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Abstract
This article shows an application of a new algorithm, called kidney algorithm, for reservoir
operation which employs three different operators, namely filtration, secretion, and excretion
that lead to faster convergence and more accurate solutions. The kidney algorithm (KA) was
used for generating the optimal operation of a reservoir namely; Aydoghmoush dam in eastern
Azerbaijan province in Iran whose purpose was to decrease irrigation deficit downstream of
the dam. Results from the algorithm were compared with those by other evolutionary
algorithms, including bat (BA), genetic (GA), particle swarm (PSO), shark (SA), and weed
algorithms (WA). The results showed that the kidney algorithm provided the best performance
against the other evolutionary algorithms. For example, the computational time for the KAwas
3 s, 2 s, 4 s, 6 s and 3 s less than BA, SA, GA PSA and WA, respectively. Also, the objective
function for the optimization problem was the minimization of the irrigation deficits and its
value for the KA was 55%, 28%, 52%, 44 and 54% less than GA, SA, WA, BA and PSA,
respectively. Also, the different performance indexes showed the superiority of the KA
compared to the other algorithms. For example, the root mean square error for the KA was
74%, 61%, 68%, 33 and 54% less than GA, SA, WA, BA and PSA, respectively. Different
multi criteria decision models were used to select the best models. The results showed that the
KA achieved the first rank for the optimization problem and thus, it shows a high potential to
be applied for different problems in the field of water resources management.
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1 Introduction

Water resources are getting scarce these days and decision makers are challenged to utilize
them in the best possible way. The water stored in reservoirs behind dams is an important
resource which can be utilized during critical or drought periods having in mind that storage
volumes can be significantly decreased due to high evaporation losses, particularly in arid
regions (Ehteram et al. 2018a; Johnson et al. 1993).

1.1 Background

Nowadays, reservoirs are often operated optimally with the aid of mathematical models
such that water is released to meet demands to the greatest extent possible (Zhang et al.
2014, Ehteram et al. 2018b). Different mathematical models, such as meta-heuristic or
evolutionary algorithms, have been developed for reservoir operation. These algorithms
are able to determine optimal strategies for water release (Schardong and Simonovic,
2015; Bozorg-Hadad et al. 2016).

Akbari-Alashti et al. (2014) used genetic programming for optimizing reservoir operation
and showed that it matched the downstream demand better than did the genetic algorithm.
Based on genetic algorithms, Bolouri-Yazdeli et al. (2014) found that reservoir operation with
higher order nonlinear rule curves supplied demands better than did lower order nonlinear
curves. Results from an application of bat algorithm (BA) to reservoir operation showed that
water demand supplies were less vulnerable (Bozorg-Hadad et al. 2014) but the algorithm may
get trapped in local optima. Ahmadi et al. (2014) extracted adoption and non-adoption rule
curves for the operation of a reservoir with a multi-objective genetic algorithm and showed that
the adoption rule curve supplied demands well but more computation time was needed.
Applying the weed optimization algorithm (WOA) to a multi reservoir system, Asgari et al.
(2015) showed that it supplied demands with more resiliency and reliability and required less
function evaluations than did genetic and particle swarm algorithms.

Biography-based optimization algorithm (BBOA) was used by Hadad et al. (2015) for
reservoir operation with the aim to increase power generation in the downstream power
plant. Results showed that, compared to other evolutionary algorithms, BBOA yielded
solutions closer to the global solution. Using a genetic algorithm, Tayebian et al. (2016)
employed different polices for reservoir operation and showed that the binary standard
operating policy better met demands.

Moeini et al. (2017) used a constrained gravitational search algorithm for reservoir
operation with the aim to decrease hydropower deficit and found it better than the honey
bee mating optimization algorithm (HBMOA) and discrete dynamic programming. Using
improved artificial bee colony optimization algorithm (IABCO), a multi-reservoir system
with power plants was operated for increasing power generation in the downstream
power plants. It was found that IABCO supplied hydropower demand with more
reliability than did genetic algorithm (GA) and particle swarm optimization (PSOA)
(Choong et al. 2017).

Ming et al. (2017) compared the search space reduction method (SSRM) with the cuckoo
algorithm for reservoir operation in China and found that SSRM reached the global solution
and was capable of solving the reservoir system problem with many constraints. Applying the
shark algorithm for reservoir operation in Iran, Ehteram et al. (2017) showed that it decreased
water deficit during critical periods more reliably than did other algorithms. Using the krill
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algorithm for reservoir operation with the aim to increase power generation in the downstream
power plant, Ehteram et al. (2017) showed that the algorithm provided average solutions close
to the global solution.

1.2 Problem Statement, Motivation and Novelty

The literature review in the previous section shows that the optimal operation of water
resources based on new evolutionary algorithms has gained a lot of importance in recent
years. The present study addresses the new evolutionary kidney algorithm for the optimal
operation of a reservoir with the aim of decreasing irrigation deficits and the results will show
that the KA algorithm leads to less computational time and to better objective function values
when compared to other evolutionary algorithms. The study will demonstrate the better
performance of the KA based on different multicriteria decision models and different indexes
such as the volumetric reliability index, root mean square error and others. Thus, the main
contribution of this paper is to introduce a mathematical model based on a new evolutionary
algorithm (KA) for reservoir operation with irrigation aims. Also, the present article attempts
to modify previous literature reviews for the optimal operation of water resources because past
articles targeted at selecting the best models or methods based on some limited indexes such
objective function, number of function evaluations or computational time while the present
study considers the selection of the best method based on different multicretira decision
models in order to achieve more comprehensive outcomes.

