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Abstract Flood frequency analysis for practical application is traditionally based on the
assumption of stationarity, but this assumption has been open to doubt in recent years. A
number of studies have focused on the nonstationary flood frequency analysis, and the
associated causes of nonstationarity. In this study, the annual maximum flood peak and flood
volume of Wangkuai reservoir watershed were used, and several univariate and bivariate
models were established to investigate the nonstationary flood frequency, with the distribution
parameters changing over the climate indices (NPO, Niño3) and the check dam indices (CDIp,
CDIv). In the univariate models, the Weibull distribution performed best and exhibited an
undulate behavior for both flood peak and volume, which tended to describe the
nonstationarity reasonably well. The bivariate models were constructed using copulas, of
which the optimal Weibull distribution in the univariate flood frequency analysis was consid-
ered as marginal distributions within the joint distribution. The results showed that the
Gumbel-Hougaard copula offered the best joint distribution, and most of the probability
isolines crossed each other, which demonstrated the possibility that the occurrence of combi-
nations of the flood peak and volume may be the same under multiple effects of phase changes
in the climate patterns and certain human activities (i.e. soil and water conservation). The most
likely events were elaborated in diagrams, and the associated combinations of the flood peak
and volume were smaller than that estimated by the fixed parameters (i.e. stationary condition)
during most of the study period, while it was the opposite in 1956, 1959 and 1963. The results
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highlight the necessity of nonstationary flood frequency analysis under various conditions in
both univariate and multivariate domains.

Keywords Nonstationarity . Univariate model . GAMLSS . Bivariate model . Copulas

1 Introduction

Flood frequency analysis is a necessity of hydraulic structure design, flood risk analysis and
management. This analysis involves in fitting a probability distribution to the observations of
high flows to derive a relationship between the flood magnitude and the exceedance proba-
bility, which can then be used to estimate the likelihood of a given flood event in the form of a
return period. Traditional methods are based on the assumption of the stationarity of flood time
series. However, due to the environmental change (e.g., climate change and human activities),
hydrological time series are no longer stationary, and traditional hydrological frequency
analysis is rendered invalid (Milly et al. 2008; Um et al. 2017; Cancelliere 2017).

Several studies of nonstationary hydrological frequency analysis have been presented in recent
decades. In the nonstationary flood frequency analysis models, the distribution parameters are
expressed as a function of different covariates (Ouarda and El-Adlouni 2011; Vasiliades et al.
2015). Due to a long-term trend in the time series, time has been used as an explanatory covariate
(Strupczewski et al. 2001). Gül et al. (2014) compared the results of stationary and nonstationary
flood frequency analysis using the GEVand GEV-CDN models, respectively, and suggested the
estimation of design flood magnitudes for hydraulic structures in the future should account for
trends in the time series. However, the parameter’s time dependency will alter with the recorded
data length. Therefore, the drivers of detected change should be investigated (Merz et al. 2012).
Montanari and Koutsoyiannis (2014) also recommended providing scientific evidence of the
changes in extreme events before switching to a fully nonstationary modeling paradigm.

Hydrological nonstationarity can be attributed to low-frequency climate variability (Wilson
et al. 2010) and human activities such as changes in land use (Hejazi andMarkus 2009; Vogel et al.
2011), deforestation, and dam construction. Villarini et al. (2010) used the Generalized Additive
Models in Location, Scale and Shape (GAMLSS) in nonstationary modeling, and found the
Atlantic Multidecadal Oscillation, the North Atlantic Oscillation and the Mediterranean Index
were the most significant predictors of rainfall and temperature in Rome. López and Francés
(2013) demonstrated that the dams contribute to nonstationarity by incorporating a reservoir index
into nonstationary flood frequency models combined with the climate indices. Prosdocimi et al.
(2015) identified the anthropogenic contributors to change high flows by selecting a set of
covariates that included the 99th percentile of the daily rainfall, time, and urban extent of each year.

