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Abstract The seepage flow beneath a hydraulic structure is formed by the hydraulic head
difference between the upstream and downstream sides. Cut-off walls are often applied, as an
expedience, to reduce the seepage flow through the foundation of diversion dams and to
enhance the efficiency of these dams. In this research, perhaps for the first time, a novel
methodology is propounded to assess the optimum characteristics of cut-off walls in diversion
dams in order to ameliorate hydraulic interactions between the diversion dam foundation and
the cut-off walls behavior, also their construction cost is minimized. The results are used to
train and validate the Multi-Layer Perceptron (MLP) simulation model. Then MLP, as a meta-
model for simulation of the hydraulic behavior of cut-off walls, is coupled with a robust multi-
objective optimization algorithm, Non-dominated Sorting Genetic Algorithm-ΙΙ (NSGA-ΙΙ), to
create a trade-off between the intended goals. Finally, Preference Ranking Organization
METHod for Enrichment Evaluation (PROMETHEE) decision making model and Nash-
Harsanyi bargaining model are utilized to find the compromise design optimal solution on
the trade-off curve. Results demonstrate that the best agreed-upon design optimal solution
using PROMETHEE and Nash-Harsanyi bargaining models can be considered as (10, 3.84,
32) meters and (2.47, 10, 29.22) meters for optimum depth of the upstream and downstream
cut-off walls and the optimum distance between them, respectively.
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1 Introduction

Foundations of all hydraulic structures are more significant than other parts in design and
behavior analysis topics since any existing problem in them causes the whole structure to be
non-efficient or even gets destroyed (Al-Delewy et al. 2006). Moreover, in the first phase of
dam design, many important factors should be taken into consideration such as accurate
selection of the geotechnical parameters, stability analysis of dam body, an acceptable
estimation of seepage flow through the dam and suitable primary approximation of the dam
dimensions, which requires approaching the multi-objective optimization models, while
single-objective ones are not efficient enough to prepare a comprehensive interaction between
different objectives of hydraulic design of dams (Mehrdad et al. 2006). Also, it is necessary to
understand and meet the expectations of various viewpoints of all involved stakeholders in
dam design projects and manage any inconsistencies and conflicts.

So far, many researches have been conducted to investigate seepage flow behavior through
dams and their foundations by numerical modeling (Harr 1962). They only change the location
of seepage control equipment to monitor its effects on seepage flow behavior. Azizi et al.
(2012) assessed the effects of making changes in locations of weep holes and cut-off walls on
uplift pressure. They simulated Yusufkand Mahabad diversion dam in Iran using Seep/W
module in Geostudio software. Conclusions state that the upstream cut-off wall reduced the
uplift force about 63% comparing with the state without seepage control equipment and
likewise decrease the exit gradient about 79% (Azizi et al. 2012). A framework of integrating
the simulation of seepage flow through the foundation of hydraulic structures considering
effects of seepage control devices on minimizing uplift force, seepage flow discharge and exit
gradient at toe of dams is presented in Sabbagh-Yazdi and Bayat (2006), Chen et al. (2008),
Ghobadian and Khodaei (2009), Abdul Kareem Esmat (2011), Obead (2013).