Reservoir operation entails a nonlinear non-convex objective function and requires a robust
algorithm that can lead to the global solution and can extract rule curves for supplying demands,
such as irrigation, hydropower and others. Optimal reservoir operation takes on an added
significance in periods of drought and water scarcity. This requirement can be met with the use
evolutionary algorithms. The kidney algorithm (KA) has been introduced as a successful
optimization algorithm suitable for different engineering applications versus the other algorithms
(Jaddi et al. 2017). The method was used by Jaddi et al. (2017) for benchmark mathematical
functions but, to the authors’ knowledge, the KA has not been used to generate optimal operation
rules for dam and reservoir water systems application. The benchmark mathematical functions
were evaluated by the kidney algorithm and the method had the good results.

The other reasons for the selection of this algorithm were that it overcame problems of other
algorithms, such as trapping in the local solutions, slow convergence, and lack of balance
between exploration and exploitation. The kidney algorithm has the filtration operator which
causes faster convergence. In fact, this operator identifies the best solution and helps expedite
convergence. Also, a balance between exploration and exploitation is generated by filtration so
that the algorithm searches the regions which have the solutions with better quality. The
solutions with bad quality which may trap the algorithm in local solutions are removed by the
secretion operator.

Formulating this algorithm for reservoir operation for the first time in water resource
management is the innovation of this paper as well as comparing it to bat, shark, weed,
particle swarm and genetic algorithms. Also, some multi-criteria decision indexes, such as
complex proportional assessment (COPRAS), technique for order preference by similarity to
ideal solution (TOPSIS), modified technique for order preference by similarity to ideal solution
(MTOPSIS), and weighted aggregates sum product assessment (WASPAS) were used for
evaluation of different algorithms. In addition, the Borda social selection index based on all
multi-criteria decision models was used to determine the best method for reservoir operation.
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1.3 Objective

The main objective of this study is to investigate the potential of generating reservoir operation
rules based on the kidney algorithm in order to minimize the irrigation water deficits. In
addition, to examine the kidney algorithm performance over the most recent meta-heuristic
algorithms, a comprehensive comparative analysis is carried out.

2 Material Methods

2.1 Kidney Algorithm

Kidneys are situated in the urinary system in the biological structure of a body. They remove
waste and excess water from blood and have components, called nephrons, which have
capillaries such as glomerular tubes that filter the fluids available in the kidneys. Kidneys
have small tubes, known as tubules, which undertake two main functions of reabsorption and
secretion. Reabsorption is a process which returns solutes from tubules to the blood, whereas
secretion transforms solutes from the blood to the tubules which are then discharged by the
urinary system. Different processes occurring in kidneys are defined below (Jaddi et al. 2017):

1- Filtration: transformation of solutes from the blood to tubules.
2- Reabsorption: process by which non-waste solutes move from tubules to the blood.
3- Secretion: process by which waste materials move from the blood to tubules.
4- Excretion: process by which all the waste from the above three processes are

discharged from the body.

There are similarities between the kidney algorithm and other meta-heuristic algorithms.
For example, an initial population is defined for this algorithm. The solutes are consid-
ered as initial population or candidate solutions. Then, new solutions are generated,
based on the movement of current solutions to the best solutions. At the next level, the
filtration operator is applied to solutions and the solutions are divided into two groups.
The useful solutes are transferred to the filtered blood (FB) and the harmful solutes are
considered as waste (W). The algorithm gives another opportunity to the solutes which
are considered as waste so that these solutes can be returned to the FB, if they can satisfy
the rate of filtration. If these solutes cannot use this opportunity, they are excreted and a
random solute fills the place of the excreted solution. Also, if the solute is transferred to
the FB, the solute quality should be compared to the available worst solute in the FB. If
the quality of transferred solute to the FB is worse than the worst solute, the transferred
solute is excreted or else if the quality of the worst solute is less than the transferred
solute to the FB, the worst solute is excreted. All levels of the algorithm are detailed in
the following sections.

2.1.1 Movement Solutes for Generation of New Positions

The movement of solutes for finding the best position with better quality results in new solutes
at each iteration. Indeed, trying solutes for increasing their quality gives rise to new solutes.
The generation of new solutes can be expressed as:
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Siþ1 ¼ Si þ rand Sbest−Sið Þ ð1Þ
where Si: the i-th solute, Sbest: the best solute, rand: the random number, and Si + 1: the new
solute. Equation 1 increases the population diversity which causes faster convergence.

2.1.2 Filtration

The filtration rate is an operator for identifying the worst solute and the best solute and can be
computed as:

fr ¼ α�
∑
p

i¼1
f xið Þ
p

ð2Þ

where, α: a constant value between 0 and 1, p: the population size, f (xi): the objective function,
fr: the filtration rate and xi: decision variables.

The average of all objective function values is used for the computation of the
filtration rate. If α equals zero, it means that there is no filtration and if αequals one,
the rate of filtration equals the average of the objective function values. This process
filtrates the solutes with the best quality from the solutes with the bad quality and thus
improves the exploration process.

2.1.3 Reabsorption

When a solute is considered as waste, the reabsorption again gives an opportunity to the solute
to join to the FB. This event happens if the new solute, based on Eq. 1, can satisfy the rate of
filtration. This process improves the exploitation process.

2.1.4 Secretion

When a solution is transferred to the FB, its quality should be compared with the worst solute.
If the quality of this solute is worse than the worst available quality in the FB, it is secreted, or
else the worst solute will be secreted.

2.1.5 Excretion

When a solution cannot be given an opportunity again for joining the FB, it will be excreted
and a random solute fills the place of the removed solute. Figure 1 shows the details of the
kidney algorithm.

To summarize, the following levels are considered for the kidney algorithm:

1- First, an initial population is considered for the algorithm and the solutes are considered as
the initial solution.

2- The objective function is computed for each solute.
3- The rate of filtration is computed for each solute and the better solute is transformed to the

filtered blood and other solutes are considered as waste.
4- Another chance is given to the waste and, if it uses this chance, it would join the FB.