In nonstationary flood frequency analysis, the annual maximum flood peak sampling is
widely used. However, in regions where seasonality affects flow, a seasonal maxima approach
should be adopted and the nonstationary flood frequency analysis should be made for each
seasonal time series (Strupczewski et al. 2009). In the areas where the records are short, the
peaks-over-threshold (POT) sampling is used for frequency analysis to extend the data series.
Using this sampling method, Tramblay et al. (2013) developed a nonstationary model with
climatic covariates for heavy rainfall events. A POT sampling method was also applied by
Silva et al. (2012) to obtain the time dependent occurrence rates of the rainfall and flood
events, and the authors concluded that traditional flood frequency models should be revised to
account for nonstationarities. They also assessed the influence of North Atlantic Oscillation
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(NAO) on the occurrence rate of floods, and pointed out the possibility of long-term forecast of
flood occurrence rates with NAO indices.

All of the above studies used univariate hydrological frequency analysis. However, because
floods can be characterized by flood peak, flood volume and durations, the multivariate flood
frequency analysis with copula functions is a good alternative (Zhang and Singh 2006; Zhang and
Singh 2007; Karmakar and Simonovic 2009; Sraj et al. 2015; Tsakiris et al. 2015). And Weibull
distribution isapplicable tofloodmodeling(Pramaniketal.2010;Abdollahietal.2016),whichcould
be takenasamarginaldistribution inCopulas.Todate, thestudies taking intoaccountnonstationarity
in the multivariate frequency analysis are sparse. Bender et al. (2014) fitted the time dependent
marginaldistributionandthe timedependentcopulas to191yearsoffloodpeakandvolumedata, and
found the joint probability varied significantly over time. Considering more than just time as a
covariate, Jiang et al. (2015) proposed a reservoir index to perform bivariate frequency analysis to
investigate how the reservoirs altered the dependence structure on low flows in the Hanjiang River.

As in the nonstationary frequency analysis, the changes in streamflow series might be
related to climate factors. In this paper, for the nonstationary univariate domain, we model the
annual maxima of the flood peak and flood volume based on the GAMLSS theory, adopting
some climate indices and a reservoir index as covariates. Then we conduct the nonstationary
bivariate flood frequency analysis via the Copulas theory. Applying two theories above, the
main objective is to explain how flood frequency changes with the climate indices and a
reservoir index, which is the innovation as well.

2 Study Region and Data

2.1 Study Region

Wangkuai reservoir, as the study region, is located on the upper reaches of Sha River, which is
one of the south branches of Daqinghe River basin, Hebei province, northern China. The
reservoir was built between June 1958 and September 1960, controls a drainage area about
3770 km2, and the storage capacity is 13.89 × 108 m3. The reservoir was constructed for
comprehensive flood control, irrigation, and electric power generation.

The watershed receives average precipitation of 600 mm, mostly in the summer. (70–80%).
The annual mean temperature is 7.4 °C. The watershed is characterized by steep slopes and
bedrock outcrops. Forest and grass are dominant on the hill slopes. The urban area is <2%. The
rainfall and runoff data have been monitored for a period of 49 years from 1956 to 2004. There
are 11 rain gauges available in the study area.

A number of small hydraulic structures were built from 1970 to 1980 for the purpose of
flood-control and irrigation in this watershed. For example, in the area controlled by Fuping
station (located in the upstream portion of Wangkuai reservoir), there are 11 small reservoirs
whose total storage capacity is 591.5 × 104 m3, the largest of which is the Haiyan reservoir
with a storage capacity of 367 × 104 m3.