A few researches have been carried out to optimize the characteristics of seepage control
equipment. Al-Suhaili and Karim (2014) coupled models of Genetic Algorithm and Artificial
Neural Network to find the optimum depth of upstream and downstream cut-off walls, length of
the floor and the downstream protection required for hydraulic structures. They used a single
objective optimization model to minimize cost function, and uplift pressure and exit gradient
were only used as safety factors in form of constraints of the optimization model in their study.
But, in the present study, a multi-objective optimization model is prepared in which horizontal
and vertical exit gradient and uplift pressure are used as objectives of the optimization model as
well as cost and seepage flow discharge. Also, Al-Suhaili andKarim did not utilize any decision
making or bargaining models in order to find the compromise optimal solution among various
choices for decision makers. Some of other researches about optimization of seepage control
devices are: 1- Studying the effects of the optimum location of vertical grout curtain on
reduction of seepage flow rate and velocity under the hydraulic structures, (Sedghi-Asl et al.
2005); 2- Investigating the optimum design of seepage control devices of a hypothetical case
study using Lagrange-multiplier method without directly utilizing exit gradient and uplift
pressure as objectives of the optimization and without considering conflicting interests of
stakeholders, (Al-Delewy et al. 2006); 3- Determining the optimal depth of concrete cut-off
walls under dams without applying any optimization method, (Yan 2008).
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To the best of the authors’ knowledge, literature of the optimal design of cut-off wall
characteristics lacks a multi-objective simulation-optimization approach using decision making
and bargaining models to determine the compromise optimal design parameters considering
various standpoints of stakeholders. Accordingly, in this study, a novel methodology is
presented, which proposes a multi-objective optimization model to determine the optimal
depth of upstream and downstream cut-off walls of diversion dam as well as the optimum
distance between them regarding features of Yusufkand Mahabad diversion dam as the case
study. The multi-objective optimization algorithm, Non-dominated Sorting Genetic
Algorithm-ΙΙ (NSGA-ΙΙ), is coupled with Multi-Layer Perceptron (MLP) neural network
models, as meta-models, to simulate the hydraulic behavior of cut-off walls under diversion
dams by minimizing seepage flow discharge, uplift force, horizontal and vertical exit gradient
and construction cost as objectives of the optimization model. Then, Pareto-optimal solutions
are obtained from the NSGA-II multi-objective optimization model and the best solution is
determined using Preference Ranking Organization METHod for Enrichment Evaluation
(PROMETHEE) model and Nash-Harsanyi bargaining model, separately.

2 Methodology

This study works towards developing a multi-objective optimization model to specify the
characteristics of cut-off walls of a diversion dam in order to find the underlying design
objectives. The important characteristics of cut-off walls under a diversion dam are their depth
and the distance between them. It is believed that the upstream cut-off wall decreases the
amount of both uplift pressure and exit gradient, while the reduction rate of the uplift pressure
is more than the other one. On the other hand, the downstream cut-off wall has definite effect
on reducing exit gradient at toe of dam. Increasing the depth of downstream cut-off wall results
in significant reduction of exit gradient at downstream face of the dam and causes the uplift
pressure to increase simultaneously (Al-Suhaili and Karim 2014). According to these, in this
research study, the optimal depth of the upstream and downstream cut-off walls and also the
optimum distance between them are required to be designated in order to keep the exit gradient
and uplift force at their minimum states. Fig. 1 depicts the proposed multi-objective optimi-
zation methodology to designate the optimum characteristics of cut-off walls.

At first, essential information and data required for design of cut-off walls under the
diversion dam are gathered and the seepage model of Finite Elements Method (FEM) in
Seep/W module of Geostudio software is applied for various design parameters of cut-off
walls, namely, depth of both cut-off walls and distance between them. In the second step, the
MLP neural network models are trained and validated, as meta-models, to determine the
optimal features of cut-off walls when the objectives, i.e., total cost of cut-off appliance and
hydraulic properties of the seepage flow through the foundation, are simultaneously consid-
ered. Then, the meta-model is connected to a well-organized multi-objective optimization
algorithm, NSGA-II, (Deb et al. 2002) to determine the optimal features of cut-off walls
considering their hydraulic behavior. Details of utilizing the MLP neural network models and
the NSGA-II multi-objective optimization model of cut-off walls will be stated in section 2.1.
Ultimately, in the last step, Nash-Harsanyi bargaining model and PROMETHEE decision
making model are used to select the compromise non-dominated solution among the available
Pareto-optimal solutions regarding hydraulic criteria as well as stakeholders’ viewpoints. In the
following subsections, more details of each stage are presented.
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2.1 NSGA-ΙΙ Multi-Objective Optimization Model

In order to enhance the efficiency of diversion dams, some effective strategies are required for
considering influential conditions on optimal design of cut-off walls under these dams, which

