duration, the at-site design rainfall time series were generated. Thus, a
set of design rainfall depths for three stations were estimated corresponding to return periods of

(a)

(f)

(k)

(b)

(g)

(l)

RMSE= 0.0039
AIC=-239.14
BIC= -229.92

RMSE= 0.0092
AIC=-234.88
BIC= -228.88

RMSE= 0.0091
AIC=-231.74
BIC= -228.56

(c)

(h)

(m)

RMSE= 0.0041
AIC=-239.44
BIC= -229.77

RMSE= 0.0093
AIC=-234.10
BIC= -228.65

RMSE= 0.0098
AIC=-231.69
BIC= -228.32

(d)

(i)

(n)

RMSE= 0.0048
AIC=-239.47
BIC= -229.25

RMSE= 0.0095
AIC=-233.82
BIC= -228.35

RMSE= 0.0112
AIC=-231.36
BIC= -228.14

(e)

(j)

(o)

RMSE= 0.0118
AIC=-219.73
BIC= -208.52

RMSE= 0.0120
AIC=-219.45
BIC= -208.43

RMSE= 0.0131
AIC=-219.23
BIC= -208.37ytilibaborP

)F
D

C(
ytilibaborP

)F
D

C(
ytilibaborP

)F
D

C(

Fig. 6 Bivariate joint probability distribution of the best-fit models for (i) Paradeep (row 1: b, c, d and e); (ii)
Bhubaneswar (row 2: g, h, i and j) and (iii) Puri (row 3: l,m, n and o), along with their empirical models (column
I: a, f, and k) respectively. The columns II, III, IVand V represent Gaussian, triangle and Epanechnikov kernels,
and Gamma distribution respectively
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100, 200 and 300-year for the selective durations, as shown in Table 3. Figure 8 shows a
representative set of at-site design rainfall time series generated from the Gaussian kernel based
copula for 24 h duration with return periods of 100, 200 and 300-year.

A comparison of the at-site design rainfall of the 3 stations for various durations and return
periods as obtained from the four models is shown in Fig. 9. The highest at-site design rainfall
depth is observed for Paradeep, followed by Bhubaneswar and Puri. Paradeep station, located at
the coast line near the Bay of Bengal, consistently showed the highest rainfall depth among all
three stations. This station has consistently received higher rainfall due to monsoons and
depressions arising in the Bay of Bengal. Additionally, the copula with the Gaussian kernel
exhibited a higher rainfall depth compared to the three other kernels and the Gamma distribution.
This observation remains consistent for all scenarios with different return periods and durations.
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htpe
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Duration (h) Duration (h) Duration (h) Duration (h)
Extreme events

Paradeep Bhubaneswar Puri

5-yr

10-yr
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200-yr

300-yr
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TK
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GK
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Fig. 7 At-site depth-duration-frequency (DDF) curves derived from the best-fit models: Gaussian kernel (GK),
triangle kernel (TK), Epanechnikov kernel (EK) and Gamma distribution (GD) for Paradeep, Bhubaneswar and
Puri for various return periods (scatter plot shows the extreme rainfall events occurred at each station)

Table 3 Estimated at-site design rainfall depths for a representative set using the four best-fitting copula-based
models

Representative
models

Return
period
(years)

Design rainfall depth (mm)

Paradeep Bhubaneswar Puri

6 h 12 h 24 h 6 h 12 h 24 h 6 h 12 h 24 h

Gaussian kernel 100 220.6 258.68 328.51 213.52 250.33 317.91 195.73 229.47 299.42
200 264.3 308.66 389.97 255.76 298.7 377.39 234.44 273.81 345.94
300 293.2 340.89 430.69 283.69 329.9 416.79 260.05 302.41 382.06

Triangle kernel 100 220.6 254.59 323.59 213.52 246.37 313.15 192.94 225.31 300.96
200 264.3 303.89 383.15 255.76 294.08 370.78 233.13 275.07 348.99
300 293.2 336.31 423.29 283.69 325.46 409.63 256.41 301.22 385.36

Epanechnikov
kernel

100 227.1 264.73 334.53 219.73 256.19 323.73 198.42 225.9 301.72
200 271.7 315.86 395.7 262.92 305.68 382.93 238.01 280.2 351.03
300 301.3 348.63 436.5 291.54 337.38 422.42 267.24 309.27 387.22

Gamma distribution 100 212.00 246.00 278.00 205.77 231.88 262.00 190.67 212.80 238.30
200 232.20 295.45 320.65 226.58 275.65 312.55 212.70 258.54 284.72
300 315.44 375.80 412.86 300.47 360.88 397.55 285.81 335.42 368.55
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5.2 Regionalized Design Rainfall

The regional copula parameter for Jagatsinghpur District was obtained by applying weights to
each station based on the record length. Figure 10 shows the regional bivariate distribution derived
for Jagatsinghpur District using both optimization approaches. It was found that CAO method is
more reliable and accurate than the CO method based on the various goodness-of-fit measures
used in the study. The regionalized DDF curves for Jagatsinghpur District are shown in Fig. 11.