There was serious soil erosion in this watershed, so measures of soil and water conservation
were implemented in the 1980s, most of which were check dams. Small hydraulic structures
and the large number of check dams affected the flood processes in this watershed. More than
six thousand check dams were built from 1980 to 2000, and the estimated total storage
capacity of small hydraulic structures and check dams is about 13.3 million m3. The total
drainage area of these conservation measures is about 1248 km2 (Fig. 1).
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Fig. 1 The study area. (a) location of Wangkuai reservoir in the Daqinghe River basin; (b) the Wangkuai
reservoir watershed
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2.2 Data

The flood data of Wangkuai reservoir, provided by the Hydrology and Water Resources Survey
BureauofHebeiProvince,werecalculatedfromthereservoirwater levelanddischargedataviawater
balance equation. The annual maximum flood peak (Q) and flood volume (W) were used
herein (Table 1). The Niño3 index with lead time of 3-months and the NPO index with lead
time of 6-months were adopted to represent the nonstationarity due to climate change (Li
et al. 2015). These Niño3 and NPO indices data were downloaded from Global Climate
Observing System (GCOS, http://www.esrl.noaa.gov/psd/gcos_wgsp/). Two check dam
indices (CDIp and CDIv) were also used as explanatory variables to represent the influences
of check dams on the flood peak and volume, respectively. Because the effects of check dams
on the flood peak and volume depends on the flood patterns, we analyzed the percentage change
of each annual maximum flood peak and volume due to construction of check dams (Fig. 2). All
the time series range from 1956 to 2004. For more details of the nonstationary identification of
flood data and the calculation of these indices, see Li et al. (2015) and Li and Tan (2015).

C.V.: coefficient of variation, is dimensionless. P is the exceedance probability.

3 Methods

3.1 Univariate Flood Frequency Analysis Based on GAMLSS Theory

In this paper, a nonstationary model was built based on the GAMLSS theory. The GAMLSS
theory, whose full name is BGeneralized Additive Models in Location, Scale and Shape^, can
be defined as parametric models, assuming the response variable y given the relationships
between the parameters and the explanatory variables (Rigby and Stasinopoulos 2005;
Stasinopoulos and Rigby 2007). Within this new framework, four two-parameter distributions
(Table 1) were chosen as potential candidates to model the observed flood time series at the
Wangkuai reservoir, and the parametric model is given as:

g1 μð Þ ¼ X 1β1

g2 σð Þ ¼ X 2β2
ð1Þ

Where gk(⋅), k = 1, 2 is a known monotonic link function which demonstrates the explan-
atory variables, Xk is an explanatory matrix of order n × Ik, and βk is the coefficient of
parameter vector of length Ik, which can be estimated by the RS algorithm. The RS algorithm
is a general, modular algorithm. It has an outer cycle which maximizes the penalized
likelihood with respect to βk in the model successively for μ and σ. First initialize fitted values
μ and σ, evaluate the initial linear predictors gk(⋅). Then start the outer cycle until convergence
and update the value of k. If the change in the likelihood is sufficiently small, end the outer

Table 1 Main characteristics of the analysed variables Q and W

Variables period of record Units Design Value under the Assumption of Stationarity

Mean Value C.V. P = 0.01 P = 0.02

Q 1956–2004 m3/s 2000 1.45 14,050 11,300
W 1956–2004 104 m3 8700 1.65 55,800 71,800
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cycle; otherwise, continue the outer cycle. At each calculation the current updated values of all
the quantities are used. Readers can refer to Rigby and Stasinopoulos (2005) for details.

For a given data set, models were built with different combinations of explanatory
variables, and compared using a goodness of fit criteria. The Akaike information criterion
(Akaike 1974) was used to measure the goodness of fit because it penalizes for over-fitting the
models. In addition, with no validated models, the quality of model fitting was verified by
analyzing the normality and independence of the residuals of each model. The model was
deemed adequate if the residuals mean is nearly zero, variance is nearly one, coefficient of
skewness and kurtosis are near zero and three, respectively, and the Filliben coefficient
(Filliben 1975) is greater than the critical value given a certain sample size.