Collecting and preprocessing the data about the foundation of the intended diversion 

dam 

Proposing the FEM model of the seepage through the foundation of the diversion dam 

and running the seepage model using Seep/W-Geostudio for various design 

parameters related to cut-off walls, namely, depth of both cut-off walls and distance 

between them

Coupling MLP neural network meta-model with NSGA-ΙΙ multi-objective optimization model

Allocating 70% and 30% of the input-output data of step 1 to train and validate the multilayer perceptron (MLP) 

neural network simulation model, respectively, in order to simulate the hydraulic performance of cut-off walls 

through foundation of the diversion dam

Considering five objectives to get minimized, namely:

(1) Seepage flow discharge through foundation of diversion dam

(2) Uplift force under the diversion dam body

(3) Horizontal hydraulic gradient at toe of the diversion dam

(4) Vertical hydraulic gradient at toe of the diversion dam

(5) Overall cost of cut-off wall appliance 

End

Step 2:
Developing a multi-
objective optimization 
model using multilayer 
perceptron neural 
network and NSGA-ΙΙ
optimization model

Designing a well-organized multi-objective optimization model to detect the collection of non-

dominated design alternatives on the basis of NSGA-ΙΙ optimization model

Approximating total cost of cut-off wall appliance through a linear objective function

Determining the trade-off curve between objective functions (Pareto-optimal solutions)

Step 3:
Applying Nash-Harsanyi and 
PROMETHEE models to designate 
the best non-dominated alternative
among the Pareto-optimal solutions

Assigning weight to each objective function considering experts’ standpoints

Comparing the results of two models to specify the optimal design parameters of cut-off walls and 

also the extrema of objective functions in optimum state

Nash-Harsanyi bargaining model:
Ranking the optimal solutions regarding 

stakeholders’ opinions and objectives of 

optimization model

Determining the utility functions related to 

objective functions and utilizing Nash-

Harsanyi bargaining model 

PROMETHEE decision making model: Organizing 

preference function for all objectives to assess the 

preference of each alternative over any other option

Calculating the outranking flows for each option 

considering global difference index, i.e., weighted 

sum of preferences for each alternative

Choosing the best alternative which has the maximum 

difference between the positive and negative 

outranking flows 

Step 1:
Gathering and analysis 
of data and information 
about diversion dam and 
using the seepage model 
of FEM in Seep/W 
module of Geostudio 
software

Start

Fig. 1 Framework of the proposed methodology for optimal design of cut-off walls features
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leads to their best hydraulic performance. Flow seepage through diversion dam foundation is
not an unexpected event and is manifestly due to the difference between water level at the
upstream and downstream of dam body. Seepage flow under diversion dams can be measured
and analyzed through three main categories, namely, uplift force, seepage flow discharge and
the exit gradient at the toe of the dam.

Furthermore, long-term performance of diversion dams is agreed upon by all stakeholders. In
the present study, there are two stakeholders. First, the main contractor who is responsible for
executing the project complyingwith hydraulic standards such asminimizing values of uplift force,
seepage flow discharge and exit gradient at toe of the diversion dam. The second stakeholder is
construction employer who tends to minimize overall cost of the project. Accordingly, this research
study tries to create a reasonable trade-off between these objectives.

TheMLP neural networkmeta-models were connected to theNSGA-II algorithm to determine
the optimum values for decision variables as a trade-off curve to be utilized in designating the
compromise optimal solution. The MLP neural network model has been used in various research
fields of environment (Ostad-Ali-Askari et al. 2017), hydraulic structures (Nikoo et al. 2015),
hydrology (Azzellino et al. 2015) and other water-related topics (Zangooei et al. 2016; Alizadeh
and Nikoo 2018). Details of using MLP neural network as a meta-model are explained in Online
Resource (Explanation S1). The formulated objectives of the proposed multi-objective optimi-
zation model related to cut-off walls under a diversion dam are presented as follows:

Minimize h1 ¼ Q ¼ f x1; x2; x3ð Þ ð1Þ

Minimize h2 ¼ Up ¼ g x1; x2; x3ð Þ ð2Þ

Minimize h3 ¼ ix ¼ h x1; x2; x3ð Þ ð3Þ

Minimize h4 ¼ iy ¼ k x1; x2; x3ð Þ ð4Þ

Minimize h5 ¼ OC ¼ z x1; x2ð Þ ð5Þ

xl ≤xi≤xu ∀i ¼ 1; 2; 3 ð6Þ

Where hi∀ i= 1, 2,…, 5 are objectives of optimization, i.e., the seepage flow discharge through
the diversion dam foundation (Q,CMS), uplift force (Up,KN), horizontal exit gradient (ix), vertical
exit gradient (iy), and overall cost of applying cut-off walls (OC, $), respectively. Where xi refers to
the ith decision variable, i= 1 to i= 3 for the depth of upstream cut-off wall (xl,m), depth of
downstream cut-off wall (x2,m) and the distance between them (x3,m), respectively. f(x1, x2,
x3), g(x1, x2, x3), h(x1, x2, x3), k(x1, x2, x3) are the non-linear meta-models to estimate the first four
objectives of optimization, as functions of design decision variables which are estimated using
trained MLP neural network. z(x1, x2) is the overall cost which is used as the cost objective in
Genetic Algorithm optimization model and is estimated using a multi-variable linear regression. xl
and xu refer to the lower and the upper values of design decision variables.
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It should be noted that the algorithms of MLP neural network models and multi-
objective optimization model are programmed using MATLAB® program. In NSGA-II
multi-objective optimization algorithm, the maximum number of generation as well as
crossover and mutation rates are 100, 0.8 and 0.2, respectively, which are set on the
basis of trial-and-error and expert standpoint. Besides, the population size has been
stated to be nearly 10 times more than the number of decision variables. Details for
implementing NSGA-II multi-objective optimization model can be found in Bin et al.
(2010) and Honar et al. (2018).

2.2 Multi-Criteria Decision Making Models

Today, decision making problems are applicable in different branches of science
especially engineering disciplines (Nikoo et al. 2015). Multi-criteria decision making
models are suitable as solutions to the problems defined with a choice among alterna-
tives. Various researches have been successfully done in different fields considering
decision making models such as water resources management (Malekmohammadi et al.
2011; Hadipour et al. 2016), environmental problems (Gregory et al. 2012; Opricovic
and Miloradov 2016) and energy management (Pohekar and Ramachandran 2004; Kaya
and Kahraman 2011). The PROMETHEE model is one of the decision support system
models with a revolutionary effect on decision making problems which has been
promulgated in the early 1980s by Brans and others (Brans et al. 1984; Zhang et al.
2009). This technique is easy to use and its level of complexity is low (Cavallaro
2005). PROMETHEE decision making model can present both complete and partial
rankings of the actions, and it is appropriate for intricate problems particularly those
with several multi-criteria containing many perceptions with long-term impact decisions
(Tuzkaya et al. 2008). The basic principles of the PROMETHEE models are explained
in Online Resource (Explanation S2).

2.3 Nash-Harsanyi Bargaining Model

Decision making process is usually fraught with difficulties due to the various opinions and
priorities of decision makers. Since the n-person decision problems seem to be unsolvable,
disagreements and conflicting viewpoints should be considered simultaneously in order to
satisfy the decision makers with various attitudes.