Both approaches show a similar trend and smoothness of fit. It was noticed that CO yielded
higher rainfall depths for the lower tail (80 to 250 mm) than the CAO (10 to 200 mm) for all
return periods. In the at-site DDF curves of Paradeep, Bhubaneswar and Puri (Fig. 6), the
rainfall depth for the lower tail exhibited a similar range to that of CAO. Design rainfall depths
obtained from the regionalized DDF curves were combined with the design rainfall temporal
pattern to generate the regionalized design rainfall time series. Figure 12 shows the regional-
ized 24 h design rainfall time series corresponding to return periods of 100, 200, and 300-year,
obtained using the best fit Gaussian kernel for Jagatsinghpur District.

5.3 Flood Inundation Mapping Using MIKE 21 Model

A comparison of the distribution of flood depth statistics corresponding to return periods of 50,
100 and 200-year, from both spatial interpolation and regionalization approach, is presented in
Fig. 13. As clearly observed, all of the interpolation techniques performed in a similar manner.

Fig. 8 At-site 24-h design rainfall time series generated using Gaussian kernel (GK) based copula for three
stations corresponding to return periods of 100, 200 and 300-year
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Also, simulated flood depth was directly proportional to the rainfall depth applied as input. For
example, SP showed a higher flood depth (>3.5 m, 6.81%) for a return period of 200-year,
which was about a fourfold increase compared to that a return period of 50-year scenario.
However, a comparison of the percentage flood depth under each class for different return
periods indicated a significant difference among these methods. Spatial variations, such as

Fig. 10 Regional bivariate distribution derived for Jagatsinghpur District using (a) CAO and (b) CO

Fig. 9 Design rainfall time series derived using a copula-based Gaussian kernel (GK), triangle kernel (TK),
Epanechnikov kernel (EK) and Gamma distribution (GD) for Paradeep, Bhubaneswar and Puri
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different soil types across a region, physical barriers, and landscape changes may also affect
the accuracy of interpolation (Jensen et al. 2006; Little et al. 1997; Zhu and Lin 2010).

A comparison of the inundation statistics of SIMs with the regionalized design rainfall
showed that the SP and KR interpolation methods exhibited similar pattern. Several studies in
the past concluded that geostatistical methods were more suited to rainfall analysis than
conventional techniques (Tabios and Salas 1985; Phillips et al. 1992). As noted by Isaaks and
Srivastava (1989), sparse data density affects the performance of IDWandNN techniques, which
was evident in this study. However, KR and SP showed better accuracy as the former uses the
best linear unbiased estimate (BLUE), while the latter retains small-scale features, leading to
better accuracy. Figure 14 shows the MIKE 21 model produced flood inundation maps for the
Jagatsinghpur District for the selected return periods considering the regionalized design rainfall.

There is a direct relationship between rainfall depth and flood inundation, as evident
from the proportion of the areas affected by high (>3.5 m) and medium (0.6–1.5 m) flood
depths. In particular, the deltaic region near the coastline can be observed to be the worst
affected due to flooding. Major flood events occurred in this region during 1969, 1980,
1982, 1994, 1999, 2001, 2003, 2006, 2007, 2008, 2011 and 2014 (District Emergency
Operation Center 2016). Some of the chronic flooding spots identified by the local
authorities in the region are namely, Nuagaon, Kujanga and Ersama blocks. Similarly, it
was found that the simulated flood maps also reflected higher flood depths in these
localities. The study also finds that, the flood plains along the banks of River Mahanadi
and Devi exhibit higher flood depths.