Otherwise, it is excreted and the random solute fills the excreted solute.
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5- The transformed solute in the FB is compared with the worst solute in the FB and if it has
bad quality compared to the worst solute, the solute will be secreted or else the worst
solute will be secreted.

6- The solutes in the FB are sorted for the selection of the best solute.
7- The FB and W join each other to generate the new population.

2.2 Other Algorithms

2.2.1 Bat Algorithm

The bat algorithm acts based on the echolocation ability that allows the bats to identify the
obstacle from food based on pulses generated from bats and their return from the surroundings.
In fact, they generate loud sounds and then receive the returned sounds from the surroundings.

The following assumptions are considered for the bat algorithm (Bozorg-Hadad et al.
2014, Karami et al. 2018):

Generate random population

Evaluate each solution in the 

population and set  Sbest

Generate new solution for each 

solution

Applying filtration operator

Is solution assigned as west?No

Is the solution better than the 

worst solution in the FB?

Yes  No

Secret the worst 

solution from FB   

Secret 

solution

Apply reabsorption 

operator?

Can new solution be assigned as FB

Yes

Reabsorb new solution

No
Remove solution from 

and insert a random s in 

to W

Update W and FB and 

the best solution

Terminate 

criterion
Yes Finish No

Start

Fig. 1 Kidney algorithm
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1- All bats apply the echolocation ability for the identification of prey from food.
2- The bats fly randomly with velocity vl, loudness A0, wavelength λ, and frequency

fmin at potion yl.
3- The loudness changes from A0 to Amin.

The frequency rate is between fmin and fmax and the wavelength changes between λmin and λmax.
Also, the pulsation rate (rl) is between 0 and 1. The position, frequency, and velocity are
updated as:

f l ¼ f min þ f max− f minð Þ � β ð3Þ

vl tð Þ ¼ yt−1l −Y*
� �� f l; t ¼ 1;…; T ð4Þ

yl tð Þ ¼ yl t−1ð Þ þ vl tð Þ; t ¼ 1; ::;T ð5Þ

where, yl(t − 1): the position at time t-1, β: the random value between 0, 1, Y∗: the global best
position, and T: the total period of assessment.

Also, a random walk is used for local search as:

y tð Þ ¼ y t−1ð Þ þ εA tð Þ ð6Þ

where ε: the random number between −1 and 1, and A (t): the average loudness of bats’ sound.
The loudness and pulsation rate should be updated for each iteration. When bats find preys,

the loudness decreases and the pulsation rate increases. Also, the pulsation rate is expressed as:

rtþ1
l ¼ r0l 1−exp −γtð Þ½ �Atþ1

l ¼ αAt
l;αandγ constants ð7Þ

Figure 2 shows different levels of the bat algorithm.

2.2.2 Weed Algorithm

Weeds are harmful for the development of agriculture and they adapt easily with their
environment. Characteristics such as completion, growth, and reproduction, are seen among
weeds. The weed algorithm has the following features (Asgari et al. 2015):

1- There are limited numbers of seeds for the extension of weeds.
2- Seeds can convert to weeds and weeds can produce seeds, based on their quality again.
3- The weed production continues until their number reaches the maximum. Also, there is a

competition among weeds and the weeds with bad quality will be eliminated from the
weed colony.

The following assumptions can be considered for the weed algorithm:

1- An initial population is considered for the algorithm (Pinitial) and it is distributed randomly
in the solution space. In fact, each weed can be considered as a solution and its location
can be considered as a decision variable.
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2- Plants or weeds can produce seeds based on their quality. The members with bad quality
in the evolutionary algorithm are eliminated but they can have important information
which is useful during the algorithm operation. Thus, reproduction in the weed algorithm
gives another chance to the member with bad quality to survive from the bad condition
and grow in the better environment.

3- The weeds are distributed randomly in the search space, based on the normal distribution.
The standard deviation of the weed distribution is based on the following equation and it
starts from the maximum value to reach a minimum value:

σiter ¼ itermax−iterð Þn
itermaxð Þn σinitial−σfinal

� �þ σfinal ð8Þ

where σiter: the standard deviation for current iteration, σinitial: the initial standard deviation, and
σfinal: the final standard deviation.

Start

Determine prey f(y)

t=1

Produce initial situation of bats

y,v,f,r,A

Evaluate and update situations

If iteration number is less 

than maximum iteration
NO

Finish

Update situations

If rnd<rl

Yes

Yes

Random fly

No

Examine 

situations

If (rand)<Al

And f(y)<f(Y*)
No

Increase rl and decrease Al

Yes

Evaluate situation and compute the best 

solution
t=t+1

Fig. 2 Bat algorithm
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4- When the number of weeds reaches Pmax, the seeds with bad quality should be removed.
Figure 3 shows the weed algorithm.

2.2.3 Shark Algorithm

The olfactory system in sharks permits them to identify preys in the surroundings. In fact,
smell receptors help them receive odor from the surroundings. The following assumptions are
considered in the shark algorithm (Ehteram et al. 2017):

1- It is assumed that the fishes are shark prey and they are injured in the sea. The fish
movement is slow because it is injured and, as a result, it is assumed that the location of
prey has been fixed.

2- The fish body produces blood, because it is injured and, as a result, the smell receptor in
the shark receives the blood odor from the injured fish.

3- It is assumed that there is one blood source around sharks which produces the blood.

First, the initial population X 1
1;X

1
2; ::;X

1
NP

� �
(NP: population size) is considered for sharks. In

fact, each X is considered as shark position and each position has some decision variables
which can be expressed as

Start Generate initial population of 

weeds

Compute fitness of initial 

weeds

Compute the number of seeds 

for each weed with respect to 

fitness value
Spread produce new seeds

Compute fitness of the new 

weeds from seeds

Is the number of weeds larger 

than the maximum number of 

weeds permissible in the 

colony?