Nash-Harsanyi or asymmetric Nash bargaining model is a solution concept in cooperative
game theory in which players’ preferences (presented by utility functions) are explicitly
considered in addition to disagreement points and individual risk taking attitudes
(Jafarzadegan et al. 2013). In general form of the Nash model, fi is supposed to be the utility

function of the decision maker i, d ¼ d1; d2;…; dnf g is the vector of disagreement points and
n is the number of decision makers in decision making environment named X. So, the target
conditions would be as follows:

H ¼ ui ¼ f i xð Þ; x∈Xf g ð7Þ

Nash suggested that for convex, closed and bounded utility functions, a unique solution,
(φ(H, d)), satisfies a specified set of intended conditions which can be acquired as solution to
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the following optimization problem which is called Nash product function (Nash 1950;
Harsanyi and Selten 1972; Kerachian and Karamouz 2007):

Maximize f 1 x1ð Þ−d1ð Þw1 f 2 x2ð Þ−d2ð Þw2… f n−dnð Þwn ð8Þ

Subject to : f 1≥di ∀i ¼ 1; 2:…; n ð9Þ

f ¼ f 1; ::; f nð Þ∈H ð10Þ

Where w1, w2,…, wn are weights assigned to objectives of optimization in order to express
the relative power of decision makers. This problem is known as Nash-Harsanyi (asymmetric)
bargaining model. More details for implementing Nash-Harsanyi bargaining model can be
found in Kerachian and Karamouz (2007).

2.4 Seepage Simulation by the Finite Elements Method

As mentioned before, model of the intended diversion dam was simulated by Seep/W module
of Geostudio software considering the simulation model of the dam body and foundation of
Yusufkand Mahabad diversion dam in research study of Azizi et al. (2012).

Thus, in this study, two cut-off walls are added to the simulation model of Yusufkand dam
in Azizi et al. (2012) research, one in upstream part of dam body and the other one in
downstream, to investigate the variations of seepage flow discharge through foundation, uplift
force and exit gradient at toe of dam due to changes of cut-off walls’ depth and distance
between them. Then, a novel methodology is presented to propose a multi-objective simula-
tion-optimization model to determine the optimal depth of two cut-off walls under diversion
dam and optimum distance between them while seepage flow discharge, uplift force and exit
gradient are at their minimum state.

The most critical case in simulation occurs when the water level difference between
upstream and downstream of a diversion dam equals to the maximum possible amount (Al-
Suhaili and Karim 2014). Accordingly, the maximum critical condition has also been consid-
ered through numerical simulation of the dam in order to have reliable results, i.e., assigning
the maximum amount of 6 m to water level in upstream while the downstream level is set to
zero.

In accordance with geologic studies related to Yusufkand diversion dam site,
permeability and thickness of foundation layers of this dam is presented in
Table S2 (Online Resource) (Azizi et al. 2012). Also, validity of seepage modeling
through Seep/W module of Geostudio software is explained in Online Resource
(Online Resource, Explanation S3).

It should be noted that in this research, the seepage flow through dam foundation is
modeled using FEM. The aforementioned model is then executed repeatedly for the two
50 cm thick cut-off walls with different amounts of depth and also various possible quantities
of distance between them. So, considering possible distances between two mentioned cut-off
walls lead to acceptable design and desirable implementation of this seepage control equip-
ment. In the present study, 120 seepage simulation scenarios through dam foundation are
solved based on different depths of the cut-off walls and variations of the distance between
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them. Following, MLP neural network meta-models are utilized to simulate the interaction
between hydraulic behavior of cut-off walls and seepage flow through dam foundation. Then,
NSGA-II, as an efficient multi-objective optimization algorithm, specifies the optimal amounts
of design decision variables, namely, optimum depth of cut-off walls and optimum distance
between them, while the five objectives of optimization which are seepage flow discharge
through foundation, uplift force, horizontal and vertical exit gradients at toe of dam and overall
cost of applying cut-off walls would be minimized.

3 Results and Discussion

The developed MLP neural network meta-models are trained and validated on the basis of the
results of the seepage model of Yusufkand Mahabad diversion dam which are analyzed by
FEM. For this aim, 70% and 30% of the input-output data have been utilized for training and
validating the proposed model, respectively. The trained MLP models are used to simulate the
hydraulic behavior of cut-off walls. The five objectives of optimization are seepage flow
discharge through foundation, uplift force, horizontal and vertical exit gradient at toe of dam
and overall cost of applying cut-off walls which all need to be minimized. With respect to these
goals, the MLP neural network simulation models estimate the hydraulic features of cut-off
walls considering their depth and the distance between them as decision variables.