3.2 Bivariate-Joint Flood Frequency Analysis Based on Copulas

Copula functions are efficient mathematical tools for modeling the dependence structure of two or
more randomvariables.Copulaswere first introducedbySklar (1959), andhavebeenwidelyused in
the decades since. For a pair of random variables X and Y, with marginal distribution functions u =
FX(x) =P(X ≤ x) and v =FY(y) =P(Y ≤ y), there is a copula function C to describe the associated
relationship:

FX ;Y x; yð Þ ¼ C FX xð Þ; FY yð Þ½ � ¼ C u; vð Þ ð2Þ
Where FX, Y(x, y) is a joint cumulative distribution function (cdf) with margins u and v, all
(u, v) ∈ (0, 1)2. If u and v are continuous, then C is unique; otherwise, C is uniquely
determined on RanFX × RanFY (Nelsen 2006).

One of the frequently-used group of copulas is Archimedean Copulas, with three types: the
Clayton, the Frank and the Gumbel copulas (Table 2). Because they are easily constructed and
solved, and can capably model the full range of tail dependencies, they are widely used in the
multivariate domain of hydrology and also herein.

Table 3 shows three types of Archimedean Copula functions, using θ as the copula
parameter. The nonstationary models in this study are constructed through copulas composed
of two marginal distributions and a copula parameter θ. The marginal distributions are deter-
mined by the best nonstationary univariate models, outlined in Section 3.1, and only the copula
parameter θ needs to be solved herein. Several methods have been proposed in the literature for
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estimating the copula parameter θ, but when the data has already been transformed to the unit
hypersquare domain by a parametric estimation of the marginal cdf’s, the inference function of
margins method (IFM) should be adopted. The IFM is given as:

L u; v; θð Þ ¼ ∑lnC FX xð Þ; FY yð Þ; θ½ � ð3Þ

Letting ∂L/∂θ = 0, then θ can be calculated.
The procedure for model selection follows two steps. First, the test of fit for the copula

functions is checked by the Kolmogorov- Smirnov (K-S) test. Second, from all models that
pass the K-S test, the optimum model is then selected using the goodness-of-fit (GoF) statistics
of ordinary least squares (OLS) and Akaike information criterion (AIC). The K-S test statistic
D, and the estimates of OLS and AIC are given as:

D ¼ max Ck−
i
n

�
�
�
�

�
�
�
�
; Ck−

i−1
n

�
�
�
�

�
�
�
�

� �

ð4Þ

Where Ck is the copula value of measured sample series, i is the number of samples which
meet the requirements that x ≤ xi, y ≤ yi, and n is the length of the sample series.

OLS ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

n
∑
n

i¼1
Pei−Pið Þ2

s

ð5Þ

Pei ¼ i
nþ 1

ð6Þ
Where Pei and Pi are the empirical frequency and the theoretic frequency of measured

sample series, respectively.

MSE ¼ 1

n
∑
n

i¼1
Pei−Pið Þ2 ð7Þ

AIC ¼ nln MSEð Þ þ 2m ð8Þ

Table 2 Implemented GAMLSS distributions with two parameter family (Stasinopoulos et al. 2004)

Distributions Probability density function Comments

Gumbel f Y y μ;σjð Þ ¼ 1
σ exp

1
σ

� �

−exp 1
σ

� �� 	
−∞ < y <∞
−∞ < μ <∞
σ > 0

Weibull f Y y μ;σjð Þ ¼ σyσ−1

μσ exp − σyσ−1

μσ


 �σh i
y > 0, μ > 0, σ > 0

Gamma f Y y μ;σjð Þ ¼ 1

σ2μð Þ1=σ2
1

σ2μð Þ1=σ2
y > 0, μ > 0, σ > 0

Log-Normal f Y y μ;σjð Þ ¼ 1ffiffiffiffiffiffiffi
2πσ2

p 1ffiffiffiffiffiffiffi
2πσ2

p exp − 1ffiffiffiffiffiffiffi
2πσ2

p
n o

y > 0, μ > 0, σ > 0

Table 3 Three types of Archimedean Copula function (Shiau et al. 2007)