Yes

Remove weeds 

with low fitness

No Is the maximum number 

of iterations achieved?

Yes

Finish

No

Fig. 3 Weed algorithm
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X l
i ¼ xli;1; x

2
i;l;…; xli;ND

h i
ð9Þ

where, xi,jl: the j-th decision variable.
Each shark has the spatial velocity in the movement with V1

1;V
1
2; ::;V

1
NP

� �
being the

velocity vector. Each vector includes v1i;1; v
1
i;2; ::v

1
i;ND

h i
, ND being the number of decision

variables. When the odor concentration increases, the velocity for shark increases and thus the
gradient of the objective function is equal to velocity as

Vk
i ¼ ηk :R1:∇ OFð Þ��X k

i
; i ¼ 1; ::;NP; k ¼ 1; ::; kmax ð10Þ

where OF: the objective function, kmax: the number of sharks moving forward, ηk: a random
value between 0 and 1, and R1: a random number between 0 and 1.

The shark movement has inertia and its velocity is limited so that the velocity equation is
rewritten as:

vki; j ¼ ηk :R1:
∂F
∂x j

����
xki; j

þ αkR2vk−1i; j ð11Þ

where αk: the momentum rate, and R2: a random value between 0 and 1.
The maximum and minimum velocities for the shark are, respectively, 80 km/h and

20 km/h. Thus, a velocity limiter βk is considered for velocity such that:

vki; j
��� ��� ¼ min ηk :R1:

σ OFð Þ
∂x j

����
����
xki; j

þ αk :R2:vk−1i; j j; βk :v
k−1
i; j

��� ���
" #

ð12Þ

Then, the shark position is updated as:

Ykþ1
i ¼ X k

i þ Vk
i Δtk ð13Þ

in which Δtk: time interval for each stage of movement.
Sharks have an important movement which is called rotational movement. This causes the

shark algorithm to exit from local optima (Fig. 4):

Zkþ1;m
i ¼ Ykþ1

i þ R3:Ykþ1
i ð14Þ

where R3: random number, m: number of points in the local search around Yik + 1, and Zkþ1;m
i :

obtained position based on the rotational movement of sharks.

Fig. 4 Rotational movement
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Finally, for maximization, the final solution is computed as:

X kþ1
i ¼ arg max OF Ykþ1

i

� �
;OF Zkþ1;1

i

� �
;…;OF Zkþ1;M

i

� �� �h i
ð15Þ

Figure 5 shows the shark algorithm.

2.2.4 Particle Swarm Algorithm

The particle swarm optimization algorithm acts based on velocity and position, so that a
dimensional vector Xi = (xi, 1, xi2, .., xiD)T shows the particle position and another vector Vi = (vi,

1, vi2, .., viD)T shows the particle velocity (Delice et al. 2017). Also, the best previously
observed position of particles is shown with Pi = (pi, 1, pi2, .., piD)T. The g index shows the

Initialize user defined parameters of algorithm 

Define the initial population for shark velocity and position 

Consider the stage contour k=1

Each velocity component is computed based on equation 12

The new position for shark is considered based on equation 

13

The local search is considered based on equation 14

The best position is considered based on equation 15

K=kmax

Yes

The best position is stored

End

No

Fig. 5 Shark algorithm
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global solution as:

vnþ1
id ¼ χ wvnid þ

c1rn1 pnid−x
n
id

� �
Δt

þ c2rn2
pngd−x

n
gd

� �
Δt

2
4

3
5 ð16Þ

xnþ1
id ¼ xnid þΔtvnþ1

id ð17Þ

where χ: constriction coefficient; w: inertia weight; c1 and c2: acceleration coefficients; r1, r2:
random values; n: time index; and Δt: time interval.

First, the initial velocity and position are defined. Then, the objective function is
computed for each particle. The global and local leaders are computed, and velocity and
position are updated, based on Eqs. 16 and 17. Finally, the termination criterion is
checked.

2.2.5 Genetic algorithm

The real coded genetic algorithm is used frequently for optimization. Elitism together
with crossover and mutation operators are used in this algorithm (Arikoglu 2017). The
elitist strategy attempts to keep the best members in each generation. Thus, the chance of

finding of the global solution increases. At the crossover level, two children Y 1 ¼
y11; y

1
2; ::; y

1
n

� �
and Y 2 ¼ y21; y

2
2; ::; y

2
n

� �
are considered, and X 1 ¼ x11; x

1
2; ::; x

1
n

� �
and X 2

¼ x21; x
2
2; ::; x

2
n

� �
are considered as parents. First, a random number (u) is applied to

generate the γ crossover parameter as a polynomial probability distribution:

γ ¼
αuð Þ 1

ηcþ1←if uð Þ≤ 1

α
1

2−αu

	 
 1
ηcþ1

←otherwise

2
664

3
775 ð18Þ

with α ¼ 2−β− ηcþ1ð Þand βis computed by:

β ¼ 1þ 2

x2i −x1i
min x1i −x

l
i

� �
; xui −x

2
i

� �� � ð19Þ

where xui : upper bound of the decision variables, and xli: lower bound of the of the

decision variables. Also, x1i and x2i are first and second parents.
Children are generated as:

y1i ¼ 0:50 x1i þ x2i
� �

−γ x2i −x
1
i

�� ��� � ð20Þ

y2i ¼ 0:50 x1i þ x2i
� �þ γ x2i −x

1
i

�� ��� � ð21Þ

The mutation operator is applied to chromosomes for changing some genes. Thus, the mutated
chromosome is expressed as:
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x
0
i ¼

xi þΔ t; xui −xi
� �

xi−Δ t; xi−xli
� �� �

ð22Þ

The function Δ(t, y) is computed as:

Δ t; yð Þ ¼ y 1−r 1− t
tmaxð Þb� �

ð23Þ

where r: random number, and tmax: maximum number of iterations.