In order to train and validate the MLP neural network meta-models the results of seepage
model in Seep/W module of Geostudio software for different possible cases of decision
variables were used. The results of MLP meta-models for estimating the seepage flow and
uplift force discharge through foundation of Yusufkand Mahabad diversion dam are illustrated
in Fig. 2a and b, respectively. Also, the results of MLP meta-models for estimation of vertical
and horizontal exit gradients at toe of the intended dam are shown in Fig. 2c and d,
respectively. As shown in Fig. 2, values of R2 for the trained and validated data illustrate the
acceptable accuracy of the developed MLP meta-models to estimate the hydraulic character-
istics of cut-off walls in seepage control.

To estimate the overall cost of appliance of cut-off walls a multi-variable linear regression is
used based on depth of the upstream and downstream cut-off walls, as two of the design
decision variables. The acquired equation (see eq. 5) is then applied as the cost objective in GA
optimization model.

The proposed multi-objective optimization model based on NSGA-II is utilized to deter-
mine the optimum values for decision variables as a trade-off curve. As mentioned earlier in
Section 2.1, the objectives of this optimization process are to minimize (1) seepage flow
discharge; (2) uplift force; (3) horizontal exit gradient; (4) vertical exit gradient at toe of dam
and (5) overall cost of applying cut-off walls.

According to Figs. 3a(1), 3a(2) and 3a(3), it appears to be trivial that a direct relationship exists
between each set of 2 objectives. For example, in Fig. 3a(1), as the objective 1 (seepage flow
discharge) increases, the amount of objective 3 (horizontal exit gradient) grows. On the other hand,
an indirect relationship is observed between each set of 2 objectives in Figs. 3b(1), 3b(2) and 3b(3),
separately. As it is depicted in Fig. 3b(1), the increasing process in objective 4 (vertical exit gradient),
causes the amount of objective 5 (overall cost of applying cut-off walls) to reduce. Referring to Figs.
S3a, S3b and S3c (Online Resource), it seems that objective 2 (uplift force under dam body) is
independent of the variations of objectives 3 (horizontal exit gradient at toe of dam), 4 (vertical exit
gradient) and 5 (overall cost of applying cut-off walls) in each separate figure. Byway of illustration,
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the Fig. S3b (Online Resource) indicates that as the objective 4 (vertical exit gradient) escalates, the
amount of objective 2 (uplift force under dam body) remains in a constant range.
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Fig. 2 Results of developed MLP meta-models to estimate a) seepage flow discharge, b) uplift force, c) vertical
exit gradient, d) horizontal exit gradient at toe of YusufkandMahabad diversion dam in train and validation stages
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Table 1 represents the Pareto-optimal solutions with their objectives’ values h1, h2, …, h5
and demonstrates their corresponding design decision variables x1, x2 and x3.

As it is shown in Tables 1, 13 Pareto-optimal solutions exist which required to be assessed
to characterize the compromise optimal solution, Thus, PROMETHEE decision making model
and Nash-Harsanyi bargaining model are utilized. Table 2 consists of the final outcomes of
applying two mentioned models to find the compromise alternative, namely, PROMETHEE
model designates the 3rd solution as the compromise optimal solution among 13 Pareto-
optimal solutions obtained from trade-off curves and also Nash-Harsanyi bargaining model
selects the 10th alternative. The 3rd solution is related to the design decision variables x1, =
10 m, x2 = 3.84 m, x3 = 32 m and also the 10th solution gives the values of x1 = 2.47 m, x2 =
10 m, x3 = 29.22 m for design of the upstream cut-off wall, the downstream one and distance
between them, respectively, when hydraulic features and overall cost are considered simulta-
neously. To illustrate, the 3rd cut-off wall design alternative leads into the seepage flow
discharge of 7.13 CMS, while the quantity of this objective through the 10th cut-off wall
design alternative equals with 4.02 CMS. According to the explanation in sections 2.2 and 2.3,
both of these Pareto-optimal ranking methods that have been used to find the most suitable
design alternative, are related to different base theorems. Nash-Harsanyi model is a solution
concept in non-cooperative game theory in which players’ preferences and disagreement
points are considered within, while the PROMETHEE decision making model is mostly
appropriate as a solution to the problems defined with a choice among alternatives and it is
based on the manner of outranking. With respect to these and according to Table 2, the order of
solution numbers presented by PROMETHEE model differs from that in Nash-Harsanyi
bargaining model. For instance, 8th solution is ranked as 12th compromise alternative in the
PROMETHEE model, but the same solution is ranked as 5th compromise alternative in
accordance with Nash-Harsanyi bargaining model application.