Copulas Copula function Comments

Gumbel-Hougaard Copula Cθ u; vð Þ ¼ exp − −lnuð Þ½f θ þ −lnvð Þ θ�1θg θ ∈ [−1,∞)
Clayton Copula Cθ u; vð Þ ¼ u−θ þ v−θ−1

� �1
θ θ ∈ (0,∞)

Frank Copula Cθ u; vð Þ ¼ − 1
θ ln 1þ 1

θ

� 
θ ∈ R

Nonstationary Flood Frequency Analysis for Annual Flood Peak and Volume... 4245



where MSE is the sum of squared residuals of model fitting, m is the number of the model
parameters. The lower the value of AIC is, the better the model will fit.

The concept of return period in stationary frequency analysis is prone to misconception
and misuse, and attempts to solve this problem have been made with new methods, but
with limited success (Olsen et al. 1998; Salas and Obeysekera 2014; Serinaldi 2015).
Since the return period is based on probability, we explore the effect of nonstationarity on
flood data focusing on the exceedance probability for the present study. In the bivariate-
joint domain, the OR-joint exceedance probability is the likelihood that at least one of the
hydrologic variables X and Y exceeds the values x and y, respectively: P∪ = P(X > x ∪
Y > y). While the AND-joint exceedance probability is the likelihood that both variables X
and Y exceed the values x and y, respectively: P∩ = P(X > x ∩ Y > y). The P∪ and P∩ are
given as:

P∪ ¼ 1−C FX xð Þ; FY yð Þ½ � ð9Þ

P∩ ¼ 1−FX xð Þ−FY yð Þ þ C FX xð Þ; FY yð Þ½ � ð10Þ

All data copula C(u, v) on the same probability level have the same exceedance probability.
However, at least one combination of a given probability is more likely than others, namely the
most-likely events. Therefore, the most-likely events can be selected as the point with the
largest joint probability on the level curve, which is given by Gräler et al. (2013):

u; vð Þ ¼ argmax
CUV u;vð Þ¼k

f XY F−1
X uð Þ; F−1

Y vð Þ� �

x ¼ F−1
X uð Þ; y ¼ F−1

Y vð Þ ð11Þ

Where k is a given value of copula, x and y can be calculated by the inverse cdf of the marginal
distributions.

4 Results

4.1 Nonstationary Model of Univariate Flood Frequency Analysis

Two nonstationary models of the independent response variables Q and W were constructed
based on GAMLSS, using the Niño3 index, NPO index and CDIp/CDIv as the explanatory
variables. First, the functional relationships of the explanatory variables and the distribution
parameters were estimated using four distributions (Table 4). The Weibull distribution per-
formed best for both Q and W as they produced the lowest values of AIC. The functional
relationships which were generated using the Weibull distribution were written as Eq. (12) for
Q and Eq. (13) for W. All coefficients of the distribution parameters were proven to satisfy the
significance level 0.05 via a T test. Second, the residuals of optimal distributions are shown in
Table 5. With an approximate mean of 0, variance of 1, skewness coefficient of 0, kurtosis
coefficient of 3, and the Filliben coefficients both greater than 0.975 for a sample size of 49,
the residuals were deemed acceptable. Also, visual inspection of the worm plot and the normal
QQ plot (not shown herein) exhibited an approximately normal distribution, which further
proved the satisfactory performance of the two Weibull distributions.