2.3 Case study

The Aydoghmoush dam is a rock fill dam located in eastern Azarbayejan province, Iran. The
purpose of the dam is to supply water for irrigation demands. The average annual inflow for
this reservoir is 228 × 103 m3/h and the maximum and minimum storages are, respectively,
145.7 × 103 and 8.9 × 103 m3. A period of 10 years (1991–2000) was considered for the study.
Figure 6 shows the Aydoghmoush location and Fig. 7 shows the inflow to the reservoir.

The objective function for reservoir operation was considered as the average of square
relative differences between allocated volumes and irrigation demands:

Minimize Defð Þ ¼ 1

T
∑
T

t¼1

Dt−Rt

Dmax

	 
2

ð24Þ

Fig. 6 Aydoghmoush dam
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Stþ1 ¼ St þ Qt−Rt−spt−
Et � At

1; 000

	 

; t ¼ 1; ::; T ð25Þ

Smin≤St ≤Smax ð26Þ

0≤Rt ≤Dmax ð27Þ

spt ¼ St þ Qt−
Et � At

1; 000

	 

−Smax←if St þ Qt−

Et � At

1; 000

	 
	 

≥Smax

0←otherwise

2
4

3
5 ð28Þ

where Def: objective function based on deficit, Dt: irrigation demand during the opera-
tion periods, Rt: released water during the operation period, Dmax: maximum irrigation
demand in the entire operation time period, St + 1: storage at time t + 1, Qt: inflow to
reservoir, spt: overflow, T: time interval of operation, and A: surface area of reservoir.

Equations 26 and 27 should be satisfied and penalty functions were considered for more
assurance:

p1 ¼ K
Smin−Stj j
Smax−Smin

� �2
þ L ð29Þ

P2 ¼ C
Rt−Dmax

Dmax

� �2
þ G ð30Þ

P3 ¼ Z
Rtj j
Dt

	 

þ N ð31Þ

Fig. 7 Inflow to Aydoghmoush dam
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where p: penalty function, and K, L, C, G, Z and N are the penalty constants. The penalty
functions have been reported by Ashofteh et al. (2012) and the value of their
coefficients have been computed based on sensibility analysis. The data collection
for this study, used for evaluating the proposed model, is set for the period between
1991 and 2000. The main reason is that one of the major objective of the study is to
compare the performance of the proposed model versus models that have been applied
previously for the same case study. As long as those models were examined during
this period, it was decided to examine the proposed model during the same time
period (Bozorg-Hadad et al. 2014, 2016).

2.3.1 Investigation of reservoir performance by different indexes

The reliability index depicts the percentage of water supply as (Ashofteh et al. 2012):

α ¼ NT
t¼1 Dt ≤Rtð Þ

T
ð32Þ

where α: reliability index, and NT
t¼1 Dt ≤Rtð Þ: number of periods of water supply. A high value

for this index means a higher ability of the system in meeting the target demand during most of
the time.

Another performance measure is the vulnerability index. This index shows the ratio of
magnitude of the total failure to the total demand and was computed as (Ashofteh et al. 2012):

υ ¼
∑
T

t¼1
Dt−RtjDt > Rtð Þ

∑
T

t¼1
Dt

ð33Þ

where υ: vulnerability index and ∑
T

t¼1
Dt−RtjDt > Rtð Þ: cumulative deficit during the operation

period. A low value of vulnerability means that, when there is a failure, its magnitude is
not so intense, i.e., a fraction of demand (although not the full target) can still me met.

The resiliency index was considered as:

β ¼ NT
t¼1 Dtþ1≤Rtþ1jDt > Rtð Þ

NT
t¼1 Dt > Rtð Þ ð34Þ

where β: resiliency index, and NT
t¼1 Dtþ1≤Rtþ1jDt > Rtð Þ: number of system successes after a

failure.
Also, the root mean square (RMSE) between demand and value assigned to irrigation was

computed as:

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
T

t¼1

Dt−Rtð Þ2
T

s
ð35Þ
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The mean absolute error (MAE) for allocated water and demand was computed as:

MAE ¼
∑
T

t¼1
Dt−Rtj j
T

ð36Þ

The Nash-Sutcliffe efficiency (NSE) was computed as:

NSE ¼ 1−
∑
T

t¼1
Dt−Rtð Þ2

∑
T

t¼1
Dt−Dt

� �2
ð37Þ

Dt: average demand.
Additionally, the formulation of the kidney algorithm for solving the reservoir operation

was based on the following steps:

1- Water release values were considered as decision variables for simplifying the solution of
the problem. Thus, release values were defined as the initial population.

2- Initially, the constraints for the problem (Eqs. 26 and 27 and continuity equation) were
checked and if they were not satisfied, penalty functions were considered.

3- The objective function for each member of the population was computed.
4- The rate of filtration based on the computed objective function was computed.
5- In this level, filtration, secretion and excretion were applied to these solutes based on the

kidney algorithm.
6- If the convergence criterion was satisfied, the algorithm was terminated or else another

loop would start from level 2.