(a) JSPUR
CAO

(b) JSPUR
CO
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htpe

Dllafnia
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Duration (h)

Extreme events
Paradeep Bhubaneswar Puri

Duration (h)
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25-yr

50-yr

100-yr

200-yr

300-yr

Fig. 11 Regionalized DDF curves for Jagatsinghpur district (JSPUR) using (a) CAO and (b) CO
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Fig. 12 Regionalized 24 h design rainfall time series of Jagatsinghpur District corresponding to return periods of:
a 100-year b 200-year and c 300-year
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6 Concluding Remarks

This study focused on the issue of the lack of rainfall data and how to address this situation
during extreme hydro-climatic events such as floods. For such situations, regionalization of
design rainfall, which provides rainfall for a desired location for different durations and return
periods, forms an integral component. A comprehensive framework to perform regionalized
design rainfall analysis was proposed here. To perform this analysis, a region with sparse
raingauge network was selected in the severely flood-affected regions of the lower Mahanadi
River basin (India). Here, design rainfall time series is generated using multivariate frequency
and design temporal pattern analyses. The two important aspects of multivariate rainfall
frequency analysis, i.e., marginal distributions of depth and duration, were analysed. This
study considered a flexible copula based approach, wherein both parametric and non-
parametric families of distributions were included. A unique pattern among a set of observed
rainfall temporal patterns was chosen for each design duration, based on various statistical
measures namely skew, kurtosis and multimodality measure. A new method of regionalization
of the design rainfall through non-linear optimization based approach was proposed for
generation of design hyetographs over the region. The next part of the study was dedicated
to demonstrating the efficacy of the regionalized design rainfall through flood modeling. For
this purpose, the MIKE 21 model was set up considering a grid size of 10 m for an area of
1759 km2. A comparison of the flood inundation statistics obtained with spatially interpolated
rainfall and regionalized design rainfall was conducted. We concluded that the interpolation by
geostatistical methods (spline and kriging) matched closely with the regionalized rainfall-
derived flood maps. A set of flood inundation maps using regionalized design rainfall was also

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j)

(m)

(k)

(n)

(l)

(o)

NN:RP=50 years
A= 46.34 % B=47.20%
C= 5.34%    D= 1.33%

NN:RP=100 years
A= 42.00 % B=53.23%
C= 11.62%  D= 3.03%

NN:RP=200 years
A= 33.31 % B=45.45%
C= 16.25%  D= 5.02%

IDW:RP=50 years
A= 51.18 % B=44.02%
C= 4.07%    D= 0.98% IDW:RP=100 years

A= 48.72 % B=51.78%
C= 7.57%    D= 1.80%

IDW:RP=200 years
A= 38.00 % B=47.66%
C= 11.12%    D= 3.05%

KR:RP=50 years
A= 48.86 % B=43.50%
C= 6.05%    D= 1.54%

KR:RP=100 years
A= 45.76 % B=47.67%
C= 13.03%    D= 3.33%

KR:RP=200 years
A= 37.19 % B=39.34%
C= 18.17%    D= 5.25%

SP:RP=50 years
A= 42.21 % B=48.63%
C= 7.40%    D= 1.75%

SP:RP=100 years
A= 37.48 % B=52.66%
C= 14.53%    D= 4.17%

SP:RP=200 years
A= 30.10 % B=41.70%
C= 20.61%    D= 6.81%

REG:RP=50 years
A= 45.27 % B=44.56%
C= 8.04%    D= 2.11%

REG:RP=100 years
A= 42.68 % B=46.16%
C= 16.59%    D= 4.38%

REG:RP=200 years
A= 35.04 %   B=36.24%
C= 21.15%    D= 7.56%

(A)(B)(C)(D)
Fig. 13 Flood depth distribution for Jagatsinghpur District using interpolation techniques: NN, IDW, KR, SP,
and a regionalization method (REG) for return periods of 50, 100 and 200-year
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derived for a set of return periods. It can be inferred from the foregoing analysis that the
proposed framework can provide at-site and regionalized design rainfall time series for regions
with sparse raingauge network. The flood model developed in the study is simple, yet detailed
enough to capture the physical feature in larger catchments (> 1000 km2). Such studies can
help in estimating regionalized design rainfall for ungagged or partially gaged catchments that
can be extended to simulate flood events to support efficient flood risk management.

It is important to mention that the proposed framework can help in better estimation of
rainfall data, especially for ungauged/partially gauged catchments in developing and underde-
veloped countries. It is a known fact there is an increase in flood risk across the globe, mainly
due to climate change and urbanisation, thus proving that the lack of rainfall data makes flood
management a daunting task. In the future, additional effort may be made to capture rainfall
information with the assumption of non-stationarity, for flood prone catchments through the
inclusion of statistical models. Hence, any flood risk management effort should start with
collection and analysis of reliable rainfall data, followed by various flood modeling options.
This will ensure efficient and economical mitigation and adaptation options, rather than
dealing with flood damages. In this study, we showed that the framework can be used for
extreme events arising due to floods that can support in improved flood management. In
future, the concept of regionalization can be incorporated into flood simulation tools along
with other existing set of interpolation techniques.
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