4246 Li J. et al.



θ1 ¼ log μð Þ ¼ −135:268−5:418CDIp þ 0:142INPO
θ2 ¼ σ ¼ 1:263

ð12Þ

θ1 ¼ log μð Þ ¼ −86:221−7:700CDIv þ 0:095INPO
θ2

¼σ ¼ 1:385−2:565CDIv ð13Þ

A summary of the associated results of nonstationary models are shown in Fig. 3. Ignoring
the outliers in the tail of sequence caused by relatively small flood events, the undulating
behavior tended to fit the flood data reasonably well. For the 95% flood quantile, the Q ranged
from a minimum value of 832 m3/s in 1983 to a maximum value of 11,468 m3/s in 1963, while
the W ranged from a minimum value of 1167·104 m3 in 1983 to a maximum value of
59,818·104 m3 in 1963. This undulating behavior and the variation of a certain flood quantile
can be explained by the changes in precipitation patterns caused by the phase transition of
oceanic-atmospheric patterns from 1970 to 1990, and the changes in watershed runoff yield
and concentration caused by the construction of small reservoirs and check dams upstream the
Wangkuai reservoir from 1980 to 2000.

4.2 Nonstationary Model of Bivariate-Joint Flood Frequency Analysis

In this section, taking the two optimal distributions mentioned in Section 4.1 as the marginal
distributions, three nonstationary models of bivariate-joint frequency analysis were constructed
through copulas. The copula parameters were estimated and each model evaluated for
goodness-of-fit. As shown in Table 6, the K-S test statistic D should be less than 0.1943 at
a 5% significance level for the sample size of 49, and thus only the G-H copula passed the K-S
test. Although the Clayton copula had the minimum value of OLS and AIC, it failed the K-S

Table 4 The functional relationships of the explanatory variables and the distribution parameters

Distributions Q W

AIC θ1 θ2 AIC θ1 θ2

Gumbel 825.47 CDIp
NPO

CDIp 1045.70 CDIv NINO3

Weibull 771.73 CDIp
NPO

– 893.24 CDIv
NPO

CDIv

Gamma 772.51 CDIp
NPO

– 897.11 CDIv
NPO

CDIv

Log-Nornal 783.82 NPO – 918.78 CDIv
NINO3

–

Table 5 The residuals of optimal distributions

Flood series Optimal distribution Mean Variance Coefficient
of skewness

Coefficient of kurtosis Filliben
coefficient

Q Weibull 0.002 1.056 −0.303 3.637 0.9841
W Weibull −0.048 1.051 −0.166 2.051 0.9868
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test. Therefore, the G-H copula with parameter θ = 1.6110 was considered as the optimal
copula for the joint distribution of the flood peak and volume.

In this study, the focus was on events of the OR-joint exceedance probability of P∪ = 0.01,
0.02 and the AND-joint exceedance probability of P∩ = 0.01, 0.02, as described in Eq. (9)
and Eq. (10). Figure 4 showed the results by illustrating different exceedance probability
isolines from 1956 to 2004 (color solid line). For the sake of comparison, the probability
isolines derived from a constant parameter of the marginal distributions (i.e. stationary
condition) are shown in Fig. 4 (black dotted line) as well.

Under the multiple effects caused by the phase transition of the climate patterns and the
implementation of water and soil conservation, the isolines crossed each other – that was the
occurrence of the flood events (including flood peak and volume) would be the same, which
made the flood frequency more complicated to analyze. In addition, the flood events in the
large flood years (i.e. 1956, 1959, 1963) were obviously greater than that estimated under the
stationary condition, while they were the opposite in other years. Therefore, under such
multiple effects, it tended to be risky in the large flood years upstream of the Wangkuai
reservoir, while it might be rather safe in the small flood years.