In order to designate weights of the objectives of optimization wi where i = 1, 2, …, 5 and

∑
m

i¼1
wi ¼ 1;wi≥0, to use in the optimal solution choosing procedure, sensitivity analysis is

Table 1 Pareto-optimal solutions and their corresponding decision variables as well as values of objective
functions

No. Design decision variables Objectives

Depth of
upstream cut-off
wall (x1, m)

Depth of
downstream cut-off
wall (x2, m)

Distance between
two cut-off walls
(x3, m)

h1 =Q ×
108

(CMS)

h2 =
UP

(KN)

h3 =
ix ×
103

h4 =
iy ×
103

h5 =
OC ($)

1 10.00 10.00 28.5 0.6 4752.3 11.1 20.0 2131.9
2 10.00 10.00 32.0 0.9 4651.4 −1.4 10.3 2131.9
3 10.00 3.84 32.0 7.13 3871.2 −36.7 28.3 1620.0
4 10.00 10.00 27.3 0.6 4771.4 11.3 22.6 2131.9
5 10.00 0.06 28.5 9.4 3675.1 2.0 59.9 1305.1
6 2.72 2.08 18.0 15.2 4605.5 188.2 289.5 868.0
7 8.82 7.20 27.1 5.9 4506.7 51.6 82.9 1801.4
8 3.24 7.99 29.0 9.2 4960.1 58.7 137.0 1402.6
9 3.54 9.76 28.4 4.5 5389.7 26.9 47.1 1575.0
10 2.47 10.00 29.2 4.02 5482.4 14.1 31.2 1506.0
11 9.96 4.56 31.2 6.7 3955.5 −26.7 33.3 1676.5
12 2.98 6.29 29.6 12.2 4775.9 41.9 146.8 1239.7
13 9.60 9.06 25.5 2.4 4618.0 29.6 41.7 2021.0

3732 Khoramshokooh N. et al.



accomplished considering the results of Nash-Harsanyi bargaining model. Hence, effect of
changing the weights was checked on amount of the best optimal solution that would be
chosen through Nash-Harsanyi bargaining model. At the first step, the difference between the
amounts of weights was slightly changed and no variation was seen in the amount of the best
optimal solution chosen by Nash-Harsanyi bargaining model. Situations in which slight
changes of the weights of objectives had no effect on amount of the best optimal solution,
are mentioned in Table S3 (Online Resource, Tables S3). Then, amounts of the weights
assigned to the objectives of optimization were changed to reach the threshold in which the
best optimal solution on the Pareto front, chosen by Nash-Harsanyi bargaining model, started
to change. Accordingly, details of changing the weights after the mentioned threshold show
that by increasing weight of uplift force to get more than other weights (set A of weights in
Fig. 4), the compromise optimal solution would be the 10th one (see Table 1). Following, in set
B of the weights, weight of overall cost is increased to become more than other weights, so the
compromise optimal solution is chosen as the 9th one.