2.4 Multi-criteria decision

In this study, some methods are based on different indexes so one of the methods should be
selected as the best strategy for reservoir operation. Thus, some multi-criteria decision models
were employed. First, a decision variable matrix was considered which included the computed
value of each index for each method and each variable was denoted by xij, i being the i-th
method and j the j-th index. Then, these variables were normalized as:

~xij ¼
xij−x−j

� �
xþj −x−j

ð38Þ

~xij ¼
x−j−xij

� �
x j−−xþj

� � ð39Þ

where, x−: lowest value of index jth, and x+: highest value of index jth.
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2.4.1 Complex proportional assessment (COPRAS)

In COPRAS, maximizing and minimizing evaluation criteria are computed separately within
the computational process. The following steps were considered for using the model
(Viteikiene and Zavadskas 2007):

1- The computed values of different indexes in the decision variable matrix based on Eq. 36
and 37 were normalized.

2- The total weight of the evaluation criteria was computed as:

Sþi ¼ ∑
k

j¼1
~xij � qj

� �
ð40Þ

S−i ¼ ∑
m

j¼kþ1
~xij � qij

� �
ð41Þ

where k = number of beneficial criteria, m: number of non-beneficial criteria, q: assigned
weight, S+i and S−i: are the sum of the maximizing and minimizing the criteria, respectively.

3- The relative weight Qi was computed as:

Qi ¼ Sþi þ
∑
n

i¼1
S−i

S−i ∑
n

i¼1

1

S−i

	 
 ð42Þ

4- The rank Ni of each method was computed as:

Ni ¼ Qi

max Qið Þ � 100 ð43Þ

2.4.2 Technique for order preference by similarity to ideal solution (TOPSIS)

This method acted based on the proximity of each solution to the positive ideal solution (Dþ
i )

and the distance from the negative ideal solution (D−
i ):

Dþ
i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
m

j¼1
xij−xþj

� �2
s

ð44Þ

D−
i ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
m

j¼1
xij−x−j

� �2
s

ð45Þ

Ci ¼ D−
i

D−
i þ Dþ

i
ð46Þ
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The value of Ci was arranged based on the descending arrangement for determining the rank of
each method. Also, Dþ

i is the distance from the ideal solution, D−
i is the distance from a

negative-ideal solution and Ciis the similarity ratio.

2.4.3 Modified technique for order preference by similarity to ideal solution (MTOPSIS)

Ren et al. (2007) suggested the following equation instead of computing the Ci value:

Ri ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dþ

i −min Dþ
i

� �2 þ D−
i −max D−

i

� �� �2� �r
ð47Þ

Each method with higher value for Ri has a higher rank and this parameter is known as the
similarity ratio.

2.4.4 Weighted aggregates sum for product assessment (WASPAS)

Zavadskas et al. (2012) suggested the model based on weighted sum mode and weighted
product mode:

Ai ¼ λ ∑
m

j¼1
xij � qj

� �
þ 1−λð Þ ∏

m

j¼1
xij � qj

� �
ð48Þ

where the value of λwas equal to 1 (Zavadskas et al. 2012) and each method with higher value
for Ai is better ranked.

2.4.5 Borda method

When different multi-criteria decision models are used, they may assign different ranks to each
method. Thus, it was important to select the best method, based on the computed ranks of
different models for each method. First, each method based on its rank in each multi-criteria
decision model had an initial score. This score for each method equaled the difference between
the total number of methods with assigned rank number and that method by a multi-criteria
decision model. For example, there were n = 6 methods in a study. If the rank of one method
was 1 in a multi-criteria decision model, its score would be 5 (or n - 1), the method with rank 2
would score 4 (or n - 2), and the worst method would have 0 (or n - n) score. Then, different
scores of each method in different multi-criteria decision models were summed with each other
to determine the best method.

3 Results and discussion

Table 1 shows the sensitivity analysis for all algorithms. The best population size for the
kidney algorithm was 50 and α = 0.50. The population size for shark algorithm was 50 with
M = 30 and α= 0.6. The population size for the bat algorithm was 50 and the maximum
frequency and loudness were, respectively, 5 and 0.60. Other parameters can be seen in
Table 1. For example, the crossover and mutation probabilities for the genetic algorithm were
0.50 and 0.60, respectively.
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Table 2 shows ten random results for all the investigated algorithms. The value of
objective function for 10 runs of KAwas 0.789 and it decreased the objective function by
44%, 28%, 55%, 54 and 52% compared to BA, SA, GA, PSA and WA, respectively. Also,
the coefficient of variation for KAwas 26, i.e. 2.5, 36, 2.6 and 25 (ratios) smaller than BA,
SA, GA, PSA and WA, respectively. Thus, the results for KA based on one program run
were reliable, since the coefficient of variation was small for this algorithm. Also, the
LINGO software, an engineering optimization algorithm, was used for evaluating the
different algorithms (Lingo.8. 1997) because the solution of LINGO based on nonlinear
programming method can be close to the global solution. The average KA solution was 0.99
of the one found by LINGO. This value resulted based on the ratio of 0.785 (average

Table 1 Sensitivity analysis for different algorithms a: kidney algorithm, b: shark algorithm, c: bat algorithm, d:
particle swarm algorithm, e: genetic algorithm and f: weed algorithm

a
Population size

(solutes)
Objective

function
α Objective function

10 1.211 0.30 1.312
30 1.010 0.50 1.010
50 0.789 0.50 0.787
70 1.040 0.70 0.954
b
Population size Objective

function
αk Objective

function
M Objective

function
10 1.544 0.20 1.766 10 1.545
30 1.322 0.40 1.544 20 1.344
50 1.112 0.60 1.111 30 1.111
70 1.243 0.80 1.244 40 1.232
c
Population size Objective

function
fmax (hz) Objective

function
Maximum loudness

(Db)
Objective

function
10 1.765 1 1.654 0.2 1.752
30 1.644 3 1.523 0.40 1.612
50 1.422 5 1.422 0.6 1.422
70 1.234 7 1.544 0.80 1.651
d
Population size Objective