The Bmost likely^ design events derived from Eq. (11) had their maximum value of
likelihood function on each probability-isoline, and all the combinations of Q and W were
illustrated in Fig. 5. They had the similar undulating behavior as the univariate models shown
in Fig. 3. Under the same exceedance probability, the most likely design events were smaller
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Fig. 3 Summary of results of nonstationary models with GAMLSS implementation. The solid black line
represents 0.5 quantile; the dark grey region is the area between 0.25 and 0.75 quantiles; while the light grey
region is the area between 0.05 and 0.95 quantiles

Table 6 The estimation of the copula parameters and the associated goodness-of-fit test and model selection

Copulas Copula parameter (θ) Indices of goodness-of-fit and model selection

D (K-S) OLS AIC

Gumbel-Hougaard Copula 1.6110 0.1567 0.0137 −418.0851
Clayton Copula 0.8306 0.2313 0.0127 −425.8435
Frank Copula 4.6885 0.1966 0.0141 −415.5480
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than that estimated by the marginal distributions and copulas both with fixed parameters (i.e.
stationary condition) in most of the study period, while it was the opposite in 1956, 1959 and
1963. Take P∩ = 0.01 as example, the most likely events ranged from 1125 m3/s in 1993 to
13,875 m3/s in 1963 for Q and from 4200·104 m3 to 90,730·104 m3 for W, while it was a single
value under the stationary condition, that is 7875 m3/s for Q and 44,630·104 m3 for W.

5 Discussion

Flood is a phenomenon characterized with flood peak, volume and duration. Univariate or
bivariate stationary flood frequency analysis were conducted in previous studies. However,
with the climate change and land surface change, nonstationary bivariate frequency analysis is
necessary for flood control.

In this paper, we made bivariate nonstationary flood frequency analysis on the basis of
univariate nonstationary flood frequency analysis. The nonstationary flood peak and volume
marginal probability distributions were linked by Copula function. But the copula function we
applied is stationary, which means θ in the function is a constant. This is consistent with the
study of Jiang et al. (2015). Bender et al. (2014) analyzed the joint probability of flood peak
and volume, considering θ as a time-dependent parameter. The improvement in this paper

Fig. 4 Results of the bivariate-joint probability-isolines
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emphasizes that all the distribution parameters are expressed by climate indices and check dam
index, which combines more variables in frequency analysis. Considering θ as a nonstationary
variable is one issue for the next work.

The aim of flood frequency analysis is to provide flood return periods for hydraulic
design and flood control. This has been done in stationary flood frequency analysis
including both univariate and bivariate domain. Return period concept has been presented
in univariate flood characteristic such as flood peak or volume under nonstationarity
(Cooley 2013). However, the concept of flood return period needs to be defined under
nonstationary multi-variate flood frequency analysis. Therefore, this is another issue to be
further studied.

6 Conclusions

In a changing environment, the impacts of climate change and human activities (i.e. check dam
construction) have altered the hydrologic mechanisms, which makes the assumption of
stationarity questionable. Likewise, for the Wangkuai watershed, the Q and W have been
identified as nonstationary (Li et al. 2015), which provided further evidence that Bstationarity
is dead^ (Milly et al. 2008).
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In this paper, several univariate nonstationary models based on the GAMLSS theory were
used to conduct the flood frequency analysis, taking the climate indices (NPO with a 6-month
lead time, Niño3 with a 3-month lead time) and the check dam indices (CDIp, CDIv) as
explanatory variables. In the nonstationary distribution model test, the Weibull distribution
offered the best overall performance for the Q and W with the minimum AIC values, and
tended to fit the flood data reasonably well. Thus, the flood events should be a dynamic
changing process under the effects of certain climate patterns and human activities.

Using the optimal univariate models mentioned before, the copula functions were used to
construct the dependence structure of the Q and W, of which the Weibull distribution was
considered as the marginal distribution for the annual maximum flood peak and flood volume.
The results showed that only the Gumel-Hougaard copula provided a statistically significant
joint distribution. Most of the probability isolines crossed each other, which illustrated the
possibility that the combinations of the Q and Ware under the similar influences of the climate
patterns and the soil and water conservation practices. The most likely events had similar
undulating behavior as the univariate models, and the associated combinations of the Q and W
were smaller than that estimated by the fixed parameters (i.e. stationary condition) in the
copulas during most of the study period. However, this was opposite in the large flood years of
1956, 1959 and 1963.
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