Table 2 Rank of the Pareto-optimal solutions using PROMETHEE and Nash-Harsanyi models

Rank PROMETHEE Nash-Harsanyi

Solution number Net φ(a) Solution number Nash product

1 3 0.018 10 660.16
2 5 0.017 9 606.31
3 11 0.016 12 316.56
4 2 0.010 6 285.64
5 1 0.008 8 −195.21
6 4 0.007 5 −463.79
7 13 0.006 7 −567.98
8 10 0.003 13 −708.43
9 7 0.003 4 −718.47
10 9 0.001 1 −731.98
11 12 −0.003 3 −751.68
12 8 −0.004 11 −758.24
13 6 −0.017 2 −803.86
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Fig. 4 Sensitivity analysis of a) design decision variables, b and c) objectives of optimization to determine the
effective set of weights*. * Weights assigned to the five objectives of optimization which are seepage flow
discharge, uplift force, horizontal and vertical exit gradient at toe of dam and overall cost of applying cut-off
walls, respectively
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To complement the topic, Fig. 4a depicts the amounts of design decision variables versus
sets A, B and C of weights. As shown in Fig. 4a, depth of the downstream cut-off wall is
nearly zero in set A of the weights, which is not an accepted value due to the direct effect of
downstream cut-off wall on exit gradient reduction (Tuzkaya et al. 2008). For sets B and C of
weights, the distance between two cut-off walls have equal amounts as well as the depth of
downstream cut-off in both sets. Thus, according to the lower depth of upstream wall in set C
of weights which leads into less overall cost comparing with set B (Fig. 4c), set C is chosen as
the effective set of weights. Fig. 4b shows the amounts of objectives versus sets A, B and C of
weights, in which seepage flow discharge and uplift force have nearly the same amounts in sets
A, B and C of weights, separately, while the values of exit gradient (horizontal and vertical)
reduces remarkably due to the change from set A of weights to set C. Thus, the set C of
weights is designated as the effective set of weights and represents the 10th optimal solution.
According to Fig. 4c, although the minimum amount of cost objective is not assigned to set C
of weights, this set is being chosen as the acceptable set of weights due to the importance of
safe values of exit gradient effective to dam stability. Based on Fig. 4, when the maximum
weight (0.7) was assigned to the 4th objective of the optimization (set C of the weights), the
acquired optimal solution was exactly the same as results of the situation in which the
maximum weight (0.7) was assigned to the 1st objective (seepage flow discharge) and the
3rd one (horizontal exit gradient), separately. Hence, repeated results were not mentioned in
Fig. 4.

4 Conclusion

One of the main reasons of the seepage flow through a diversion dam foundation is the
difference between the water levels in the upstream and the downstream. Thus, the seepage
flow and its consequences should be investigated to be controllable. In this research, a
simulation-optimization model has been developed to determine the compromise optimal
design characteristics of cut-off walls under Yusufkand Mahabad diversion dam, located in
Iran. For this aim, the MLP neural network models were used to estimate the hydraulic
behavior of cut-off walls based on the results of the numerical solution of the seepage problem
beneath the dam that had been analyzed by simulating through Seep/W module in Geostudio
software considering variations of design decision variables. The trained MLP neural network
models were then linked to a robust multi-objective optimization algorithm in order to find the
optimum distance between the two cut-off walls and their optimum depth. The optimal
amounts of design decision variables ensure the decision makers to have safe foundation of
diversion dam with long-term service life as predicted. Regarding the overall cost of applying
cut-off walls as one of the objectives of the optimization model makes the study more comprehen-
sive as a result of the fact that economic considerations are among the important priorities of
stakeholders like construction employers who tend to have cost-effective projects. On the one hand,
conflicting interests of different stakeholders are considered through the simulation-optimization
methodology usingNash-Harsanyi bargainingmodel and PROMETHEE decisionmakingmodel to
select the compromise non-dominated solution among the available Pareto-optimal choices. This
point can help the decision makers to choose appropriate weights for objectives of the optimization
model based on their preferred standpoints. The obtained results illustrate that the proposed
methodology is efficient in determining the optimal design features of cut-off walls under a diversion
dam. For future studies based on the present study, existing uncertainties of dam design like
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geotechnical parameters of the soil can be considered in design of seepage control devices of
diversion dams such as cut-off walls and aprons.
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