function
c1 = c2 Objective

function
Inertia weight Objective

function
10 2.244 1.6 2.212 0.30 2.211
30 1.987 1.8 1.912 0.50 1.987
50 1.765 2.0 1.764 0.70 1.762
70 1.654 2.1 1.825 0.90 1.878
e
Population size Objective

function
Crossover

probability
Objective

function
Mutation

probability
Objective

function
10 2.565 0.30 2.455 0.20 2.342
30 2.122 0.50 1.787 0.40 2.112
50 1.787 0.70 1.812 0.60 1.787
70 2.111 0.90 1.911 0.80 1.911
f
Maximum

population size
Objective

function
Smax Objective

function
σinitial Objective

function
10 1.765 1 1.812 1 1.622
30 1.655 3 1.654 3 1.645
50 1.787 5 1.822 5 1.754
70 1.911 7 1.913 7 1.911
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solution for KA) to 0.789 (LINGO solution). Of course, the computed solution based on
LINGO and nonlinear programming due to the high match with the global solution was
considered as the global solution and all algorithms were compared with this solution. This
ratio was 0.55, 0.70, 0.43, 0.44 and 0.47 for BA, SA, GA, PSA and WA, respectively. The
computational time for the KAwas 34 s and it was 3 s, 2 s, 4 s, 6 s and 3 s less than those for
BA, SA, GA, PSA and WA, respectively. Thus, it was observed that:

1- KA provided the least value for the objective function
2- KA provided the least value for the coefficient of variation
3- KA provided an average solution close to the global solution
4- GA provided the worst or most value for the objective function

Table 3 shows results of performance indexes for all evaluated algorithms. The least value
of RMSE was for the KA (2.12 × 106 m3) and the RMSE for the KAwas 74%, 61%, 68%, 33
and 54% less than those for GA, SA, WA, BA and PSA, respectively. In fact, the released
water volume for the KA had good match with the demands. The greatest value of the
reliability index was also for KA (95%). The reliability index for the KA was 50%, 18%,
41%, 8 and 42% higher that those for GA, SA, WA, BA and PSA, respectively. It means that
the released water volume based on KA could supply the demand better than the other
methods. BA provided the best value of resiliency (46%) whereas the resiliency for KA was
44%. The ability of the system to recover from failures (critical periods), i.e., the resiliency for
the BAwas 2% more than that of KA and meaning that the system based on BA can recover
itself faster than if it is based on other evolutionary algorithms. Also, KA yielded better
objective function than the other methods and SA had the least value for MAE (1.45 ×
106 m3). The MAE based on KA was 48%, 34%, 35 and 48% less than those from GA,

Table 2 10 random results for different algorithms

Run Kidney
algorithm
(KA)

Bat
algorithm
(BA)

Shark
algorithm
(SA)

Genetic
algorithm
(GA)

Particle swarm
algorithm (PSA)

Weed
algorithm
(WA)

1 0.789 1.424 1.121 1.787 1.777 1.666
2 0.787 1.434 1.111 1.954 1.765 1.655
3 0.789 1.422 1.111 1.787 1.765 1.655
4 0.789 1.422 1.111 1.789 1.765 1.655
5 0.789 1.422 1.111 1.787 1.765 1.655
6 0.789 1.422 1.114 1.787 1.765 1.655
7 0.789 1.422 1.111 1.787 1.765 1.655
8 0.789 1.422 1.111 1.787 1.765 1.655
9 0.789 1.422 1.111 1.787 1.765 1.655
10 0.789 1.422 1.111 1.787 1.765 1.655
best 0.787 1.422 1.111 1.787 1.765 1.655
worst 0.789 1.434 1.121 1.954 1.777 1.666
average 0.787 1.422 1.111 1.787 1.765 1.655
Variation

coefficient
0.0008 0.021 0.002 0.029 0.0021 0.02

Computational
time (s)

34 37 36 38 40 37

Global solution 0.785
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WA, BA, and PSA, respectively. KA, with a value of 0.89, had the best NSE index. Thus, it
can be seen that different methods provided different conditions, based on the different indexes
used. High reliability or low vulnerability is important but the best method should also satisfy
other indexes. Although the kidney algorithm had more favorable indexes, the multi-criteria
decision helped to make a better decision for model selection. Garousi-Nejad et al. (2016)
studied this dam based on the firefly algorithm (FFA). The average value for the FFAwas 3.60
while the average value from the present study and KAwas 0.789 and signifying that the KA
performs better for minimizing the objective function. Also, the standard deviation for the KA
was 0.0008 while the parameter for the FFAwas 0.06. The number of functional evaluation for
the KA from the present study (Fig. 9) was 10,000 while it was 20,000 for the FFA. Thus, the
Kidney algorithm can optimize the objective function with higher quality and faster than FFA.

Table 4 shows different ranks for the methods based on the multi-criteria decision
models. For example, COPRAS suggested a rank of 1 for BA and of 2 for KA, while
TOPSIS suggested a rank of 1 for KA and of 3 for BA. Such conditions were seen for
different methods in different multi-criteria decision models. It is obvious that relying on
COPRAS and TOPSIS to attain a solid conclusion on the best model performance is
unclear and undistinguishable, therefore, there is a need to find out more proper method
for evaluating the model. In this context, a model able to consider different indexes and
multi-criteria decisions could be more effective to judge the performance achieved from
the optimization models in more adequate procedure and satisfactory routine in order to
implement proper comparison process. In fact, a major weakness of the previous
literature is related to the evaluating of different methods based on limited indexes such

Table 3 Computed indexes based on different methods

Algorithm RMSE
(×106m3)

Reliability Vulnerability Resiliency Objective
function

MAE
(×106m3)

NSE

GA 8.24 45% 20% 18% 1.789 4.12 0.49
KA 2.12 95% 14% 44% 0.789 2.12 0.89
SA 5.45 77% 27% 32% 1.111 1.45 0.76
WA 6.72 54% 18% 28% 1.655 3.24 0.65
BA 3.21 87% 12% 46% 1.422 3.26 0.55
PSA 4.55 53% 19% 16% 1.765 4.12 0.44

Normalized decision matrix
GA 0.25 0.47 0.60 0.39 0.44 0.35 0.55
KA 1 1 0.85 0.95 1 0.68 1
SA 0.38 0.81 0.44 0.69 0.710 1 0.85
WA 0.31 0.56 0.66 0.60 0.476 0.44 0.73
BA 0.66 0.91 1 1 0.554 0.43 0.61
PSA 0.46 0.55 0.63 0.34 0.447 0.35 0.49

Table 4 Computed scores of different methods based on multi criteria decision models

Algorithm COPRAS TOPSIS M-TOPSIS WASPAS

GA 5 6 6 6
KA 2 1 1 2
BA 1 3 2 1
SA 3 2 3 3
WA 4 4 4 5
PSA 6 5 5 4
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as objective function, computational time or coefficient of variation while the present
article gives a good insight for the water engineers on how to conduct accurate evalu-
ation of the different evolutionary algorithms.

The usefulness of Borda method is that its aptitude to provide particular score based the
examined index for each algorithm and therefore, the summation of all scores based all indexes
for particular algorithm is the final score. Subsequently, sorting the attained score for each
algorithm is the basic value for comparison among the examined algorithms. The comparison
procedure is simply carried out as the higher value of the score reflects the higher rank order of
the algorithm. Table 5 shows ranks calculated for the different methods and it is seen that KA
with a score of 18 was the best among the other algorithms. On the other hand, it could be
observed that the second best is the BA and worst is GA.

Table 5 Computed scores based on Borda index and final rank for different methods

Algorithm COPRAS (score) TOPSIS (score) M-TOPSIS (score) WASPAS (score) Total score Final rank

GA 1 0 0 0 1 6
KA 4 5 5 4 18 1
BA 5 3 4 5 17 2
SA 3 4 3 4 14 3
WA 2 2 2 1 7 4
PSA 0 1 1 1 3 5
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Figure 8 shows the correlation of the predicated ranks as presented in Table 5 between
the Borda and the other different models. It could be depicted that M-TOPSIS entirely
completely matched with the decision index attained using Borda model. On the other
hand, both COPRAS and WASPAS models had the lowest correlation value with the
Borda index. Thus, the findings from the current study show that the kidney algorithm
can be a good selection for optimization dam and reservoir operation problems. Objec-
tive function value and computational time as well as different indexes such as RMSE or
MAE showed good results when compared to other algorithms often used in the
literature like WA, GA, etc. Another aspect was the use of different multi-criteria
decision models, which have not comprehensively appeared in past studies for solving
similar problems.

Figure 9 shows the convergence of the different algorithms and indicates that the
kidney algorithm converged earlier than the other evolutionary algorithms. Also, the
maximum and minimum solutions had converged to each other well (see Fig. 9b)
revealing the high performance of kidney algorithm. In fact, while utilizing certain
optimization algorithm, in case that the mean, average and maximum convergence
procedure to the optimal solutions have the identical convergence pattern and same

(a)

(b)

0

0.5

1

1.5

2

2.5

3

0 20000 40000 60000 80000 100000 120000

O
bj

ec
�v

e 
fu

nc
�o

n

Itera�ons

KA

BA

SA

GA

wa

PSA

0

0.5

1

1.5

2

2.5

0 20000 40000 60000 80000 100000 120000

O
bj

ec
�v

e 
fu

nc
�o

n

Itera�ons

average

Min

Max
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end value of the objective function, it indirectly means that the used optimization
algorithm experienced the fastest convergence rate achieving the optimal solution. In
addition, as shown in Fig. 9b, it could be observed that three convergence procedure are
almost identical when examine the KA, the small value of the variation shows the
superiority of KA compared to the other algorithms.

Figure 10 shows the water release and storage for the three best methods. It is clear
that the water release and storage were within the permissible bounds so they did not
violate the maximum water release and reservoir storage. Also, the average water
release and storage were 12.74 MCM and 98.89 MCM for the kidney algorithm,
respectively. The water release for KA was 15% more than the one for WA, which
provided the least release. The less released water volume for the other algorithms
(BA, PSA, SA and WA) increased the value of RMSE and vulnerability and de-
creased the volumetric reliability and resiliency indexes because a less percentage of
demands were supplied by the algorithms. The practical aspects of the present study
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show that engineers should consider different factors for the managing water re-
sources. The application of one mathematical model based on some limited indexes
may not guarantee good results.

4 Conclusions

Water resource management is an important research field for engineers. The optimal operation
of reservoirs is one of the most studied topics in the water resource management field. The
current study dealt with irrigation reservoir operation optimization by means of the new
evolutionary KA algorithm. KA is based on advanced operators such as filtration and
reabsorption in order to search for the best solutions. The results showed that average objective
function values and computational time for KAwere all less than those found by GA, SA, WA,
BA and PSA. Previous research considered limited indexes for the selection of the best models
while this article considered different multi-criteria decision models to give a rank based on
different indexes. Although, the KA had the highest rank based traditional performance
indices, more comprehensive evaluation method has been applied to help in identifying the
selection of the best performance model. In this context, Borda method was applied and
showed that the KA had the best performance achieving the first rank among other models. In
fact, the current study showed that KA outperformed the other algorithms and overcome their
drawbacks to generate optimal operation rule for reservoir system and decision making
aspects. Future researches may consider the reservoir operation based on the KA and coupled
with reservoir inflow uncertainties and evaporation losses especially for reservoir systems in
arid region to obtain more comprehensive optimal release policy from the reservoir system,
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